
 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 1 
 
  

 

 

 

 

 SYSTEM MANAGEMENT FRAMELET  

Concept And Architecture Description 

 

Abstract 

This document was written as part of the study  “Design 
and Prototyping of a Software Framework for the AOCS” 
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a 
software framework for the Attitude and Orbit Control 
Subsystem (AOCS) of a satellite. The framework will be 
built as a collection of framelets. This document describes 
the system management framelet. This framelet defines a 
component to perform system management tasks. The 
framelet enhances reusability because it decouples the 
management of the system management functions from 
their implementation. 

 

___________________________________________________________________________________ 

Written By: A. Pasetti     

Date: 30 April 2002  

Issue: 2.1 

Reference: SWE/99/AOCS/021 
___________________________________________________________________________________ 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 2 
 
  

 

 

TABLE OF CONTENTS 

 

1 REFERENCES.................................................................................................................................. 3 
2 ACRONYMS.................................................................................................................................... 4 
3 INTRODUCTION........................................................................................................................... 5 

3.1 Context ..................................................................................................................................... 5 
3.2 Applicability to Java Version ................................................................................................ 5 
3.3 Notation ................................................................................................................................... 6 

4 FRAMELET CONSTRUCTS.......................................................................................................... 7 
5 SYSTEM MANAGEMENT FUNCTIONS ................................................................................... 8 

5.1 The System Manager Design Pattern................................................................................... 8 
5.2 Instantiation of System Manager Pattern............................................................................ 9 
5.3 The System Reset Function.................................................................................................... 9 
5.4 The System Configuration Check Function...................................................................... 10 

6 BASIC CLASSES ........................................................................................................................... 11 
6.1 The RootObject Class ....................................................................................................... 11 
6.2 The AocsObject Class ....................................................................................................... 12 
6.3 Default Interface Implementations .................................................................................... 14 

7 THE SYSTEM MANAGER.......................................................................................................... 15 
7.1 Implementation of the System Reset Function................................................................. 17 

8 SYSTEM EVENTS ......................................................................................................................... 18 
9 FRAMELET HOT-SPOTS ............................................................................................................ 19 

9.1 Resettable Hot-Spot .............................................................................................................. 19 
9.2 Configurable Hot-Spot......................................................................................................... 19 

 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 3 
 
  

 

 

1 REFERENCES 

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software, 
Reading, Massachusetts: Addison-Wesley  

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework 
Document ref. SWE/99/AOCS/004 

RD3  A. Pasetti (2000), Telemetry Management Framelet, AOCS Framework Document ref. 
SWE/99/AOCS/003 

RD4 A. Pasetti (2000), Failure Detection Management Framelet, AOCS Framework Document 
ref. SWE/99/AOCS/010  

RD5 A. Pasetti (2000), Reconfiguration Management Framelet, AOCS Framework Document 
ref. SWE/99/AOCS/015 

RD6  A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series, 
Springer-Verlag, To appear in Dec. 2001 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 4 
 
  

 

 

2 ACRONYMS 

AAD  Attitude Anomaly Detection 
AOCS  Attitude and Orbit Control Subsystem 
AST  Autonomous Star Tracker 
CSS   Coarse Sun Sensor 
ES  Earth Sensor 
FDIR  Failure Detection, Isolation and Recovery 
FPM  Fine Pointing Mode 
FSS  Fine Sun Sensor 
GYR  Gyroscope 
KF  Kalman Filter 
IAM  Initial Acquisition Mode 
OBDH  On-Board Data Handling system (aka as OBDS) 
NM  Normal Mode 
NTT  Non-Time-Tagged 
OCM  Orbit Control Mode 
OO  Object-Oriented 
PD  Proportional-Derivative controller 
PI  Proportional-Integral controller 
PID  Proportional-Integral-Derivative controller 
RRM  Rate Reaction Mode 
RTOS  Real-Time Operating System 
RW  Reaction Wheel 
SAS  Sun Attitude Sensor 
SBM  Stand-By Mode 
SPS  Sun Presence Sensor 
STR  Star Tracker 
SLM  Slewing Mode 
SM  Safe Mode 
TC  Telecommand 
THU  Thruster 
TM  Telemetry 
TT  Time-Tagged 
 
 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 5 
 
  

 

 

3 INTRODUCTION 

This document describes the system management framelet for the AOCS framework. The 
framelet is described at both the framelet concept level and at the framelet architectural level. 

This framelet defines a component to handle system management functions. It enhances 
reusability because it decouples the management of the system management functions from their 
implementation. 

3.1 Context 

The context for the design of the framelet is described in RD2. The present document assumes 
that the reader is familiar with RD2 and in particular with the section dealing with system 
management. 

The architecture proposed here follows the general concept outlined in RD2.  

3.2 Applicability to Java Version 

The AOCS Framework was first implemented in C++ and then ported to Java. This document 
was originally written for the C++ version and is only partially applicable to the Java version. 
Generally speaking, the description of the framelet at design level – in particular its design 
patterns – is language-independent and is equally applicable to both the C++ and Java 
versions whereas the architectural-level description is more tied to the C++ version. For a 
detailed description of the architecture of the Java framework, readers should refer to the 
JavaDoc documentation generated from it. 

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The 
issues that should be borne in mind when using this document for the Java version of the 
AOCS framework are presented in the project web site currently located at the following 
address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific 
points to note are: 

− Events in the Java framework are implemented using the Java event mechanism. 

− In the C++ version of the framework, reconfigurable objects notify the system manager 
every time their configuration changes by calling method 
configurationStateChange exposed by class SystemManager. In the Java version of 
the framework the notification of configuration changes is done through events. 
Reconfigurable objects act as sources of reconfiguration events. The system manager is a 
listener to reconfiguration events. The system manager must register with reconfigurable 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 6 
 
  

 

 

objects during the initialization phase and will then be automatically notified whenever 
there are configuration changes. 

3.3 Notation 

The pseudo-code examples in this document use a C++ notation. 

UML class diagrams were obtained with the Together tool (version 4.0).  



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 7 
 
  

 

 

4 FRAMELET CONSTRUCTS 

The architectural constructs exported by this framelet are listed in the following table: 

 

SYTEM MANAGEMENT FRAMELET 

Framelet Design Patterns  

System Management Pattern : design pattern to systematically perform the same operations on a 
target set of objects 

Memento Pattern : design pattern to preserve configuration information across system resets. This is 
a standard design pattern taken from RD1. 

Framelet Interfaces 

Resettable : interface to declare object reset services 

Configurable : interface to declare object configuration services 

Framelet Core Components 

SystemManager : system management component 

RootObject : base class for all objects in the framework 

AocsObject : base class for all non-trivial objects in the framework 

 

 

 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 8 
 
  

 

 

5 SYSTEM MANAGEMENT FUNCTIONS 

A system management function is a function that is performed systematically on all AOCS 
objects present in the AOCS software at a given time. An AOCS object is a component that is 
derived from the basic class AocsObject. The system manager is the component responsible 
for performing system management functions. 

Two system management functions are foreseen by the AOCS prototype: 

• System Reset 

A system reset causes the internal state of all AOCS objects to be reset to a default state. 
Note that, with this definition, a system reset does not entail a system reboot.  

• System Configuration Check 

A configuration check causes the configuration of all AOCS objects to be checked. The 
system configuration check function returns true if all AOCS objects are configured and 
returns false otherwise. 

These two functions are described in greater detail in sections 5.3 and 5.4. 

5.1 The System Manager Design Pattern 

The system manager design pattern is introduced to address the problem of systematically 
performing the same set of operations on a target set of objects. The system manager design 
pattern is obtained by instantiating the manager meta-pattern. 

The structure of the system manager design pattern is shown in the following UML diagram: 

 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 9 
 
  

 

 

The functionality interface encapsulates the operations to be performed on the target set of 
objects. This interface is to be implemented by all objects in the target set. Additionally, all 
objects in the target set are to be derived from a single base class whose constructor registers 
with the functionality manager. Thus, the functionality manager is provided with a list of all 
the objects in the target set. Deregistration is not required because objects in the target set are 
assumed never to be destroyed. 

5.2 Instantiation of System Manager Pattern 

In the AOCS framework, the system manager design pattern is instantiated twice, once for 
the system reset function and once for the system configuration  check function, as follows: 

• The functionality manager is the SystemManager component 

• The base class is AocsObject. This means that the set of objects upon which the system 
manager acts is the set of AOCS objects.  

• The abstract interfaces associated to the system reset and system configuration checks 
functions are Resettable and Configurable, respectively 

• The functionality interfaces Resettable and Configurable are implemented directly 
by AocsObject. This ensures that they are implemented by all objects upon which the 
system manager is required to act (ie by all AOCS objects). 

5.3 The System Reset Function  

The Resettable interface associated to the system reset function is defined as follows: 

 

This interface is inherited by all AOCS objects that must therefore provide an implementation 
for method reset(). A call to method reset causes the state of the object to be reset to its 
default value. By state here it is meant the set of internal attributes that are regularly updated 
as a result of the object performing its task. 

Calling the system reset function causes the reset method of all existing AOCS objects to be 
called in sequence. The order in which the reset method is called is not defined. 

The system reset function is intended primarily for failure recovery. It is milder than a system 
reboot because it does not destroy the configuration of the AOCS software. 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 10 
 
  

 

 

5.4 The System Configuration Check Function 

The Configurable interface associated to the configuration check function is defined as 
follows: 

 

This interface is inherited by all AOCS objects that must therefore provide an implementation 
for methods resetConfiguration() and isConfigured().  

A call to resetConfiguration  causes the configuration information of the object to be 
destroyed. The configuration data include those attributes of an object that are normally set 
during the application initialization to configure the object. These attributes are used to tune 
the object’s behaviour and are modified during the object’s lifetime on an occasional basis 
only. 

Method isConfigured returns true if the object is configured, ie. if all its configuration 
attributes have been defined and have non-null values. 

Calling the system configuration reset function causes the isConfigured method to be 
called in sequence on all existing AOCS objects to be called in sequence. The order in which 
the method is called is not defined. The system configuration check function returns true if all 
the isConfigured methods returned true. 

The system configuration check is provided to be called at the end of the AOCS software 
initialization phase to verify that the system is properly configured.  

 

 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 11 
 
  

 

 

6 BASIC CLASSES 

The system manager was introduced to perform operations systematically on all AOCS 
objects in the AOCS software. Uniform treatment of a large class of objects is best done when 
they are all derived from a common base class. The basic object classes were introduced for 
this purpose.  

A basic class is a class that serves as a base class to a large number of framework classes. Two 
basic classes are present in the AOCS framework: 

• RootObject

This is the base class for all objects in the AOCS framework. It defines the object 
identifiers. 

• AocsObject

This is the base class for all non-trivial objects in the AOCS framework. It adds to 
RootObject services for object reset and configuration and for telemetry management 
and for error reporting. 

The two basic class are described in greater detail in the next subsections. 

The system manager operates on the AocsObject class. 

6.1 The RootObject Class 

Class RootObject defines two read-only attributes: the instance identifier and the class 
identifiers. Its class diagram is: 

 

The class defines two getter methods for the instance and class identifiers. The instance and 
class identifiers are set by the constructor and cannot be changed. 

Class RootObject allows uniform treatment of all objects in the AOCS software and ensures 
that all objects and all classes can be uniquely identified. 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 12 
 
  

 

 

6.2 The AocsObject Class 

Class AocsObject is directly derived from RootObject. It acts as a base class for all non-
trivial objects in the AOCS software. Its definition is: 

 

Objects derived from class AocsObject are called AOCS Objects. 

Class AocsObject is designed to gather together services that apply to all non-trivial objects 
in the framework and to make them available through a simple interface. Some such services 
are internal in the sense that they are encapsulated in protected methods that can be called 
only by the children objects. Internal services are implemented by plug-in components.  



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 13 
 
  

 

 

Other services are external in the sense that they are encapsulated in public interfaces that are 
implemented by class AocsObject. The external services can be called by any object. 

The following internal services are offered: 

• Time Recovery 

AocsObject holds a reference to the AocsClock interface that defines the AOCS clock. 
Through it, it can recover the time and make it available to its children object through 
protected method getTime. 

• Failure Reporting 

AocsObject offers a protected method, reportFailure, through which failures can be 
reported. Failure reports are transformed into failure events that are stored in the failure 
event repository to which AocsObject has a reference. Failure events are described in 
RD4. 

• Configuration Error Reporting 

AocsObject offers a protected method, reportConfigurationError, through which 
configuration errors can be reported.  Configuration error reports are transformed into 
configuration events that are stored in the configuration event repository to which 
AocsObject has a reference.  

The external services are encapsulated in the interfaces that are implemented by 
AocsObject and inherited by all its children: 

• Interface Telemeterable 

Implementation of this interface ensures that all AOCS objects can potentially be included 
in telemetry. Interface Telemeterable is described in RD3. 

• Interface Resettable 

Implementation of this interface ensures that all AOCS objects are able to perform a state 
reset operation that brings their internal state to a default initial value. Interface 
Resettable is described in section 5.3. 

• Interface Configurable 

Implementation of this interface ensures that all AOCS objects can perform a 
configuration reset and can check whether they have been configured. Interface 
Configurable is described in section 5.4. 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 14 
 
  

 

 

AOCS objects are intended to be created during initialization and never to be destroyed. To 
ensure that this is the case, the AocsObject destructor generates an error if it is called. Note 
that this means that AOCS objects cannot be created on the stack: they can only be created 
statically. 

Since AOCS objects are created statically and never destroyed, it is safe to use pointers to 
them. A design rule in the AOCS framework dictates that pointers can only be used on objects 
of type AocsObject.  

6.3 Default Interface Implementations 

Class AocsObject is concrete and provides simple default implementations for the methods 
declared by its interfaces. 

Method writeToTelemetry from AocsObject writes the following data to the telemetry 
stream as a function of the telemetry format: 

 

TM Format TM Data 

Short instance and class identifiers 

Normal same as short TM 

Long same as normal TM  

Debug long TM + instance identifiers of AOCS clock and failure and reconfiguration 
event repositories 

 

Method reset returns without taking any action 

Method resetConfiguration resets the telemetry format to normalTm. 

Method isConfigured returns true is all the plug-in components for class AocsObject 
have been loaded. 

 

 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 15 
 
  

 

 

7 THE SYSTEM MANAGER 

The system manager is the component responsible for performing the system management 
functions. Its class diagram is: 

 

Note that the system manager is derived from RootObject rather than from AocsObject as 
is the case for all other non-trivial objects in the framework. This is because the primary 
function of the system manager is to perform system management operations on AOCS 
objects and therefore the system manager should not itself be an AOCS object. 

The semantics of the public methods exposed by the system manager class is: 

 

SystemManager(n,m,rep)

Constructor that sets the maximum number n of AOCS objects that can be present in 
the AOCS application, the maximum number m of reconfiguration managers that can 
be present in the AOCS application, and the system event repository rep.   

add(), remove()

The system manager maintains an internal list of all AOCS objects created in the 
AOCS application. These methods allows an item to be added and removed from 
this list. See section Error! Reference source not found.. 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 16 
 
  

 

 

addReconfigurable(), removeReconfigurable()

The system manager maintains an internal list of all reconfiguration managers  
created in the AOCS application. These methods allows an item to be added and 
removed from this list. See section 7.1. 

configurationStateChange()

The system manager maintains a record of the current configuration of each 
reconfiguration manager in the AOCS application. This is a call-back method that is 
invoked by a reconfiguration manager whenever it updates the configuration of the 
reconfiguration group it manages. See section 7.1. 

systemReset()

This method implements the system reset function. A call to this method causes all 
AOCS objects in the AOCS application to be reset. See section 5.3 

isSystemConfigured()

This method implements the system configuration check function. See section 5.4 

getSystemEventRepository()

Getter method for the system event repository. 

 

In order to implement the system reset function (see section 5.3) and the configuration check 
function (see section 5.4), the system manager internally maintains a list of all AOCS objects 
created in the AOCS application. The system manager pattern guarantees that this list is 
completed. The pattern requires that class AocsObject holds a reference to the system 
manager and that its constructor call the add method on the system manager: 

AocsObject::AocsObject()
{

. . .
if (systemManager!=NULL)

systemManager->add(this);
. . .

}

Since the AocsObject constructor is implicitly called by the constructor of all AOCS objects 
in an AOCS application, this guarantees that the all AOCS objects are automatically 
registered with the system manager. 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 17 
 
  

 

 

The system manager also maintains a list of all reconfiguration managers (see RD5) created in 
the AOCS application. The same design pattern is used to ensure the completeness of this list 
by having the constructor of each reconfiguration manager call method 
addReconfigurable on the system manager: 

ConcreteReconfigurationManager:: ConcreteReconfigurationManager(. . .)
{

. . .
AocsObject::getSystemManager()->addReconfigurable(this);
. . .

}

7.1 Implementation of the System Reset Function 

When the system reset method is called, the system manager goes through the list of 
registered AOCS objects and calls method reset on each. 

There is some information that should be preserved across resets. This in particular concerns 
configuration information. Unit reconfigurations are managed by dedicated objects called 
reconfiguration managers (see RD5). Syntactically, reconfiguration managers are objects of type 
Reconfigurable. 

Reconfiguration managers can return an object of type ConfigurationState. The memento 
design pattern from RD1 is used to store the configuration of their reconfiguration group.  

The system manager therefore holds a list of all reconfiguration managers present in the 
AOCS application and maintains an associated list of their current configuration. After a 
system reset has been performed, the configuration of all reconfiguration managers is 
restored to the value it had prior to the reset action. 

In order to ensure that the system manager is kept informed of changes in the configuration 
of the reconfiguration managers, a call-back method configurationStateChange is 
provided that reconfiguration managers should call whenever they change the configuration 
of their reconfiguration. 

In some implementations, configuration information could be stored in non-volatile memory 
to be preserved across system reboots. It is for this reason that a call-back method is used to 
keep the configuration record in the system manager up-to-date. In an alternative 
implementation, the reset method itself, prior to commanding the reset, collects the 
configuration information from all registered reconfiguration managers. This obviously, 
would not ensure that the system manager is up-to-date in case of a system reboot.  



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 18 
 
  

 

 

8 SYSTEM EVENTS 

When the system manager encounters error situations or performs a system reset, it records 
the fact as a system event. System events are instances of class SystemEvent: 

 

Thus, class SystemEvent adds neither attributes nor methods to its base class. It is 
introduced uniquely as a placeholder to characterize from a syntactic point of view system 
events. 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
System Management Framelet 
Issue 2.1 
30 April 2002 
Page 19 
 
  

 

 

9 FRAMELET HOT-SPOTS 

This section classifies the framelet hot-spots defined in the previous sections of this 
document. The classification is as described in RD6. 

9.1 Resettable Hot-Spot 

Name: Resettable Hot-Spot 

Visibility Level: framework –level 

Adaptation Time: compile-time 

Adaptation Method: implementation of interface Resettable 

Pre-defined Options: default implementation provided by class AocsObject (see section 6.3) 

Related Hot-Spots: none  

Description 

AOCS objects must provide an implementation of method reset to reset their internal state. 

 

9.2 Configurable Hot-Spot 

Name: Configurable Hot-Spot 

Visibility Level: framework –level 

Adaptation Time: compile-time 

Adaptation Method: implementation of interface Configurable 

Pre-defined Options: default implementation provided by class AocsObject (see section 6.3) 

Related Hot-Spots: none  

Description 

AOCS objects must provide an implementation of method resetConfiguration to destroy their 
internal configuration and of method isConfigured to check that they have been configured. 

 


