

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 1

 OPERATIONAL MODE MANAGEMENT FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the operational mode management framelet. This
framelet proposes an architectural solution to the problem
of managing operational mode changes in AOCS objects.
It enhances reusability because it separates the
implementation of mode-specific algorithms from the
mode switching logic.

Written By: A. Pasetti

Date: 30 April 2002

Issue: 2.3

Reference: SWE/99/AOCS/009

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 2

TABLE OF CONTENTS

1 REFERENCES.. 4
2 ACRONYMS.. 5
3 INTRODUCTION... 6

3.1 Context ... 6
3.2 Applicability to Java Version .. 6
3.3 Notation ... 7

4 FRAMELET CONSTRUCTS.. 8
5 THE MODE MANAGEMENT DESIGN PATTERN.. 9

5.1 Mode Representation ... 11
5.2 Mode Manager Attributes ... 11
5.3 Mode Switching Logic ... 12
5.4 Operational Mode Control .. 12
5.5 Mode-Based Components in the AOCS Framework... 12

6 MODE CHANGE ACTIONS .. 14
6.1 Recursion ... 15
6.2 Default Mode Change Actions ... 15

7 MODE CHANGE EVENTS ... 16
7.1 The Telemetry Interface ... 17
7.2 The Reset and Configurable Interface ... 17

8 THE CORE MODE MANAGER... 18
8.1 Concrete Mode Managers.. 21
8.2 Mode Switching Logic ... 21
8.3 Mode Change Action ... 22
8.4 Casting of Implementer Objects ... 22
8.5 Telemetry Interface... 23
8.6 The Reset and Configurable Interfaces.. 23

9 THE AOCS MISSION MODE MANAGER... 25
10 DEFAULT MODE SWITCHING IMPLEMENTATION ... 27

10.1 The Cycling Mode Manager.. 27
10.2 The Follower Mode Manager.. 28
10.3 Concrete Mode Managers.. 29

11 FRAMELET HOT-SPOTS .. 30
11.1 Mode Manager Hot-Spot... 30

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 3

11.2 Cycling Mode Manager Hot-Spot .. 30
11.3 Follower Mode Manager Hot-Spot .. 31
11.4 Recovery Action Plug-In for Illegal Mode .. 31
11.5 Recovery Action Plug -In for Illegal Strategy... 32
11.6 Mode Event Repository Plug-In ... 32
11.7 Change Event Repository Plug-In.. 33
11.8 Monitor Hot-Spot.. 33
11.9 Mode Implementer Hot-Spot.. 34
11.10 Mode Change Action Hot-Spot .. 34

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 4

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

RD3 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 5

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
OBDH On-Board Data Handling system (aka as OBDS)
NM Normal Mode
NTT Non-Time-Tagged
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 6

3 INTRODUCTION

This document describes the operational mode management framelet for the AOCS framework.
The framelet is described at both the framelet concept level and at the framelet architectural
level.

This framelet proposes an architectural solution to the problem of managing operational
mode changes in AOCS objects.

The framelet enhances reusability because it separates the implementation of mode-specific
algorithms from the mode switching logic.

3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD2 and in particular with the section dealing with mode
management.

The architecture proposed here follows the concept outlined in RD2 based on a design pattern
for the implementation of mode-dependent components.

In comparing the present document with RD2, readers should bear in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce an
architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level – in particular its design
patterns – is language-independent and is equally applicable to both the C++ and Java
versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 7

address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific
points to note are:

− Events in the Java framework are implemented using the Java event mechanism.

− The core mode manager in the C++ framework exposes the current operational mode as a
property. Property objects do not exist in the Java framework. The core mode manager is
instead implemented as a monitorable component (it implements interface
Monitorable).

− The mode event repository hot-spot (section 11.6) and the change event repository hot-
spot (section 11.7) are not applicable to the Java framework. Event repositories are event
listeners and can be linked to the mode manager through the associated addListener
methods.

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

The class diagrams use UML notation generated with the reverse engineering tool of the
Together tool.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 8

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

OPERATIONAL MODE MANAGEMENT FRAMELET

Framelet Design Pattern

 Mode Management Pattern : pattern to endow components with mode-dependent behaviour

Framelet Core Components

AocsMissionModeManager : AOCS mission mode manager

ModeManager : core mode manager component

ModeChangeAction : encapsulation of a mode change action

Framelet Default Components

CyclingModeManager : cycling mode manager component

FollowerModeManager : follower mode manager component

NullModeChangeAction : default mode change action that does nothing

The components listed above are those envisaged for the prototype version of the AOCS
framework. Later version may offer a richer set of default implementations of the framelet
interfaces.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 9

5 THE MODE MANAGEMENT DESIGN PATTERN

This design pattern is introduced to address the problem of endowing components with
mode-dependent behaviour. The pattern separates the implementation of the mode-
dependent behaviour from the implementation of the logic required to decide mode switches.

A mode-dependent component is a component that needs to select a particular implementation
of one or more strategies depending on operational conditions. The figure illustrates the case
of a component with two strategies:

The two strategies are characterized by classes Strategy_1 and Strategy_2. These could
be concrete classes (with different implementations being represented by different instances),
or base abstract classes or abstract interfaces (with different implementations being
represented by different subclasses).

The mode manager encapsulates the logic to decide which implementation of each strategy is
appropriate at any given time (method updateMode). When the mode dependent component
needs a strategy implementation, it uses the strategy getter methods offered by the mode
manager to obtain one. From the point of view of the mode dependent component, the

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 10

strategy implementations are always seen as instances of type Strategy_1 and
Strategy_2.

As an example consider again an attitude controller component. This component is
responsible for implementing the attitude control algorithm and could have two modes: low
accuracy control, and high accuracy control. In low accuracy mode, attitude information is
provided by a low-accuracy sensor, for instance a coarse sun sensor (CSS), and is processed
by a low-accuracy algorithm, for instance a PID. In high-accuracy mode instead, a high
accuracy sensor, for instance a fine sun sensor (FSS), and a high accuracy control algorithm,
for instance a PID with Kalman filtering, are used. In this case, the controller component (the
mode-dependent component) has two strategies (the sensor and the control algorithm) and
each strategy has two implementations (the CSS and the FSS for the sensor strategy and the
PID and PID+KF for the control algorithm strategy). Thus, a skeleton code for an
AttitudeController component could be as follows:

class AttitudeController {

AttitudeSensor* sensor;
AttitudeControlAlgorithm* controlAlgorithm;
AttitudeControllerModeManager modeManager;

. . .

void computeControlTorque() {

// Retrieve strategy implementations
sensor = modeManager->getAttitudeSensor();
controlAlgorithm = modeManager->getControlAlgorithm ();

// Use strategies to compute control torque
sensor->acquireData();
controlAlgorithm->processSensorData();

}
}

The mode manager of this example will maintain two versions of the attitude control
algorithms and two versions of the attitude sensor and will supply the appropriate one to the
attitude controller algorithm based on operational conditions. The controller component can
thus concentrate on computing the control torques without having to keep track of changes in
operational conditions.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 11

Note that the term strategy implementer here is used in a very broad sense. It can refer to an
object implementing a certain type of algorithm but it can more generally refer to an instance
of a particular class of objects.

5.1 Mode Representation

A mode-dependent component is at any given time in a unique operational mode. The type
of the mode indicator could be either an integer or an enumeration type. To each class of
mode-dependent components, there may correspond a dedicated type for the mode indicator.
Thus, operational mode indicators of different components may not be type-compatible.

To each operational mode, there corresponds a unique set of strategy implementations.

AOCS’s sometimes have submodes as well as modes. The AOCS framework makes no specific
provisions for handling submodes. This is primarily because submodes can easily be
represented as distinct modes and secondarily because it is believed that submodes in current
AOCS’s are required because operational mode is treated as an attribute of the entire AOCS.
It is postulated that, by treating mode as an attribute of individual components, the AOCS
framework removes the need for submoding.

5.2 Mode Manager Attributes

A concrete mode manager is characterized by:

• The set of modes

There are as many modes as there are different implementations that the mode manager
can supply for each of the strategies for which it is responsible.

• The number of strategies

This is the number of distinct strategies (as opposed to the number of distinct
implementations of each strategy) that are managed by the mode manager. In the
example of RD2, there is only one strategy (the computation of the control torque). In the
example of the controller implementation case, there are instead three strategies
(corresponding to the sensor, actuator and control law objects).

• The references to the strategy implementations

The mode manager maintains references to the objects implementing the strategies for
which it is responsible but is insulated from strategy implementation details.

• The mode-switching logic

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 12

This is the algorithm that is used to decide which implementation of the strategies should
be returned at a certain time.

5.3 Mode Switching Logic

The mode switching logic is highly component-specific. In general, mode switches occur in
response to changes in the environment around the mode manager. Mode managers can
monitor their environment in three manners:

• By directly monitoring properties exposed by other objects;
• By registering with other objects to be notified of specific changes in their properties;
• By inspecting the event repositories for the occurrence of specific events.

In order to allow coordination of mode changes among mode managers, the mode indicator is
always exported by mode managers as a bound property.

An AOCS mission manager objects acts as a proxy for the ground (of for a higher level entity
within the spacecraft like the OBDH computer) within the AOCS. Its operational mode – the
mission mode – can be monitored by mode managers that need to take ground (or OBDH)
state into account when performing mode switches.

5.4 Operational Mode Control

Mode switches nominally occur autonomously under the control of the mode manager. Mode
managers, however, expose methods that to allow the autonomous mode switching logic to
be overridden. In particular, methods are made available to:

• set the current mode
• force the mode to a fixed value
• to inhibit/enable transitions to a specific mode

Because of their potentially disruptive effect, such operations should be used with the utmost
care.

5.5 Mode-Based Components in the AOCS Framework

The following objects are endowed with mode-dependent behaviour in the AOCS
framework:

• The telemetry manager
• Attitude and orbit controllers
• The unit trigger objects

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 13

• The failure recovery manager
• The failure detection manager

Readers are referred to the framelet documentation for a description of how the mode
management design pattern is instantiated in each case.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 14

6 MODE CHANGE ACTIONS

Actions that are associated to a mode transition are called mode change actions. The AOCS
framework offers two mechanisms for their implementations. The most straightforward
approach is simply to hard-code the mode change actions into the concrete mode managers.

A second, more systematic approach, is to use mode change action objects, namely objects that
are instantiated from classes derived from the following base class:

0..1

RootObject

Resettabl

Configurabl

Telemeterabl

AocsObject

ModeChangeAction

+ModeChangeAction()

+doModeExitAction(oldMode:int):void

+doModeEntryAction(newMode:int):void

+resetConfiguration():void

+writeToTelemetry(stream:TelemetryStream *):void

+getTelemetryImageLength():int

+setNextModeChangeAction(n:ModeChangeAction *):v

+getNextModeChangeAction():ModeChangeAction *

A mode change action object then encapsulates the actions that are associated to a mode
transition. The semantics of the methods specific to class ModeChangeAction is:

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 15

doModeExitAction(int oldMode)

Performs the actions associated to a transition out of mode oldMode.

doModeEntryAction(int newMode)

Performs the actions associated to a transition into mode newMode.

setNextModeChangeAction(ModeChangeAction* n),
getNextModeChangeAction()

Mode change actions can be linked together in a chain of responsibility (see below).
These are the getter and setter methods for the next mode change action in the
chain.

Mode change action objects should be associated to a mode manager and the mode manager
should call method doModeExitAction when a mode is exited and method
doModeEntryAction when a mode is entered. See section 8.3 for an example of how this is
done in the case of the core mode manager.

Mode change actions can be linked together in a chain of responsibility (in the sense of RD1).
When the mode manager performs a mode transition, it calls methods doModeExitAction
and doModeEntryAction on a ModeChangeAction object but the method calls might
actually be passed along a chain of linked mode change action objects. In a typical
configuration, each mode change action object in the chain specializes in one the transition
into or out of one particular mode.

6.1 Recursion

Use of the chain of responsibility pattern introduces the possibility of recursion in the calls to
methods doModeExitAction and doModeEntryAction. The maximum depth of the
recursion is given by the maximum number of mode chain actions that are chained together.

6.2 Default Mode Change Actions

Mode change actions are obviously application-specific (they are one of the hot-spots of the
AOCS framework) and therefore the only default mode change action class provided by the
AOCS framework is NullModeChangeAction that defines a mode change action object that
does not do anything. This object to configure mode managers where no special actions need
to be taken when a mode transition occurs.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 16

7 MODE CHANGE EVENTS

Changes in the operational mode of a component are recorded as events of type ModeEvent.
Mode events are stored in a dedicated event repository instantiated from class
ModeEventRepository.

The class diagram for the mode event class is shown in the next UML diagram:

AocsObject

AocsEvent

AocsEvent

ModeEvent

+ModeEvent()

+initialize(creator:AocsObject *,evtType:EventType,oldMode:int,newMode:int,modeManager

+getOldMode():unsigned char

+getNewMode():unsigned char

+getModeManager():ModeManager *

+resetConfiguration():void

+isConfigured():bool

+writeToTelemetry(stream:TelemetryStream *):void

+getTelemetryImageLength():int

Thus, the mode event adds the following attributes to those defined by the base class
AocsEvent:

• oldMode : the mode before the mode transition.
• newMode: the mode after the mode transition
• a reference to the mode manager that underwent the mode transition

Creation of mode events is the responsibility of the mode manager.

Mode changes events are created for reporting purposes only. They provide a vehicle through
which mode changes can be recorded for possible reporting to the ground in the telemetry
stream. Components that need to observe mode changes should do so through the property
monitoring mechanism, not through inspection of the mode change repository.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 17

7.1 The Telemetry Interface

Mode events are telemetry objects because they (indirectly, through AocsEvent) inherit from
AocsEvent the telemeterable interface.

The data sent to the telemetry stream by a mode event in each telemetry mode are
summarized in the table:

TM Format TM Data

Short the new mode indicator

Normal short TM + old mode indicator+ instance identifier of mode manager

Long same as normal TM

Debug same as long TM

7.2 The Reset and Configurable Interface

Mode event objects inherit from AocsObject the Resettable and Configurable
interfaces and must therefore implement the corresponding method.

Mode events have no dynamic state associated to them and therefore they do not define a
class-specific reset method.

Mode events define a class-specific resetConfiguration method that resets all event
attributes to zero. Method isConfigured returns true if the new and old mode indicators
are equal or if the mode manager reference is NULL.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 18

8 THE CORE MODE MANAGER

It is not possible to give a generic implementation of a mode manager for two reasons. Firstly,
the mode switching logic is highly mission specific (although one common pattern can be
recognized and encapsulated in reusable objects – see section 10). Secondly, the number and
type of strategies varies from mode manager to mode manager making general treatment
impossible1.

However, there are some functionalities that are common to all mode managers and that can
therefore be gathered in a class acting as base class for all mode managers. More specific
behaviour can then be implemented by overriding existing methods or adding new ones. The
base class for mode managers is called ModeManager. It models a core mode manager that has
no mode switching logic (mode changes occur only in response to external commands) and
that handles strategies as references to the basic type RootObject.

The core mode manager implements the following functionalities:

• control of mode changes (overriding of autonomous mode changes, constraining of
autonomous mode changes, etc)

• management of the mode property as a bound property
• management of the implementers for the mode strategies

Its class diagram is:

1 General treatment remains impossible even using templates because the number of strategies is not fixed.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 19

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 20

The public methods specific to the ModeManager class (ie not inherited from base classes) are
described in the table:

getModeProperty

Returns the current mode encapsulated as a property object.

loadImplementer(i,j,&object)

Loads the implementer for the j-th strategy in the i-th mode. The implementer is
treated as a reference to an object of generic type RootObject.

setMode(i)

Set the current mode to the i-th mode but does not inhibt further autonomous mode
changes.

forceMode(i), release

Set the current mode to the i-th mode and inhibits further autonomous mode
changes. The inhibition is lifted with a call to release.

inhibit(i), enable(i)

Inhibit and enable transition into the i-th mode.

getImplementer(i)

Return the implementer corresponding to the current mode for the i-th strategy.

addMonitor(&monitor,&changeObject), removeMonitor(&monitor)

Add and remove the object monitor to the list of those monitoring the mode
property. Object changeObject defines the type of change that triggers a call-back
to the monitoring object.

getModeChangeAction, setModeChangeAction

Setter and getter methods for the mode change action associated to the mode
manager. See section 8.3.

getModeEventRepository, setModeEventRepository

Static setter and getter methods for the mode event repository. Mode changes are
logged as mode events in the mode event repository.

getChangeEventRepository, setChangeEventRepository

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 21

Static setter and getter methods for the change event repository. Change events are
created when the mode, as a property object, is being monitored and the mode has
changed.

getIllegalModeRecoveryAction, setIllegalModeRecoveryAction

Attempts to operate on a non-existent mode (mode indicator negative or greater than
numberOfMode-1) give rise to a failure event. These are the setter and getter
methods for the recovery action associated to it.

getIllegalStrategyRecoveryAction, setIllegalStrategyRecoveryAction

Attempts to operate on a non-existent strategy (strategy indicator negative or greater
than numberOfStrategies-1) give rise to failure event. These are the setter and
getter methods for the recovery action associated to it.

Instances of ModeManager cannot be used as mode managers for framework components
because they do not have any mode switching logic and should not be used for this purpose
because they handle implementers as objects of generic type RootObject which would
require users to perform potentially dangerous downcasts to the actual type of the
implementers.

8.1 Concrete Mode Managers

The most straightforward manner to obtain a concrete mode manager is to subclass
ModeManager and add the following:

• mode switching logic
• casting operations to allow the user of the mode managers to see the type of the

implementers

The above two points are discussed separately in the next subsections.

8.2 Mode Switching Logic

Mode switches can be either triggered by the external commands (through method setMode)
or they can be initiated autonomously by the mode manager itself.

The logic for autonomous mode switches is contained in method updateMode. This is a
virtual method offered by class ModeManager. Class ModeManager provides a default
implementation that does not do anything. Derived classes can override this method to
provide class-specific mode switching logic.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 22

Class ModeManager does not define when updateMode is called. In general, three
possibilities can be recognized:

• On-Call Mode Update

Method updateMode is called whenever getImplementer is called. In this case the
default implementation of getImplementer must be overridden as follows:

RootObject* CyclingModeManager::getImplementer(int strategy)
{

updateMode();
return ModeManager::getImplementer(strategy);

}

Thus, mode switches only take place when the client of the mode manager requires a
new implementation for one of its strategies.

• Reactive Mode Update

The mode manager acts as a monitor for external properties and changes its mode in
response to changes in the external properties. In this case the mode manager must
implement interface PropertyMonitor and the mode switching logic is entirely
implemented inside method propertyChange. In this case, method updateMode may
be unnecessary and may be implemented as a non-op.

• Periodic Mode Update

The mode switching logic is triggered at regular intervals. This is best realized by making
the mode manager an active object. Method updateMode is then called from within
method run.

The mode management framelet provides two components encapsulating default mode
switching logic. They are described in section 10.

8.3 Mode Change Action

The core mode manager also takes care of the management of mode change actions. It
provides getter and setter methods for the mode change action and it calls its mode entry and
mode exit methods upon a mode transition.

8.4 Casting of Implementer Objects

The core mode manager treats implementers as objects of type RootObject. Concrete mode
managers instead see implementers of specific types. Concrete mode managers therefore

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 23

implement dedicated versions of methods loadImplementer and getImplementer that
handle implementers of the appropriate type.

Consider, for instance, a concrete mode manager that uses two strategies with implementers
of type Type1 and Type2 for, respectively, strategy 1 and strategy 2. Its getImplementer
methods will be:

Type1* getImplementer1()
{

return (Type1*)ModeManager::getImplementer(0);
}
Type2* getImplementer2()
{

return (Type2*)ModeManager::getImplementer(1);
}

The implementation of the loadImplementer methods will be similar.

8.5 Telemetry Interface

The telemetry manager is itself a telemetry object because it inherits (indirectly, through
AocsObject) the telemeterable interface.

The data sent to the telemetry stream by a telemetry manager in each telemetry mode are
summarized in the table:

TM Format TM Data

Short none

Normal current mode indicator

Long same as normal TM

Debug same as long TM

8.6 The Reset and Configurable Interfaces

The core mode manager inherits from AocsObject the Resettable and Configurable
interfaces and must therefore implement the corresponding method.

Method reset resets the current mode to the initial default mode and clears any flags
inhibiting mode transitions.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 24

Method resetConfiguration unloads all recovery actions and clears all the implementer
references.

Method isConfigured returns true if implementers for all modes and for all strategies have
been loaded.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 25

9 THE AOCS MISSION MODE MANAGER

In the model proposed here, components are responsible for managing their own operational
mode. They decide on mode changes based on their observation of the external environment.
Part of this information can come from monitoring the state of other AOCS objects but part
must come from outside the AOCS.

The ground station could, for instance, provide information about changes in orbital
conditions, or the beginning of delta-V manoeuvres. Similarly, the OBDH could send
commands to force the AOCS into survival mode.

An object – the AOCS Mission Mode Manager – is provided to supply this information to the
rest of the AOCS software. This object encapsulates an operational mode. Its operational
mode plays a special role and is therefore given a special name: mission mode. The mission
mode would normally be set by telecommands originating either in the OBDH or at the
ground station.

Components whose mode is affected by the agents outside the AOCS software should
register their interest in mission mode property exposed by the mission mode manager.

The mission mode manager is implemented as a subclass of class ModeManager (see
previous section):

The mission mode manager basically is a mode manager with no switching logic and without
any implementers. It accordingly redefines the methods to load and get the implementers

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 26

(methods loadImplementer and getImplementer) to be dummy methods that return
without doing anything.

Since the mission mode manager has no implementers, it has no configuration information
and method isConfigured is redefined to return true.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 27

10 DEFAULT MODE SWITCHING IMPLEMENTATION

Concrete mode managers are derived by inheritance from the core mode manager. One
crucial functionality that they must provide is the mode switching logic, namely a mechanism
that defines when a mode transition occurs. This logic will often be application-specific.
However, there are two types of mechanisms that are likely to recur in many AOCS’s and that
therefore deserve to be provided as default framelet components. They are described in the
next two sub-sections.

10.1 The Cycling Mode Manager

 This mode manager is encapsulated by class CyclingModeManager. It uses the on-call mode
update mechanism to cycle through its modes in a fixed sequence. Its implementation of
method updateMode is:

void CyclingModeManager::updateMode()
{

if (currentMode==(nModes-1))
. . . // change to mode 0

else
. . . // change to mode (currentMode+1)

}

where variable currentMode is the indicator for the current mode and nModes is the
number of modes.

Cycling mode managers have only one strategy. A mode transition is triggered whenever the
implementer is retrieved (ie. their updateMode method is called whenever
getImplemeter is called). Thus, the cycling mode manager returns its implementers one
after the other in a fixed sequence.

A UML state transition diagram for a cycling mode manager with three states is:

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 28

Mode_1

Mode_2

Mode_3

Reset

getImplementer[enabled]

getIm pl em enter[ena ble d]

getImplementer[enabled]

The diagram does not show forced transitions (ie transitions commanded by calling
setMode).

10.2 The Follower Mode Manager

 This mode manager is encapsulated by class FollowerModeManager. It uses the reactive
mode update mechanism: its mode is the same as the mode of a master mode manager.

The constructor links the mode manager to the master mode manager. Henceforth, any
change in the operational mode of the master will be mirrored in a corresponding change in
operational mode of the follower.

The follower mode manager implements interface PropertyMonitor and its mode
switching logic is contained in method propertyChange:

void FollowerModeManager::propertyChange(ChangeEvent evt)
{

int newMode = (int)(evt.getLastValue()));
. . . // change mode to newMode

}

 Obviously, master and follower mode managers should have the same set of modes.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 29

10.3 Concrete Mode Managers

Concrete mode managers that use either the follower of cycling mechanisms for mode
updates can be derived by inheritance from the default mode managers presented in the two
previous subsections. Their implementation only needs to provide the casting operations to
convert the references to the implementers to their appropriate types (see section 8.4).

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 30

11 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD3.

11.1 Mode Manager Hot-Spot

Name: Mode Manager Hot-Spot

Visibility Level: framelet-level

Adaptation Time: compile-time

Adaptation Method: derivation from base classes ModeManager

Pre-defined Options: none

Related Hot-Spots: Cycling Mode Manager Hot Spot, Follower Mode Manager Hot Spot

Description

Class ModeManager defines the core behaviour of a mode manager but leaves the mode
switching logic and the type of the implementers undefined. Concrete mode managers are derived
by inheritance from this class. Usually, the methods to be overridden are updateMode and the
getter and loader methods for the implementers (see sections 8.1 to 8.4).

11.2 Cycling Mode Manager Hot-Spot

Name: Cycling Mode Manager Hot-Spot

Visibility Level: framelet-level

Adaptation Time: compile-time

Adaptation Method: derivation from base classes CyclingModeManager

Pre-defined Options: none

Related Hot-Spots: Mode Manager Hot Spot, Follower Mode Manager Hot Spot

Description

Class CyclingModeManager defines a mode manager that uses the on-call mode update

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 31

mechanism for mode switching. Concrete mode managers that use this same mechanism can be
derived by derivation from it. Usually, the methods to be overridden are only the getter and loader
methods for the implementers (see section 8.4).

11.3 Follower Mode Manager Hot-Spot

Name: Follower Mode Manager Hot-Spot

Visibility Level: framelet-level

Adaptation Time: compile-time

Adaptation Method: derivation from base classes FollowerModeManager

Pre-defined Options: none

Related Hot-Spots: Mode Manager Hot Spot, Cycling Mode Manager Hot Spot

Description

Class FollowerModeManager defines a mode manager that uses the reactive mode update
mechanism for mode switching. Concrete mode managers that use this same mechanism can be
derived by derivation from it. Usually, the methods to be overridden are only the getter and loader
methods for the implementers (see section 8.4).

11.4 Recovery Action Plug-In for Illegal Mode

Name: Recovery Action Plug-In for Illegal Mode

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in ModeManager class (method
setIllegalStrategyRecoveryAction)

Pre-defined Options: no recovery action is defined by default

Related Hot-Spots: none

Description

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 32

When an operation is attempted on a mode manager using an illegal value of mode indicator, then
a failure event is generated. A recovery action can be associated to this failure. This hot-spot
allows this recovery action to be loaded.

11.5 Recovery Action Plug -In for Illegal Strategy

Name: Recovery Action Plug-In for Illegal Strategy

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in ModeManager class (method
setIllegalModeRecoveryAction)

Pre-defined Options: no recovery action is defined by default

Related Hot-Spots: none

Description

When an operation is attempted on a mode manager using an illegal value of strategy indicator,
then a failure event is generated. A recovery action should be associated to this failure. This hot-
spot allows this recovery action to be loaded.

11.6 Mode Event Repository Plug-In

Name: Mode Event Repository Plug-In

Visibility Level: framelet-level

Adaptation Time: run-time

Adaptation Method: plug-in component in ModeManager class (method setModeEventRepository)

Pre-defined Options: ModeEventRepository component exported by inter-component
communication framelet.

Related Hot-Spots: none

Description

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 33

Mode managers log mode changes as events stored in the mode event repository. This hot-spot
allows the mode event repository component to be loaded. Note that this component is loaded as a
static reference.

11.7 Change Event Repository Plug-In

Name: Change Event Repository Plug-In

Visibility Level: framelet-level

Adaptation Time: run-time

Adaptation Method: plug-in component in ModeManager class (method
setChangeEventRepository)

Pre-defined Options: ChangeEventRepository component exported by inter-component
communication framelet.

Related Hot-Spots: none

Description

Mode managers whose mode is being monitored by other components log changes in their mode
property as events stored in the change event repository. This hot-spot allows the change event
repository component to be loaded. Note that this component is loaded as a static reference.

11.8 Monitor Hot-Spot

Name: Monitor Hot-Spot

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in components in ModeManager class (method addMonitor and
removeMonitor)

Pre-defined Options: none.

Related Hot-Spots: none

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 34

Description

Mode managers expose their mode as a bound property. This hot-spot allows other components to
register and un-register their interest in the changes in the operational mode of the mode manager
using the Monitoring through Change Notification design pattern.

11.9 Mode Implementer Hot-Spot

Name: Mode Implementer Hot-Spot

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in ModeManager class (method loadImplementer)

Pre-defined Options: none

Related Hot-Spots: none

Description

Mode managers must be loaded with the implementers corresponding to each (mode, strategy)
pair. This hot-spot allows the implementer components to be loaded.

11.10 Mode Change Action Hot-Spot

Name: Mode Change Action Hot-Spot

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in ModeManager class (method setModeChangeAction)

Pre-defined Options: the framework provides a null mode change action object

Related Hot-Spots: none

Description

Mode managers must be loaded with the mode change action object encapsulating the actions to

University of Constance
Department of Computer Science

Software & Web Engineering Group
Mode Management Framelet
Issue 2.3
30 April 2002
Page 35

be taken upon a mode transition.

