EoE University of Constance Software & Web Engineering Group
o Department of Computer Science Prototype Definition
y Issue 2.1
30 April 2002
[Page 1

AOCS FRAMEWORK - PROTOTYPE DEFINITION

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework was
developed in full at the architectural design level but only
a representative subset of it will be implemented at the
prototype level. This document defines the part of the
framework that will be implemented in the framework

prototype.
Written By: A. Pasetti
Date: 30 April 2002
Issue: 2.1

Reference: SWE/99/A0CS/019

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
=K Issue 2.1
30 April 2002
T Page 2
|

TABLE OF CONTENTS

REFERENG ES . ..ottt ettt ettt ettt e e st e e s bbe e e et b e e e s ebe e e e eabbe e e sbaeeesbeeeeennreeenns 3
ACRONYMS ...t e e s te st e st e s Ee e e et e st e st e s ReaReere e tesbesbesteeneeseenbestesreeneas 5
INTRODUCGCTION ..ottt sttt e sttt re e et sbeste et e st e seestesteste e e e e e steseestesneennens 6
3.1 (070] 01 1= HR PRSP 6
3.2 DOCUMENT STFUCTUIE ...ttt e et e et e e taeetaeeres 6
HARDWARE INTERFACES.ottt ettt re e sttt sbe e s eare e e entees 7
4.1 EXternal UNit INTEITACE ..ottt e e e s p e e 7
4.2 Telemetry INTErfaCe.o e e e st 8
4.3 TelecomMmand INTEITACEccooii ittt sbe e beere 9
THE AOCS PROTOTYPE ..ottt ettt ettt ettt e vae e staae e s e bee e s sabee s e sabaeesebanaeans 10
FRAMEWORK IMPLEMENTATION STATUS ...ttt e 11
SYSTEM MANAGEMENT FRAMELET ..ot 12
OBJECT MONITORING FRAMELET ..ottt 13
INTER-COMPONENT COMMUNICATION FRAMELETc.coiiiiiiieeece e, 16
SEQUENTIAL DATA PROCESSING FRAMELETcocoiieiiiecece e 18
AOCS UNIT FRAMELET ...t sttt st st ne e srennennens 20
RECONFIGURATION MANAGEMENT FRAMELET ..o 24
OPERATIONAL MODE MANAGEMENT FRAMELETcccoceviieiece e 26
MANOEUVRE MANAGEMENT FRAMELETcoiiiiiiiie ettt 28
FAILURE DETECTION FRAMELETcooii ittt sttt sttt 29
FAILURE RECOVERY MANAGEMENT FRAMELETcccoviiiiiie e 30
TELEMETRY MANAGEMENT FRAMELETooov v 32
TELECOMMAND MANAGEMENT FRAMELETcocooi it 34

CONTROLLER MANAGEMENT FRAMELETooiiiiiitie s 36

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
=K Issue 2.1
30 April 2002
i Page 3
|

1 REFERENCES

RD1

RD2

RD3
RD4

RD5

RD6

RD7

RD8

RD9

RD10

RD11

RD12

RD13

RD14

RD15

E. Gamma et al. (1995), Design Patterns — Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

A. Pasetti (2000), AOCS Framework — Concept Level Description, AOCS Framework
Document ref. SWE/99/A0OCS/004

Deleted

A. Pasetti (2000), Methodological Issues, AOCS Framework Document ref.
SWE/99/A0CS/018

A. Pasetti (2000), Inter-Component Communication Framelet AOCS Framework
Document ref. SWE/99/A0OCS/005

A. Pasetti (2000), Object Monitoring Framelet, AOCS Framework Document ref.
SWE/99/A0CS/008

A. Pasetti (2000), Data Processing Framelet, AOCS Framework Document ref.
SWE/99/A0CS/006

A. Pasetti (2000), AOCS Unit Management Framelet, AOCS Framework Document ref.
SWE/99/A0CS/017

A. Pasetti (2000), Reconfiguration Management Framelet AOCS Framework Document
ref. SWE/99/A0CS/015

A. Pasetti (2000), Operational Mode Management Framelet AOCS Framework Document
ref. SWE/99/A0CS/009

T. Brown, A. Pasetti (2000), Manoeuvre Management Framelet, AOCS Framework
Document ref. SWE/99/A0CS/012

A. Pasetti (2000), Failure Detection Management Framelet, AOCS Framework Document
ref. SWE/99/A0CS/010

A. Pasetti (2000), System Management Framelet, AOCS Framework Document ref.
SWE/99/A0CS/021

A. Pasetti (2000), Failure Recovery Management Framelet, AOCS Framework Document
ref. SWE/99/A0CS/011

A. Pasetti (2000), Telemetry Management Framelet, AOCS Framework Document ref.
SWE/99/A0CS/003

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 4

RD16 A. Pasetti (2000), Telecommand Management Framelet, AOCS Framework Document ref.
SWE/99/A0CS/014

RD17 A. Pasetti, T. Brown (2000), Controller Management Framelet, AOCS Framework
Document ref. SWE/99/A0CS/016

RD18 A. Pasetti (2000), AOCS Prototype Definition, AOCS Framework Document ref.
SWE/99/A0CS/020

RD19 MACS Bus Handbook

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition

Issue 2.1

30 April 2002

Page 5

2 ACRONYMS

AAD
AOCS
AST
CSS
ES
FDIR
FPM
FSS
GYR
KF
IAM
MIMO
NM
NTT
OBDH
OCM
0]0)
PD

Pl
PID
RRM
RTOS
RW
SAS
SBM
SISO
SPS
STR
SLM
SM
TC
THU
™
TT

Attitude Anomaly Detection

Attitude and Orbit Control Subsystem
Autonomous Star Tracker

Coarse Sun Sensor

Earth Sensor

Failure Detection, Isolation and Recovery
Fine Pointing Mode

Fine Sun Sensor

Gyroscope

Kalman Filter

Initial Acquisition Mode
Multi-Input-Multi-Output

Normal Mode

Non-Time-Tagged

On-Board Data Handling system (aka as OBDS)
Orbit Control Mode

Object-Oriented
Proportional-Derivative controller
Proportional-Integral controller
Proportional-Integral-Derivative controller
Rate Reaction Mode

Real-Time Operating System

Reaction Wheel

Sun Attitude Sensor

Stand-By Mode
Single-Input-Sinle-Output

Sun Presence Sensor

Star Tracker

Slewing Mode

Safe Mode

Telecommand

Thruster

Telemetry

Time-Tagged

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 6

3 INTRODUCTION

This document describes the prototype AOCS framework. The prototype AOCS framework is a
partial implementation of the AOCS framework. The prototype framework implements a
representative subset of the constructs defined by the full framework. Its purpose is to serve
as a proof-of-concept demonstrator for the full framework.

3.1 Context

The context for the definition of the prototype framework is the architectural design of the
full framework. This is presented at system concept definition level in RD2 and at framelet
concept and at framelet architectural definition level in RD5 to RD17.

The prototype framework was intended for use at the end of the study to implement a
prototype AOCS. The decision as to which elements of the framework to include in the
prototype framework was made with a view to the implementation of the prototype AOCS.
The expected features of the prototype AOCS are described in section 5.

The intention at the beginning of the study was to provide a prototype implementation of the
framework that would implement a subset of the framelets in full. The concept that is
adopted here is different being based on a prototype framework that offers a partial
implementation of all framelets.

3.2 Document Structure

The AOCS framework was designed as a collection of framelets. The definition of the
prototype framework is also made at the framelet level. Framelets are defined in terms of the
architectural constructs they export. They can export three types of constructs: design
patterns, interfaces and components. In some cases interfaces are implemented as abstract
classes (ie. they include some basic implementation). Exported components may be default
implementations of the interfaces or abstract classes.

For each framelet, this document provides a list of the architectural constructs exported by the
framelet and of those which will be implemented for the prototype framework.

A justification of the selection of which features to include and which to leave out is also
included.

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 7

4 HARDWARE INTERFACES

As mentioned above, the components included in the prototype framework are developed
with a view to their use in the assembly of the AOCS prototype. Hence the definition of some
of these components requires a precise definition of the external interfaces of the prototype
AOCS. This is notably the case for the following items:

« definition of the external unit interfaces
e definition of telemetry interface
¢ definition of telecommand interface

The assumption concerning these interfaces are described in the following subsection.

4.1 External Unit Interface

AOCS unit proxy objects delegate interaction with the unit interface to a lower level
component characterized by the implementation of the AocsUni t Har dwar e interface. The
prototype AOCS is MACS-based: all communications between the AOCS computer and the
external AOCS unit take place over the MACS bus. The prototype framework accordingly
provides a component implementing the AocsUni t Har dwar e to interface with a MACS
controller using the MACS-TC protocol (see RD19).

The assumed interface with the MACS controller is as follows. Communication with the
MACS controller is through three 16-bit registers:

* MACS_CS: control/status register
¢ MACS_INSTR: instruction register
« MACS DATA: data register

All three registers are read/write memory-mapped registers that are accessed by the
processor like any other word-length memory location. The actual memory location is
determined by external hardware. The address of the three registers are passed as constructor
parameters to the MACS interface component.

The layout of the MACS_CS register is as follows:

» bit 0: writing 1 to this bit causes the instruction currently in the MACS_INSTR register to
be sent to the bus

» bit 1: this bit is set to 1 when processing of the last instruction by the MACS controller has
been completed. This includes emission on the bus of any data words associated to the

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 8

instruction or latching into MACS_DATA of any data word received as a result of the
instruction being emitted.

» bit 2: this bit is set to 1 if no acknowledge was received for the last instruction or for any
data words associated to it.

» bit 3 : this bit is set to 1 if a parity error was detected by the MACS controller while
processing the last instruction or any data words associated to it.

* hit 4 : this bit is set to 1 if the error bit was set by the MACS controller while processing
the last instruction or any data words associated to it.

* bit 5 : writing 1 to this bit causes the MACS controller to be reset aborting any on-going
transaction.

Register MACS_INSTR contains the instruction to be emitted on the bus with the following
layout:

¢ bits 0-2 : extension

e bits 3-7 : destination address

e bits 8-12 : destination sub-address
» bits 13-15: instruction code

Register MACS_DATA contains the data word that is associated to the instruction in
MACS_INSTR.

The MACS interface component supplied by the prototype framework assumes that no
interrupts are associated to the operation of the MACS controller. Checking that a bus
transaction has been successfully completed must therefore be done by polling the MACS_CS
register.

4.2 Telemetry Interface

The telemetry interface assumptions have an impact on the implementation of the
Tel enet rySt ream interface in the telemetry management framelet. The framework
prototype offers a component — DnaTel enet r ySt r eam- implementing this interface. This
component assumes a DMA-based telemetry interface. This means that the telemetry data are
assumed to be forwarded to the central on-board computer by a dedicated hardware interface
that collects them from a pre-defined memory area in the AOCS computer. This pre-defined
memory area is called the DMA buffer. It is defined by its start address and by its length. Both
start address and buffer length are settable parameters of class DnaTel enet r ySt r eam

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 9

No synchronization mechanism is assumed between the AOCS software and the hardware
telemetry interface. When the latter is triggered, it simply collects whatever happens to be in
the DMA buffer.

4.3 Telecommand Interface
The telecommand interface is based on the following assumptions:

* Telecommands are deposited by a DMA mechanism operating independently of the
AOCS processor to a predefined memory area in the address space of the AOCS
processor.

e Arrival of a new telecommand is signaled by an interrupt called the telecommand interrupt.

¢ The telecommand interrupt deposits the telecommands in sequence in a memory area
called the telecommand buffer. Its size is TC_BUFFER_SIZE bytes and its start address can
be retrieved from DaTel ecommandLoader .

« The DMA telecommand loader is activated periodically to process the telecommands in
the telecommand buffer and load them as instances of class Tel econmand into the
telecommand manager.

The prototype framework does not supply the telecommand interrupt servicing routine. This
is because the ERC32 simulator where the prototype AOCS is tested cannot simulate the
presence of interrupts. It only supplies the DMA telecommand loader as an instance of class
DmaTel ecomuandLoader .

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 10

5 THE AOCS PROTOTYPE

The prototype framework was used to implement a prototype AOCS. The AOCS prototype is a
simplified AOCS software which is implemented using the constructs offered by the AOCS
prototype framework. The AOCS prototype thus serves as a test bed for the AOCS prototype
framework.

The AOCS prototype is not intended to be representative of any real AOCS. Its interest lies
simply in the extent to which it allows the functionalities of the AOCS prototype framework
to be exercised and the constructs exported by it to be utilized.

The prototype AOCS is described in RD18.

The features implemented by the prototype framework are, to some extent, dictated by the
need to construct the AOCS prototype.

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 11

6 FRAMEWORK IMPLEMENTATION STATUS

The AOCS framework is divided into 14 framelets. Each framelets is characterized by the
constructs it exports. Exported constructs are listed in a table at the beginning of each
framelet description document. Framelet constructs can be of three types:

_ design pattern
abstract interfaces and base classes
core and default components

The prototype framework does not implement all the constructs defined by the framelets.
This section describes, for each framelet, the implementation status of its constructs.

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 12

7 SYSTEM MANAGEMENT FRAMELET

The system management framelet defines the following constructs:

SYTEM MANAGEMENT FRAMELET

Framelet Design Patterns

System Management Pattern : design pattern to systematically perform the same operations on a
target set of objects

Memento Pattern : design pattern to preserve configuration information across system resets. This is
a standard design pattern taken from RDL1.

Framelet Interfaces

Reset t abl e :interface to declare object reset services

Confi gurabl e :interface to declare object configuration services

Framelet Core Components

Syst emvlanager : system management component
Root Obj ect : base class for all objects in the framework

Aocsbj ect : base class for all non-trivial objects in the framework

The system management components are provided in full. Their implementation makes use
of both framelet design patterns.

The framelet interfaces are fully implemented by all AOCS objects provided by the prototype
framework.

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
== i—— Issue 2.1
30 April 2002
(T Page 13
|
8 OBJECT MONITORING FRAMELET

The object monitoring framelet defines the following constructs:

OBJECT MONITORING FRAMELET

Design Patterns

Property Definition Pattern : pattern to define properties in objects and the methods to access them

Additional Properties Pattern : pattern to add new properties to a component that is already
packaged as a binary unit

Direct Monitoring Pattern : pattern to directly monitor an object’s property

Monitoring through Change Notification Pattern : pattern to implement a notification mechanism
when a property changes in a specified manner.

Framelet Interfaces

Changebj ect : interface for object encapsulating a type of property change

Framelet Core Components

Pr operty : encapsulation of property objects

Framelet Default Components

Si mpl eChange : implementation of interface ChangeObj ect encapsulating a simple change in a
property value

Qut Of RangeChange : implementation of interface ChangeObj ect encapsulating an out-of-range
change in a property value

Del t aChange : implementation of interface ChangeObj ect encapsulating a delta change in a
property value

Spi keFi | t eredDel t aChange : implementation of interface ChangeCbj ect encapsulating a
delta change in a property value with spike filtering

The prototype framework implements the following attributes of its predefined components
as properties:

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
== Issue 2.1
30 April 2002
T Page 14
|

¢ the operational mode indicators of mode manager components
¢ the data items of AOCS data

These properties are built into their host components and hence the pattern to implement
additional properties is not used.

These properties can be monitored using both mechanisms offered by the object monitoring
framelet. Monitoring with change notification is used in follower mode managers. Direct
monitoring is used in monitoring check objects.

Monitoring with property objects and with change notification requires the availability of
change objects. The prototype framework therefore pre-defines components implementing
some basic kinds of change objects.

The next table summarizes the implementation status of the framelet constructs in the
prototype framework:

OBJECT MONITORING FRAMELET

Implemented Design Patterns

Property Definition Pattern : implemented
Additional Properties Pattern : not implemented
Direct Monitoring Pattern : implemented

Monitoring through Change Notification Pattern : implemented

Implemented Framelet Interfaces

Changebj ect : implemented in change object components listed below

Framelet Core Components

Property : implemented

Implemented Framelet Components

Si npl eChange : implemented
Qut Of RangeChange : implemented

Del t aChange :implemented

Efs University of Constance
e Department of Computer Science

Software & Web Engineering Group
Prototype Definition

Issue 2.1

30 April 2002

Page 15

Spi keFi | t er edDel t aChange : not implemented

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
=K Issue 2.1
30 April 2002
T Page 16
|

9 INTER-COMPONENT COMMUNICATION FRAMELET

The inter-component framelet defines the following interfaces and components:

INTER-COMPONENT COMMUNICATION FRAMELET

Design Patterns

Shared Data Pattern : pattern to exchange data among components using shared data areas

Shared Event Pattern : pattern to exchange events among components using shared data areas

Framelet Interfaces and Abstract Base Classes

AocsEvent : abstract base class for AOCS events
Event Reposi t ory : abstract base class for event repositories
AocsDat a : abstract base class for all AOCS data

Dat aPool : abstract base class for AOCS data pools

Framelet Core Components

Tel ecommandEvent : telecommand event
ModeEvent : mode change event

Recover yEvent : failure recovery event

Fai | ureEvent : failure event

Manoeuvr eEvent : manoeuvre event
ChangeEvent : property change event

Confi gurationEvent : configuration error event
Syst enkEvent : system event

Reconfi gur ati onEvent : reconfiguration event

Tel ecommandEvent Reposi tory : telecommand events repository
MbdeEvent Reposi t ory : mode change events repository

Recover yEvent Reposi t ory : failure recovery events repository

Fai | ur eEvent Reposi tory : failure events repository

Manoeuvr eEvent Reposi t ory : manoeuvre events repository
ChangeEvent Repository : property change events repository

Confi gurati onEvent Reposi t ory : configuration error events repository
Syst enEvent Reposi t ory : system events repository

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 17

Reconfi gur ati onEvent Reposi t ory : reconfiguration events repository

Scal ar : scalar data

TwoEul er Angl es : set of two Euler angles
Thr eeEul er Angl es : set of three Euler angles
Nvector : set of n elements treated as an n-vector

AttitudeDat aPool : data pool for attitude data
Dat al t emRead : component encapsulating a read-only access to a data item

Dat al t em i t e : component encapsulating a read/write access to a data item

All the constructs exported by the framelet and listed in the above table are implemented in
full in the prototype framework.

The two design patterns are used to construct the data pools and the event repositories.

The abstract base classes and interfaces are implemented by the core components.

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 18

10 SEQUENTIAL DATA PROCESSING FRAMELET

The data processing framelet defines the following interfaces and components:

DATA PROCESSING FRAMELET

Framelet Interfaces and Abstract Base Classes

Abst ract Cont r ol Channel : interface for control channels
Cont r ol Channel Bl ock : abstract class encapsulating control channel block

Xmat hUcbBI ock : abstract class offering an interface to Xmath autocode

Framelet Core Components

Cont r ol Channel Super Bl ock : container component for a control channel super-block

Framelet Default Components

P_BIl ock : control block implementing a proportional transfer function

| _Bl ock : control block implementing an integral transfer function

D Bl ock : control block implementing a derivative transfer function

Adder Bl ock : control block to add two inputs

Di f f erenceBl ock : control block to take the difference of its two inputs

Li m t Bl ock : control block to saturate an input

PassThr uBl ock : control block with unitary transfer function

SplitterBl ock :control block to split a single input into several identical outputs

TwoBy TwoMat ri xBl ock : control block implementing a 2x2 matrix multiplication transfer function
Xmat hUcbBI ock : control block embedding a generic UCB routine from the Xmath autocode

Xmat hUcbPi dBI ock : control block implementing a PID controller (from Xmath autocode)

All the constructs listed in the table are implemented in full in the AOCS framework
prototype.

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

= — Issue 2.1

30 April 2002

Page 19

The integral and derivative blocks (I_Block and D_Block) use very simplified algorithms to
implement integration and derivation, respectively, and should only be used for testing
purposes.

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
=K Issue 2.1
30 April 2002
T Page 20
|

11 AOCS UNIT FRAMELET

The AOCS unit framelet defines the following architectural constructs:

AOCS UNIT FRAMELET

Design Patterns

Fictitious Unit Pattern : pattern to make objects that process unit data look like units

Framelet Interfaces and Abstract Base Classes

AocsUni t Har dwar e : interface for objects managing low level exchanges with external units.

Uni t I nstructi on :interface structure defining a generic protocol for data exchanges with external
units

AocsUni t Functi onal :interface for objects representing the functional exchanges between the
AOCS software and an AOCS unit (either real or fictitious)

AocsUni t Housekeepi ng : interface for objects representing the housekeeping exchanges
between the AOCS software and a real (ie. non fictitious) AOCS unit

AocsUni t : abstract class serving as base class for all objects representing external unit proxies in
the AOCS software

Tri gger Li st : interface for trigger list objects, namely list of units due to be triggered at the same
time in the AOCS cycle

Framelet Core Components

Pol | i ngTri gger : trigger object to perform full data transfer (transaction + refresh cycle) with
polling on registered units

Uni t Tri gger : trigger object to perform full data transfer (transaction + refresh cycle) without
polling on registered units

Ref reshTri gger : trigger object to perform refresh operations on registered units

TrasactionTri gger : trigger object to perform transaction operations on registered units

Framelet Default Components

Ful | Tri gger Li st : fullimplementation of interface Tri gger Li st

Functi onal Tri ggerLi st : partial implementation of interface Tri gger Li st covering only

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
=K Issue 2.1
30 April 2002
T Page 21
|

functional units

MacsTcControl | er : implementation of interface AocsUni t Har dwar e for a MACS telecom
controller

FssPr ot ot ype : two-axis fine sun sensor AOCS unit for the AOCS prototype

Gyr Pr ot ot ype : single-axis gyro AOCS unit for the AOCS prototype

RwPr ot ot ype : reaction wheel AOCS unit for the AOCS prototype

SapPr ot ot ype : solar acquisition and propulsion electronics AOCS unit for the AOCS prototype

Tor qui ngThr ust er s : fictitious AOCS unit to command a set of thrusters directly with the torque
requests around spacecraft axes

The prototype framework provides a limited number of simplified implementations for unit
components. The implementations assume a MACS-based AOCS'.

The prototype framework provides implementations for the units used in the AOCS
prototype (see RD18). The implementation is very simple and does not match the
characteristics of any real AOCS units. It is only provided for testing purposes. Note that this
implementation requires an exact definition of the hardware interfaces to the external units
(see section 4).

Unit triggering in the AOCS prototype is through normal trigger objects (instances of class
Uni t Tri gger). Accordingly, this is the only type of trigger objects implemented by the
prototype framework.

Only the functional data are modeled in the prototype AOCS and hence
Functional Tri gger Li st is the only trigger list used in the prototype AOCS.

Fictitious units are defined to manage the unit reconfiguration (see also section 12 on the
reconfiguration management framelet) and to provide a high-level interface to the thrusters
(class Tor qui ngThrusters).

The next table summarizes the implementation status of the framelet constructs in the
prototype framework:

1 MACS is the name of a data bus that is widely used on ESA science satellites.

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
=K Issue 2.1
30 April 2002
T Page 22
|

AOCS UNIT FRAMELET

Implemented Design Patterns

Fictitious Unit Pattern : implemented in reconfiguration managers and TorquingThruste component

Implemented Framelet Interfaces and Abstract Base Classes

AocsUni t Har dwar e : implemented in MACS TC hardware unit object
Uni t I nstructi on:implemented to define MACS bus protocol

AocsUni t Functi onal :implemented in AOCS unit objects listed below and in reconfiguration
manager components of section 12

AocsUni t Housekeepi ng : implemented in AOCS unit objects listed below
AocsUni t : implemented in AOCS unit objects listed below

TriggerLi st :implemented in trigger lists components listed below

Implemented Framelet Components

Pol |'i ngTri gger : trigger object to perform full data transfer (transaction + refresh cycle) with
polling on registered units

Uni t Tri gger : trigger object to perform full data transfer (transaction + refresh cycle) without
polling on registered units

Ref reshTri gger : trigger object to perform refresh operations on registered units
TrasactionTri gger : trigger object to perform transaction operations on registered units
Ful | Tri gger Li st : full implementation of interface Tri gger Li st

Functi onal Tri ggerLi st : partial implementation of interface Tri gger Li st covering only
functional units

MacsTcControl | er : implementation of interface AocsUni t Har dwar e for a MACS telecom
controller

FssPrototype : two-axis fine sun sensor AOCS unit for the AOCS prototype

Gyr Pr ot ot ype : single-axis gyro AOCS unit for the AOCS prototype

RwPr ot ot ype : reaction wheel AOCS unit for the AOCS prototype

SapPr ot ot ype : solar acquisition and propulsion electronics AOCS unit for the AOCS prototype

Tor qui ngThr ust er s : fictitious AOCS unit to command a set of thrusters directly with the torque

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
=K Issue 2.1
30 April 2002
T Page 23
|

requests around spacecraft axes

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
== Issue 2.1
30 April 2002
T Page 24
|

12 RECONFIGURATION MANAGEMENT FRAMELET

The reconfiguration management framelet defines the following architectural constructs:

RECONFIGURATION MANAGEMENT FRAMELET

Design Patterns

Reconfiguration Design Pattern : pattern to make handling of reconfigurable objects independent of
their reconfigurability

Framelet Interfaces

Reconf i gur abl e : interface to be implemented by all reconfiguration managers.

Framelet Core Components

Confi gurati onSt at e : encapsulation of the state of a reconfiguration group

Framelet Default Components

Reconfi gur er Hel per : helper object to handle the management of a reconfiguration group
Basi cUni t Reconf i gur er : reconfiguration manager for a group of identical objects

RwSet : reconfiguration manager for a set of 4 identical reaction wheels

All the constructs listed below are implemented in the AOCS prototype framework.

The prototype AOCS assumes all sensors and actuators to be redundant. In order to facilitate
implementation of the prototype AOCS, the prototype framework provides a basic
reconfiguration manager to manage reconfigurations across a total of N identical units and a
reconfiguration manager to manage reconfigurations across sets of 4 reaction wheels.

Cold redundancy is assumed by all reconfiguration managers predefined in the prototype
framework.

Configuration state objects are provided for simple reconfigurations and for 1-out-4
redundancy management.

The reconfiguration design pattern is implemented by the reconfiguration managers
provided by the framework prototype.

S

/
),AAAJ_I

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition

Issue 2.1

30 April 2002

Page 25

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

= — Issue 2.1

30 April 2002

Page 26

13 OPERATIONAL MODE MANAGEMENT FRAMELET

The operational mode management framelet defines the following architectural constructs:

OPERATIONAL MODE MANAGEMENT FRAMELET

Framelet Design Pattern

Mode Management Pattern : pattern to endow components with mode-dependent behaviour

Framelet Core Components

AocsM ssi onMbdeManager : AOCS mission mode manager
MbdeManager : core mode manager component

ModeChangeAct i on : encapsulation of a mode change action

Framelet Default Components

Cycl i ngMbdeManager : cycling mode manager component
Fol | ower ModeManager : follower mode manager component

Nul I ModeChangeAct i on : default mode change action that does nothing

All the constructs listed above are implemented in the prototype AOCS framework.

Mode dependent behaviour is implemented in the following components in the prototype
framework:

« failure detection manager
« failure recovery manager
» telemetry manager

e unittriggers

» attitude controller

Pre-defined mode managers are provided for each of the above components. Except for the
telemetry manager that uses a cycling mode manager, all other mode-dependent components
use follower mode managers.

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 27

Only hard-coded mode change actions are used in the prototype AOCS. Mode change action
objects are not used (except for the default Nul | ModeChangeActi on that is used to
configure mode managers).

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 28

14 MANOEUVRE MANAGEMENT FRAMELET

The manoeuvre management framelet defines the following interfaces and components:

MANOEUVRE MANAGEMENT FRAMELET

Framelet Interfaces

Manoeuvr e : abstract class serving as base class for all manoeuvre classes

Manoeuvr eMoni t or : interface to be implemented by objects that need to be notified of changes in
manoeuvre status

Framelet Core Components

Manoeuvr eManager :manoeuvre manager component

All the constructs listed above are implemented in the prototype AOCS framework.

TBW

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

= — Issue 2.1

30 April 2002

Page 29

15 FAILURE DETECTION FRAMELET

The failure detection management framelet defines the following interfaces and components:

FAILURE DETECTION MANAGEMENT FRAMELET

Design Pattern

Failure Detection Pattern: design pattern to separate the management of failure detection tests from
their implementation.

Framelet Interfaces

Consi st encyCheckabl e : interface for objects that can perform consistency checks on their
internal state.

Fai | ureDet ecti onMbdeManager : interface for the operational mode manager for the failure
detection manager.

Framelet Core Components

Moni t ori ngCheck : component encapsulating a monitoring check action

Fai | ur eDet ecti onManager :component encapsulating a failure detection manager

Framelet Default Components

Fol | ower Fai | ur eDet ect i onMbdeManager : default mode manager for the failure detection
manager based on the follower mechanism.

All the constructs listed above are implemented in the prototype AOCS framework.

Interface Consi st encyCheckabl e is implemented by the AOCS data objects and by event
repositories.

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
=K Issue 2.1
30 April 2002
T Page 30
|

16 FAILURE RECOVERY MANAGEMENT FRAMELET

The failure recovery management framelet defines the following interfaces and components:

FAILURE RECOVERY MANAGEMENT FRAMELET

Design Pattern

Failure Recovery Pattern: design pattern to separate the management of failure recovery from the
implementation of failure recovery strategies.

Framelet Interfaces and Base Abstract Classes

Recover yAct i on : abstract base class for objects encapsulating recovery actions
Recover ySt r at egy: abstract base class for objects encapsulating failure handling strategies

Fai | ur eRecover yModeManager : interface for the operational mode manager for the failure
detection manager.

Framelet Core Components

Fai | ur eRecover yManager : failure recovery manager component (including mode manager)

Framelet Components

Syst emReset : recovery action component encapsulating a system reset

Syst enReboot : recovery action component encapsulating a system reboot

hj ect Reset : recovery action component encapsulating a reset on a specific object
Reconf i gur ati on :recovery action component encapsulating a reconfiguration action
ModeChange : recovery action component encapsulating a mode change action

Nul | Recover yActi on : null recovery action

Syst enReset OnTooManyFai | ur es : failure recovery strategy to command a system reset if too
many failures are found in the failure recovery repository

Local Recover yActi ons : failure recovery strategy to perform the recovery actions associated to
each failure found in the failure recovery repository

Fol | ower Fai | ur eRecover yModeManager : failure recovery mode manager based on based on
follower mechanism

University of Constance

S

/
),AAAJ_I

o Department of Computer Science

Software & Web Engineering Group
Prototype Definition

Issue 2.1

30 April 2002

Page 31

The prototype framework includes a full failure recovery manager and the failure recovery
action and failure strategy components that are expected to be needed for the prototype
AOQOCS.

The next table summarizes the implementation status of the framelet constructs in the
prototype framework:

FAILURE RECOVERY MANAGEMENT FRAMELET

Design Pattern Implementation

Failure Recovery Pattern: implemented in failure recovery manager component.

Framelet Interfaces and Base Abstract Classes

Recover yActi on : implemented in failure recovery action components listed below

Recover yStr at egy: implemented in failure recovery action components listed below

Fai | ur eRecover yModeManager : implemented in default failure recovery mode manager listed

below

Framelet Core Components

Fai | ur eRecover yManager :implemented

Framelet Components

Syst enReset :implemented

Syst enReboot : not implemented

Obj ect Reset : implemented

Reconfi gurati on :implemented

ModeChange : implemented

Nul | RecoveryActi on :implemented

Syst emReset OnTooManyFai | ur es : implemented
Local RecoveryActi ons :implemented

Fol | ower Fai | ur eRecover yModeManager : implemented

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

N HE Issue 2.1

30 April 2002

Page 32

17 TELEMETRY MANAGEMENT FRAMELET

The telemetry management framelet defines the following interfaces and components:

TELEMETRY MANAGEMENT FRAMELET

Abstract Interfaces and Abstract Base Classes

Tel eret r ySt r eam: abstract base class for telemetry streams
Tel enet er abl e : interface for objects that can write their own state to telemetry

Tel emet r yModeManager : interface for the operational mode manager for the failure detection
manager.

Core Components

Tel emetryManager : component encapsulating a telemetry manager (including mode
management)

Default Components

DmaTel emet ryStream : implementation of Tel enet r ySt r eam interface representing a DMA-
based telemetry stream

Cycl i ngTel enet r yMbdeManager : default mode manager for the telemetry manager component
implementing a cycling mode management mechanism.

MenorySecti on : component encapsulating a range of contiguous memory addresses that are to
be copied to the telemetry stream.

Test Tel enmet rySt r eam : component simulating a telemetry stream (the telemetry data are sent to
a data file).

Design Patterns

Telemetry Management Pattern : design pattern to make an object a telemeterable object

All the constructs listed above are implemented in the prototype AOCS framework.

The prototype AOCS is based on a telemetry interface where raw telemetry data are collected
in DMA mode by dedicated hardware (see section 4.2). The prototype framework offers pre-
defined components that are intended to facilitate implementation of this type of telemetry

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
=K Issue 2.1
30 April 2002
T Page 33
|

management. In particular, it offers a telemetry stream component that writes raw telemetry
data to a fixed memory buffer.

The Tel erret er abl e interface foresees several telemetry formats. The prototype framework
implements only the normal and short format.

The Tel erret er abl e interface is inherited by most objects in the AOCS software through
Aocsbj ect . In the prototype framework, however, not-trivial implementations are only
provided for the following objects:

* AOCS data (instances of class AocsDat a and its subclasses)
¢ AOCS events (instance of class AocsEvent and its subclasses)
« Event repositories (instances of class Event Reposi t or y its subclasses)

The telemetry manager component is provided in full.

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

= — Issue 2.1

30 April 2002

Page 34

18 TELECOMMAND MANAGEMENT FRAMELET

The telecommand management framelet defines the following interfaces and components:

TELECOMMAND MANAGEMENT FRAMELET

Framelet Design Patterns

Telecommand Transaction : design pattern to handle sequences of telecommands as a single entity

Framelet Interfaces

Tel ecommandLoader : interface for the telecommand loader

Framelet Core Components

Tel ecommand : base class for telecommands
Tel ecommandTr ansacti on : base class for transaction telecommands

Tel ecommandManager :telecommand manager component

Framelet Default Components

ModeChangeTel ecomand : simple telecommand to change the mode of a mode manager

ModeChangeTr ansact i onTel econmand : transaction telecommand to change the mode of a
mode manager

Tel enet r yFor mat Tel ecommand : simple telecommand to change the format of a telemeterable
object

Manoeuvr eTel ecommand : simple telecommand to load a parameterless manoeuvre in the
manoeuvre manager

AttitudeSl ewTel econmand : simple telecommand to configure and load an attitude slew
manoeuvre

Tel enet ryFor mat Tr ansacti onTel ecomand : transaction telecommand to change the format
of a telemeterable object

Reconf i gur eTel econmand : simple telecommand to command a reconfiguration to a
reconfiguration manager

Reconfi gureTransacti onTel econmand : transaction telecommand to command a

EnE University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition
=K Issue 2.1
30 April 2002
T Page 35
|

reconfiguration to a reconfiguration manager
VsDmaTel ecommandLoader : DMA-based telecommand loader for the Visual Studio environment.

Er c32DmaTel econmandLoader : DMA-based telecommand loader for the ERC32 environment
with the GNU compiler

All the constructs listed above are implemented in the prototype AOCS framework.
The telecommand manager is implemented in full.

The implementation of the telecommand loader assumes a DMA-based telecommand
interface. See section 4.3 for more details.

The loader assumes that the code for the telecommands is already present in the AOCS
software memory space and that only telecommand data are loaded.

Efs University of Constance Software & Web Engineering Group
e Department of Computer Science Prototype Definition

=K Issue 2.1

30 April 2002

Page 36

19 CONTROLLER MANAGEMENT FRAMELET

The controller management framelet defines the following interfaces and components:

CONTROLLER MANAGEMENT FRAMELET

Framelet Interfaces

Cont rol | abl e : interface for controllers

M nmoCont r ol | abl e : interface for MIMO controllers

Framelet Components

Cont rol | er Conponent : component encapsulating a controller (including mode management)

Control | er Manager :component encapsulating a controller manager

The prototype framework only supports SISO controllers. This restriction is justified by the
absence of MIMO controllers in most current AOCS systems and in particular in the
prototype AOCS.

The controller components and the controller manager components are implemented in full.

TBW

