

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 1

 TELECOMMAND MANAGEMENT FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the telecommand management framelet. This framelet
defines an interface to which telecommands must
conform and defines an architecture for the telecommand
manager. The framelet enhances reusability because it
decouples the task of managing the telecommands from
the task of executing them.

Written By: A. Pasetti

Date: 30 April 2002

Issue: 2.3

Reference: SWE/99/AOCS/014

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 2

TABLE OF CONTENTS

1 REFERENCES.. 4
2 ACRONYMS.. 5
3 INTRODUCTION... 6

3.1 Context ... 6
3.2 Applicability to Java Version .. 6
3.3 Notation ... 7

4 FRAMELET CONSTRUCTS.. 8
5 THE TELECOMMAND MODEL ... 10

5.1 The Telecommand Management Design Pattern... 10
5.2 Telecommand Management Pattern Instantiation .. 10
5.3 Telecommand Loading .. 12
5.4 Telecommand Management.. 13

6 THE TELECOMMAND CLASS .. 14
6.1 Inheritance Tree Structure ... 15
6.2 Execution Check.. 15
6.3 Handling of Telecommand Execution Status ... 16
6.4 Default Telecommands .. 16

7 THE TELECOMMAND TRANSACTION DESIGN PATTERN .. 18
7.1 Telecommand Transaction Pattern Instantiation... 19
7.2 Telecommand Transaction Execution.. 20
7.3 Default Transaction Telecommands .. 22
7.4 Recursion ... 22
7.5 Telecommand Sequences... 22

8 TELECOMMAND EVENTS.. 23
8.1 The Telemetry Interface ... 24
8.2 The Reset and Configurable Interface ... 24

9 THE TELECOMMAND MANAGER... 25
9.1 Telecommand Manager Activation ... 27
9.2 The Telemetry Interface ... 27
9.3 The Reset and Configurable Interface ... 28

10 THE TELECOMMAND LOADER ... 29
10.1 The TelecommandLoader Interface .. 29
10.2 The DMA Telecommand Loader.. 30

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 3

10.3 Telecommand Layout in the Uplink Channel .. 32
11 FRAMELET HOT-SPOTS .. 34

11.1 Telecommand Hot-Spot... 34
11.2 Transaction Telecommand Hot-Spot ... 34
11.3 Recovery Action Plug-In for Illegal Stack Operations .. 35
11.4 Recovery Action Plug-In for Too Many Telecommands .. 35
11.5 Telecommand Event Repository Plug-In .. 36
11.6 Telecommand Loader Hot-Spot ... 36

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 4

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

 RD3 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 5

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
OBDH On-Board Data Handling system (aka as OBDS)
NM Normal Mode
NTT Non-Time-Tagged
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 6

3 INTRODUCTION

This document describes the AOCS telecommand management framelet for the AOCS
framework. The framelet is described at both the framelet concept level and at the framelet
architectural level.

This framelet defines an interface to which telecommands must conform and defines an
architecture for the telecommand manager. The framelet enhances reusability because it
decouples the task of managing the telecommands from the task of executing them.

3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD2 and in particular with the section dealing with
telecommand management.

The architecture proposed here follows the general concept outlined in RD2. However, the
telecommand loader provided with the framework prototype only provides data loading
capability (ie. no code loading).

RD2 discussed the possibility of merging the telecommand and manoeuvre concepts by
turning telecommands into special instances of AOCS manoeuvres. This option was rejected
because the concepts of telecommand transaction does not have a counterpart in the
manoeuvre management concept and because telecommands, unlike manoeuvres, are loaded
dynamically and this gives rise to special problems that need special treatment.

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level – in particular its design
patterns – is language-independent and is equally applicable to both the C++ and Java
versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following
address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific
points to note are:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 7

− Events in the Java framework are implemented using the Java event mechanism.

− The telecommand event repository hot-spot (section 11.5) is not applicable to the Java
framework. Event repositories are event listeners and can be linked to the telecommand
manager through the associated addListener methods.

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

UML class diagrams were obtained with the Together tool (version 4.0).

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 8

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

TELECOMMAND MANAGEMENT FRAMELET

Framelet Design Patterns

Telecommand Transaction : design pattern to handle sequences of telecommands as a single entity

Framelet Interfaces

TelecommandLoader : interface for the telecommand loader

Framelet Core Components

Telecommand : base class for telecommands

TelecommandTransaction : base class for transaction telecommands

TelecommandManager : telecommand manager component

Framelet Default Components

ModeChangeTelecommand : simple telecommand to change the mode of a mode manager

ModeChangeTransactionTelecommand : transaction telecommand to change the mode of a
mode manager

TelemetryFormatTelecommand : simple telecommand to change the format of a telemeterable
object

ManoeuvreTelecommand : simple telecommand to load a parameterless manoeuvre in the
manoeuvre manager

AttitudeSlewTelecommand : simple telecommand to configure and load an attitude slew
manoeuvre

TelemetryFormatTransactionTelecommand : transaction telecommand to change the format
of a telemeterable object

ReconfigureTelecommand : simple telecommand to command a reconfiguration to a
reconfiguration manager

ReconfigureTransactionTelecommand : transaction telecommand to command a

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 9

reconfiguration to a reconfiguration manager

VsDmaTelecommandLoader : DMA-based telecommand loader for the Visual Studio environment.

Erc32DmaTelecommandLoader : DMA-based telecommand loader for the ERC32 environment
with the GNU compiler

The constructs listed above are those provided by the framework prototype. More advanced
versions of the framework may include additional constructs. In particular, they may include
more telecommand and transaction telecommand classes.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 10

5 THE TELECOMMAND MODEL

The telecommand model adopted by the AOCS framework is based on the telecommand
design pattern described in the next subsection and on the concept of telecommand loading
described in sub-section 5.3.

5.1 The Telecommand Management Design Pattern

The telecommand management design pattern is introduced to address the problem of
separating telecommand management from telecommand implementation. It is closely based
on the command design pattern from RD1 as illustrated in the figure:

1..*1

TelecommandList

Telecommand

ConcreteTelecommand

Telecommand

+execute():void

TelecommandManager

+activate():void

The telecommand manager maintains a list of pending telecommands and, when it is
activated, it goes through the list and executes all telecommands in sequence.

The telecommand pattern can also be seen as an instance of the manager meta-pattern where
telecommand execution is the pattern functionality, the telecommand manager is the
functionality manager, and the Telecommand class decouples the functionality management
from the functionality implementation.

5.2 Telecommand Management Pattern Instantiation

The telecommand pattern is instantiated in the AOCS framework as follows:

u The telecommand manager is implemented as an active object and its activate method
is the run method it inherits from interface Runnable.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 11

u Telecommand events are created when telecommands are executed, when their execution
fails, when they loaded in the telecommand manager, etc.

u The Telecommand interface is replaced by a concrete class with overridable methods.
This allows it to encapsulate some functions that are common to all telecommands.

u The base class Telecommand is endowed with extra functions in addition to
telecommand execution as described in section 6.

u A telecommand loader component is introduced to load telecommands into the
telecommand manager (see section 10).

The class diagram of the instantiated telecommand management design pattern is:

Telecommand management in the AOCS framework is based on the command pattern of
RD1. Telecommands are packaged as objects exposing a method execute. A call to execute
by the telecommand manager causes the actions associated to the telecommand to be
executed.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 12

5.3 Telecommand Loading

Telecommands are loaded dynamically into the AOCS computer memory. The loading
mechanism is application-dependent. Two common mechanisms are:

• the telecommand is loaded via DMA under the control of hardware that is external to the
AOCS computer. The completion of a load operation is indicated by an interrupt to the
AOCS software.

• the telecommand words or bytes are loaded by the AOCS software via I/O commands.
The arrival of a new word or byte is indicated by an interrupt to the software.

A telecommand is an object made up of data and code. The link between the data and the
code is provided by a virtual function table. Two types of telecommand loading are foreseen:

• Data Load

The code for the telecommand is already present in the AOCS software and only the data
part of the telecommand object is physically loaded into memory.

• Full Load

Both the code and the data for the telecommand object are loaded.

The two telecommand load types are illustrated in the figure:

In a data load, only the yellow part of the figure is physically loaded onto the AOCS
computer memory. In the full load case, both the yellow and red parts are loaded. The
example in the figure assumes that the code for all methods required by the telecommand

��������	

����

������	
����

������������������
�� ���������������������

������	
����

������	
����

���
�	
�����

���
�	
�����

���
�	
�����

���
��������������
��

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 13

must be loaded. In practice, some methods will be able to rely on code already present in the
AOCS computer (typically, this is because such methods are inherited without changes from
a superclass of the concrete telecommand class that is already present in memory).

Normally, an AOCS application will include some predefined telecommand classes
implementing common telecommand actions. For such telecommands, only the data need to
be loaded. Unusual or unforeseen telecommands need to be loaded in full.

The telecommand loaders components provided by the prototype framework only implement
the data load mechanism. The code loaded mechanism is coded for information only (it was
not tested).

5.4 Telecommand Management

Telecommand management is performed by two objects:

• The Telecommand Loader

This object is responsible for loading telecommands from the DMA area or from the I/O
port and for assembling them as objects of type Telecommand that are then passed to the
telecommand manager for execution.

• The Telecommand Manager

This object is responsible for executing the telecommands. It maintains lists of pointers to
objects of type Telecommand and periodically goes through the list and executes the
telecommands.

Note that the telecommand manager only sees simple telecommands. It has no knowledge
of the distinction between simple and transaction telecommands. This distinction is
internal to the transaction telecommand class.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 14

6 THE TELECOMMAND CLASS

All telecommands are ultimately instances of the following base class:

Class telecommand is a concrete class with overridable methods and should conceptually be
seen as an interface class. The implementations of its methods are trivial default that are
intended to be overridden by concrete telecommand classes. Their semantics are as follows:

Telecommand(t)

Constructor that sets the telecommand time tag t.

execute()

A call to this method causes the actions associated to the telecommand to be
executed. The method returns a code indicating the completion status of the
telecommand (see section 6.3).

canExecute()

Performs the execution check (see section 6.2) and returns true if the operational
conditions are appropriate to the telecommand execution..

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 15

getTelecommandId()

Telecommands have an identifier associated to them. This method returns the
telecommand identifier.

Note that telecommand transactions have a single identifier associated to them: ie all
telecommands in a transaction have the same identifier.

getTimeTag()

Telecommands have a time tag associated to them.

Telecommands are only executed after their time tag is passed.

Note that telecommand transactions have a single time tag associated to them: ie all
telecommands in a transaction have the same time tag.

enable(), disable(), isEnabled()

Telecommands can be enabled and disabled. They are enabled by default.

These methods report and set the enable status.

In the present implementation, the telecommand identifier is the same as the instance
identifier inherited from RootObject. In the case of telecommand transactions, the
telecommand identifier is the instance identifier of the first telecommand in the transaction.

6.1 Inheritance Tree Structure

Concrete telecommand classes are derived from class RootObject and from a single
inheritance trees. They therefore have a single virtual table pointer associated to them which
simplifies the implementation of the telecommand loading mechanism and keeps the
telecommand size small. This consideration is important for the organization of telecommand
loading (see section 5.3).

6.2 Execution Check

Some telecommands should only be executed if certain conditions hold. For instance, a
telecommand to perform a reaction wheel unloading in some systems should only be
executed if the AOCS is in a thruster-based more.

For this purpose, telecommands expose a canExecute method which performs a check that
the operational conditions are appropriate to the execution of the telecommand.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 16

6.3 Handling of Telecommand Execution Status

Telecommands are intended to be light-weight objects since they may have to be uplinked
with their code. For this reason, they are derived from RootObject rather than from
AocsObject and hence they do not have a default reference to the failure detection
repository allowing them to create failure events in response to the detection of errors. Some
concrete telecommand classes may be endowed with such a reference and may thus take care
of their own error reporting but in general telecommands report their execution status
through the return code of method execute. The following return codes are foreseen at
present:

TC_SUCCESS A simple telecommand executed successfully

TC_FAILURE Simple telecommand failure

TC_TRANS_SUCCESS A telecommand transaction executed successfully

TC_TRANS_FAILURE

A telecommand transaction failed but the unexecute
action was successful and the system was returned to the
state in which it was prior to the execution of the
telecommand

TC_TRANS_UNDO_FAILURE
A telecommand transaction failed. Unexecution was
attempted but failed. The system is in an undefined state.

It is then the responsibility of the telecommand manager to create telecommand events to
record the execution status of a telecommand (see section 8).

6.4 Default Telecommands

The framework prototype provides three default telecommands encapsulated by the classes
listed in the table:

Telecommand Class Telecommand Function

ChangeModeTelecommand Telecommand to change the operational mode of a mode
manager component

TelemetryFormatTelecommand Telecommand to change the telemetry format of a
telemeterable component

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 17

ReconfigureTelecommand Telecommand to start a reconfiguration in a reconfiguration
manager

ManoeuvreTelecommand Telecommand to load a parameterless manoeuvre in the
manoeuvre manager

AttitudeSlewTelecommand Telecommand to configure and load an attitude slew
manoeuvre in the manoeuvre manager

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 18

7 THE TELECOMMAND TRANSACTION DESIGN PATTERN

A telecommand transaction encapsulates a sequence of telecommands that can be treated as a
transaction. This means that in case of failure of a telecommand in the sequence,
telecommands that have already been executed can be unexecuted and the AOCS can be
returned to the state in which it was at the time the transaction began.

Telecommand transactions are made up of a sequence of linked telecommands that are
executed as a single entity. The individual telecommands in a telecommand transaction are
called transaction telecommands.

The AOCS framework introduces the telecommand transaction design pattern to address the
problem of treating some telecommands or some sequences of telecommands as
telecommand transactions. The pattern calls for the introduction of a class
TransactionTelecommand that extends calls Telecommand with an unExecute method
that “undoes” the actions of the telecommand:

Note that, as shown in the class diagram, telecommand transactions must be chained in a link
to allow their manager to recursively undo all telecommands in the same transaction.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 19

7.1 Telecommand Transaction Pattern Instantiation

The telecommand transaction pattern is instantiated by replacing the abstract interface for
trasnsaction telecommands by a concrete class derived from class Telecommand. Class
TransactionTelecommand is defined as follows:

The TelecommandTransaction class extends class Telecommand in the following ways:

• It adds attributes to link the transaction telecommands into a double-linked list.
• It adds an unExecute method to undo the action encapsulated by the telecommand.
• It provides an implementation of method execute to allow all the telecommands in the

transaction to be executed as a single entity (see section 7.2).
• It adds a static reference to the telecommand manager.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 20

The semantics of the methods specific to class TransactionTelecommand are as follows:

TransactionTelecommand(t)

Constructor that sets the transaction telecommand time tag t.

execute()

Recursively execute all the telecommands in the telecommand transaction. The
method returns a code indicating the completion status of the telecommand (see
section 6.3).

canExecute()

Recursively calls canExecute on all telecommands in the transaction and returns
true if all canExecute return true.

getNextTransactionTelecommand, setNextTransactionTelecommand,
getPreviousTransactionTelecommand, setPreviousTransactionTelecommand

Methods to manage the linking of telecommands in a transaction.

setTelecommandManager(), getTelecommandManager()

Static getter and setter methods for the telecommand manager

isEnabled()

Recursively calls isEnabled on all telecommands in the transaction and returns
true if all isEnabled return true.

7.2 Telecommand Transaction Execution

Class TransactionTelecommand provides default implementations of methods execute
and unExecute that take care of checking the success or otherwise of a telecommand and, if
necessary, undo its action by calling unExecute.

These implementations are such that the telecommand manager need not be aware of the
distinction between telecommands and telecommand transactions. The logic for ensuring that
telecommand transactions are handled as a single entity is coded in the implementations of
methods execute and unExecuted provided by class TransactionTelecommand:

EventType TransactionTelecommand::execute()
{

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 21

if (next!=NULL)
return next->execute();

else
return TC_TRANS_SUCCESS;

}

EventType TransactionTelecommand::unExecute()
{

if (previous!=NULL)
return previous->unExecute();

else
return TC_TRANS_FAILURE;

}

Here next and previous are pointers to the next and the previous telecommands in a
transaction.

Sample implementations of the execute and unExecuted methods in concrete transaction
telecommands are as follows:

EventType ConcreteTransactionTelecommand::execute()
{

. . . // Recover current state information and put on the stack

. . . // Attempt to perform telecommand action

if (telecommand action succeeded)
return TransactionTelecommand::execute();

else
{ . . . // restore state

return TransactionTelecommand::unExecute();
}

}

EventType ConcreteTransactionTelecommand::unExecute()
{

. . . // Recover state information from the stack

. . . // Restore state

if (state restore operation was successful)
return TransactionTelecommand::unExecute();

else
return TC_TRANS_UNDO_FAILURE;

}

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 22

Since transaction telecommands must be capable of undoing their own actions, they need
some mechanism to save the system state prior to their execution. Normally, this information
would be saved as part of the telecommand’s internal data. However, in this case, there is a
requirement to keep the image of the telecommand objects as small as possible. Hence, the
telecommand manager offers a stack where transaction telecommands can save state
information (see section 9). Pop and push methods are provided for integers and real
quantities together with stack reset methods.

7.3 Default Transaction Telecommands

The framework prototype provides three default transaction telecommands encapsulated by
the classes listed in the table:

Transaction Telecommand Class Telecommand Function

ChangeModeTransactionTelecommand Transaction telecommand to change the
operational mode of a mode manager
component

TelemetryFormatTransactionTelecommand Transaction telecommand to change the
telemetry format of a telemeterable
component

ReconfigureTransactionTelecommand Transaction telecommand to start a
reconfiguration in a reconfiguration manager

7.4 Recursion

The telecommand transaction design pattern introduces the possibility of recursion since a
call to method execute can now be recursive. The maximum depth of the recursion is given
by the maximum number of telecommands that are chained into a single telecommand
transaction.

7.5 Telecommand Sequences

Note that concrete transaction telecommands must provide implementations for both
execute and unExecute. In some cases, unexecution is either not possible or not desired. In
this case, the telecommand transaction becomes merely a telecommand sequence, namely a
sequence of telecommands that are executed as a single telecommand but for which there is
no guarantee of system integrity in case of partial or complete failure.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 23

8 TELECOMMAND EVENTS

Telecommand-related events are recorded with the creation of events of type
TelecommandEvent. The class diagram for this class is:

Telecommand events are generated in response to the handling of a telecommand. The
TelecommandEvent subclass adds to its parent class one single attribute representing the
reference to the telecommand.

Telecommand events are generated in response to a telecommand being loaded and in
response to a telecommand being executed (see also section 5).

Note that telecommand failures are reported as telecommand events, not as failure events.
This choice reflects the fact that telecommand events are generated by the telecommand
manager that has no knowledge of the cause of the telecommand failure.

In some cases, the telecommand themselves may be able to create failure events. It is then up
to them to record the exact cause of the failure (see also section 6.3).

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 24

For purposes of event reporting, telecommand transactions are treated as a single
telecommand.

8.1 The Telemetry Interface

Telecommand events are telemetry objects because they (indirectly, through AocsEvent)
inherit the telemeterable interface.

The data sent to the telemetry stream by a telecommand event in each telemetry mode are
summarized in the table:

TM Format TM Data

Short instance identifier of telecommand

Normal same as short TM

Long same as normal TM

Debug same as long TM

8.2 The Reset and Configurable Interface

Telecommand events inherit from AocsObject the Resettable and Configurable
interfaces and must therefore implement the corresponding method.

Telecommand events have no dynamic state associated to them and therefore they do not
define a class-specific reset method.

Telecommand events define a class-specific resetConfiguration method that resets all
event attributes to zero. Method isConfigured returns true if the telecommand reference is
different from NULL.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 25

9 THE TELECOMMAND MANAGER

The telecommand manager is an active object that is responsible for the execution of the
telecommands. Its class diagram is:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 26

The telecommand manager is based on the command design pattern of RD1. However it can
also be seen as an instance of the manager meta-pattern where telecommand execution is the
pattern functionality, the telecommand manager is the functionality manager, and the
Telecommand class decouples the functionality management from the functionality
implementation.

The TelecommandManager class implements interface Runnable to signify that
telecommand managers are active object.

The object list encapsulates the list of pending telecommands.

The semantics of the methods specific to this class (ie. not inherited from higher level classes)
are summarized in the table:

TelecommandManager(n)

Constructor that sets the maximum number of telecommands that can be loaded into
the telecommand manager.

loadTelecommand()

Method normally called by the telecommand loader to load a new telecommand into
the telecommand manager. The new telecommand is inserted in the list of pending
telecommand and remains there until it is executed. After execution, it is removed.

pushInt(), popInt(),pushReal(), popReal(),resetStackInt(),
resetStackReal()

Methods to manage the internal stack used by transaction telecommands to save the
system state. See section 7.2.

getNumberOfTelecommands()

Return the number of currently pending telecommands.

setTelecommandEventRepository(),setTelecommandEventRepository()

Static getter and setter methods for the telecommand event repository.

setTelecommandLoader(),setTelecommandLoader()

Getter and setter methods for the telecommand loader.

setTelecommandListFullRecoveryAction(),
setTelecommandListFullRecoveryAction()

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 27

Getter and setter methods for the recovery action associated to the failure arising
when it is attempted to load a telecommand and the telecommand list is already full.

setTelecommandStackErrorRecoveryAction(),
setTelecommandStackErrorRecoveryAction()

Getter and setter methods for the recovery action associated to the failure arising
when a transaction telecommand performs an illegal operation on the internal stack.

9.1 Telecommand Manager Activation

The telecommand manager is activated periodically by the scheduler. When it is activated, it
performs the following actions:

• It checks if there are any pending telecommands waiting to be executed

• For all pending telecommands, it checks their time tag

• For all pending telecommands that are due for execution according to their time tag, it
checks whether they can execute by calling their canExecute method

• For all pending telecommands that are due for execution according to their time tag, it
checks whether they are enabled by calling their isEnabled method

• It executes all telecommands that are due for execution

• It removes from the pending telecommand list the telecommands whose time tag has
been passed (regardless of whether they were executed or not)

• It releases the memory allocated to the telecommand by calling the release method on the
telecommand loader

• It generates telecommand events in response to telecommands being loaded or unloaded
and in response to telecommands being executed (using the return value of method
execute)

9.2 The Telemetry Interface

The telecommand manager is a telemetry objects because it (indirectly, through AocsEvent)
inherit the telemeterable interface.

The data sent to the telemetry stream by a telecommand manager in each telemetry mode are
summarized in the table:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 28

TM Format TM Data

Short number of pending telecommands

Normal same as short TM

Long normal TM + instance ID of telecommand loader

Debug same as long TM

9.3 The Reset and Configurable Interface

The telecommand manager inherits from AocsObject the Resettable and
Configurable interfaces and must therefore implement the corresponding method.

Resetting the telecommand manager causes all pending telecommands to be removed.

Resetting the telecommand manager configuration causes the telecommand loader and the
failure recovery actions to be unloaded.

Method isConfigured returns true if the telecommand loader and the recovery actions
have been loaded and if the list of pending telecommands is configured.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 29

10 THE TELECOMMAND LOADER

The telecommand loader is responsible for loading telecommands from the telecommand
interface in the AOCS computer into the telecommand manager. The loading mechanism
cannot be specified by the AOCS framework as it is application dependent. The main options
are described in section 5.3.

A typical telecommand loader performs the following actions in a telecommand loading
cycle:

• the telecommand (its data and\or its code) is retrieved from the telecommand interface,
packaged as an object of type Telecommand

• the telecommand is loaded into the telecommand manager through a call to the latter´s
loadTelecommand method.

The telecommand loader might be triggered by an interrupt (indicating the arrival of a new
telecommand) or it might be activated periodically by a scheduler. In the latter case, the
telecommand loader processes all the telecommands received by the AOCS computer since
the previous activation of the telecommand loader.

10.1 The TelecommandLoader Interface

The telecommand loader must be capable of dynamically constructing objects of type
Telecommand to encapsulate the telecommands that are sent to the AOCS computer.
Dynamic construction of objects implies management of a memory allocation process:
memory must be dynamically assigned to the newly constructed telecommands. After they
have been executed or after their time tag has come due, telecommands are discarded. The
memory they occupy must be released.

Telecommands are discarded by the telecommand manager and it is therefore up to the
telecommand manager to trigger the memory release process. For this purpose, telecommand
loaders are made to implement the following interface:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 30

The interface is derived from interface Runnable because telecommand loaders must be
active objects. The semantics of its other methods is:

release(TcId)

A telecommand loader manages memory and other resources that it allocates to the
telecommands that it loads. This method will cause the resources allocated to the
telecommand whose identifier is TcId to be released. The method is normally called
by the telecommand manager after the telecommand has been executed.

releaseAll()

This method will cause all memory allocated to telecommands to be released.

setTelecommandManager(), getTelecommandManager

A telecommand loader needs a reference to the telecommand manager in order to
be able to add the newly-loaded telecommands to its list of pending telecommands.
These are the getter and setter methods for the telecommand manager.

The telecommand manager sees the telecommand loader exclusively through the
TelecommandLoader interface.

10.2 The DMA Telecommand Loader

In a typical telecommand loading mechanism, telecommands are placed in the AOCS
memory by a dedicated DMA controller. The AOCS framework offers two default

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 31

components implementing two different DMA-based telecommand loader.
VsDmaTelecommandLoader is designed to operate in the VisualStudio environment (where
the AOCS framework was initially tested) and Erc32DmaTelecommandLoader is designed
for the ERC32 environment with the GNU compiler (where the AOCS prototype was tested).
These components were developed to allow testing of the AOCS prototype and can be used
as blueprint for application-specific telecommand loaders.

The default telecommand loaders assume that incoming telecommands are available as a
telecommand buffer consisting of an array of bytes with the format described in the header file
DmaTelecommandLoader.h. The telecommand data are placed in the telecommand buffer
by an interrupt routine triggered by the DMA device when reception of a telecommand has
been completed.

A telecommand buffer contains one or more telecommand packets. A telecommand packet
contains either a simple telecommand or a telecommand transaction.

A telecommand packet is divided into one or more telecommand blocks. A telecommand block
contains an individual telecommand, either a simple telecommand (if the packet contains a
simple telecommand) or a transaction telecommand (if the packet contains a telecommand
transaction).

A telecommand block contains a data section and may contain a VTable section and one or
more code sections.

A data section contains the data part of a telecommand. The VTable section contains a virtual
function table and each code section contain the code for one method of the newly loaded
telecommand.

When the newly loaded telecommand is an instance of a class already present on-board, then
only its data section is uplinked. When instead the telecommand represents an instance of a
new class, it must carry a VTable and one or more code sections.

The class diagram for the default telecommand loaders is shown below. For detailed
information on the two loaders, readers should refer to the commented source code.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 32

10.3 Telecommand Layout in the Uplink Channel

In principle, the layout of a telecommand as it is uplinked by the ground station can be the
same as the layout of the telecommand object that is being uplinked. This is simple but can be
wasteful. Consider, for instance, the enabled field that all telecommand inherit from the
base class Telecommand. Depending on the implementation, it can take up to four bytes.
This field however carries no information since it is always initialized to true when the
telecommand is first loaded onto the telecommand manager. Similarly, the instance identifier
of the telecommand object could be created on board by the telecommand manager thus
saving another 2 or more bytes. A third saving can be achieved with the time tag field. This
field is redundant in most transaction telecommands since telecommands in a transaction all
carry the same time tag.

Saving in the number of bytes to be uplinked can therefore be realized by having a
telecommand loader that supplies some of the data required to construct the telecommand
object. This approach was followed for both default telecommand loaders provided with the
AOCS framework (see previous section).

Short telecommands can also be ensured by sensibly defining the classes of which
telecommand objects may be instances. Consider for instance the telecommand to change the
operational mode of a mode manager. Its base class is:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 33

class ModeChangeTelecommand : public Telecommand {

ModeManager* modeManager;
unsigned char newMode;

public :

ModeChangeTelecommand(AocsTime timeTag, ModeManager* m, int n);

virtual EventType execute();
};

The declaration of newMode as unsigned char helps keep the telecommand image small.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 34

11 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD3.

11.1 Telecommand Hot-Spot

Name: Telecommand Hot-Spot

Visibility Level: framework –level

Adaptation Time: compile-time

Adaptation Method: implementation of subclasses of Telecommand

Pre-defined Options: default telecommands listed in section 6.4

Related Hot-Spots: none

Description

Concrete telecommands are realized as instance of subclasses of class Telecommand. This is the
hot-spot where application-dependent telecommands are built.

11.2 Transaction Telecommand Hot-Spot

Name: Transaction Telecommand Hot-Spot

Visibility Level: framework –level

Adaptation Time: compile-time

Adaptation Method: implementation of subclasses of TransactionTelecommand

Pre-defined Options: default transaction telecommands listed in section 7.3

Related Hot-Spots: none

Description

Concrete transaction telecommands are realized as instance of subclasses of class
TransactionTelecommand. This is the hot-spot where application-dependent transaction
telecommands are built.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 35

11.3 Recovery Action Plug-In for Illegal Stack Operations

Name: Recovery Action Plug-In for Illegal Stack Operations

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in the telemetry manager (method
setTelecommandStackErrorRecoveryAction)

Pre-defined Options: no recovery action is defined by default

Related Hot-Spots: none

Description

When a transaction telecommand attempts to perform an illegal operation on the internal stack
maintained by the telecommand manager, a failure is declared. A recovery action should be
associated to this failure. This hot-spot allows this recovery action to be loaded.

11.4 Recovery Action Plug-In for Too Many Telecommands

Name: Recovery Action Plug-In for Too Many Telecommands

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in the telemetry manager (method
setTelecommandListFullRecoveryAction)

Pre-defined Options: no recovery action is defined by default

Related Hot-Spots: none

Description

When the telecommand loader attempts to load a telecommand in the telecommand manager and
its list of pending telecommands is already full, a failure is declared. A recovery action should be
associated to this failure. This hot-spot allows this recovery action to be loaded.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Telecommand Management Framelet
Issue 2.3
30 April 2002
Page 36

11.5 Telecommand Event Repository Plug-In

Name: Telecommand Event Repository Plug-In

Visibility Level: framelet-level

Adaptation Time: run-time

Adaptation Method: plug-in component in the telecommand manager class (method
setTelecommandEventRepository)

Pre-defined Options: TelecommandEventRepository component exported by inter-component
communication framelet.

Related Hot-Spots: none

Description

Telecommand managers log telecommand events in the telecommand event repository. This hot-
spot allows this event repository component to be loaded. Note that this component is loaded as a
static reference.

11.6 Telecommand Loader Hot-Spot

Name: Telecommand Loader Hot-Spot

Visibility Level: framework-level

Adaptation Time: compile-time

Adaptation Method: implementation of interface TelecommandLoader

Pre-defined Options: default telecommand loaders of section 10.2.

Related Hot-Spots: none

Description

Telecommand loaders are application-specific. This hot-spot allows their definition.

