

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 1

 FAILURE DETECTION MANAGEMENT FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the failure detection management framelet. This framelet
defines an architecture to handle failure detection tasks.
The framelet enhances reusability because it decouples
the task of managing the failure detection function from
the task of carrying out failure detection tests.

Written By: A. Pasetti (University of Constance/SWE)

Date: 30 April 2002

Issue: 2.2

Reference: SWE/99/AOCS/010

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 2

TABLE OF CONTENTS

1 REFERENCES.. 3
2 ACRONYMS.. 4
3 INTRODUCTION... 5

3.1 Context ... 5
3.2 Applicability to Java Version .. 5
3.3 Notation ... 6

4 FRAMELET CONSTRUCTS.. 7
5 FAILURE DETECTION MODEL ... 8

5.1 Autonomous Failure Checks... 8
5.2 Consistency Checks.. 8
5.3 Property Monitoring .. 9
5.4 Consistency Checks and Property Monitoring .. 10

6 FAILURE EVENTS ... 11
6.1 The Telemetry Interface ... 12
6.2 The Reset and Configurable Interface ... 12

7 THE FAILURE DETECTION DESIGN PATTERN.. 13
7.1 Instantiation of Failure Detection Pattern... 14
7.2 The Failure Detection Manager .. 15
7.3 The Failure Detection Mode Manager... 17
7.4 Failure Detection Manager Telemetry Interface .. 18
7.5 The Failure Detection Manager Reset and Configurable Interfaces 19

8 FRAMELET HOT-SPOTS .. 20
8.1 Failure Detection Mode Manager Plug-In .. 20
8.2 Consistency Checkable Hot-Spot ... 20
8.3 Change Event Repository Plug-In.. 21
8.4 Monitoring Check Hot-Spot.. 21
8.5 Consistency Checkable List Plug-In .. 22
8.6 Monitoring Check List Plug-In ... 22

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 3

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

RD3 A. Pasetti (2000), Operational Mode Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/009

RD4 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 4

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
OBDH On-Board Data Handling system (aka as OBDS)
NM Normal Mode
NTT Non-Time-Tagged
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 5

3 INTRODUCTION

This document describes the failure detection management framelet for the AOCS framework.
The framelet is described at both the framelet concept level and at the framelet architectural
level.

This framelet defines an architecture to handle failure detection tasks.

The framelet enhances reusability because it decouples the task of managing the failure
detection function from the task of carrying out failure detection tests.

3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD2 and in particular with the sections dealing with failure
detection management and with the overall FDIR approach.

The architecture proposed here follows the concept outlined in RD2.

In comparing the present document with RD2, readers should bear in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce an
architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level – in particular its design
patterns – is language-independent and is equally applicable to both the C++ and Java
versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following
address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific
points to note are:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 6

− Events in the Java framework are implemented using the Java event mechanism.

− Property monitoring (see section 5.3) is done in a slightly different way. The Java
framework does not have property objects. Monitorable components (components that
expose properties that can be subjected to monitoring) are characterized by
implementation of interface Monitorable. Monitoring check objects therefore hold a
reference to a Monitorable component rather than to a Property object.

− The change event repository hot-spot (section 8.3) is not applicable to the Java framework.
Event repositories are event listeners and can be linked to the mode manager through the
associated addListener methods.

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

The class diagrams use UML notation generated with the reverse engineering tool of the
Together tool.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 7

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

FAILURE DETECTION MANAGEMENT FRAMELET

Design Pattern

Failure Detection Pattern: design pattern to separate the management of failure detection tests from
their implementation.

Framelet Interfaces

ConsistencyCheckable : interface for objects that can perform consistency checks on their
internal state.

FailureDetectionModeManager : interface for the operational mode manager for the failure
detection manager.

Framelet Core Components

MonitoringCheck : component encapsulating a monitoring check action

FailureDetectionManager : component encapsulating a failure detection manager

Framelet Default Components

FollowerFailureDetectionModeManager : default mode manager for the failure detection
manager based on the follower mechanism.

The components listed above are those envisaged for the prototype version of the AOCS
framework. Later versions may offer a richer set of default implementations of the framelet
interfaces. In particular, more default mode manager components may be supplied
implementing alternative mode switching logics and interface ConsistencyCheckable
should be implemented more fully.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 8

5 FAILURE DETECTION MODEL

The failure detection model is as outlined in the failure management section of RD2. As
explained in this reference, three types of failure detection mechanisms are possible:

• autonomous failure checks
• consistency checks
• property monitoring

The above types of failure detection mechanisms are discussed in greater detail in the next
three subsections.

5.1 Autonomous Failure Checks

The failure detection manager performs systematic failure detection checks. However, all
other AOCS objects may also perform failure checks as part of their normal operation. These
checks are called autonomous failure checks.

AOCS objects inherit from their base class AocsObject an operation – reportFailure –
that they can use to report a failure. This operation creates a failure event and stores it in the
failure event repository.

5.2 Consistency Checks

Consistency checks are performed on objects implementing the ConsistencyCheckable
interface. This interface is defined as follows:

ConsistencyCheckable

+doConsistencyCheck():bool

+getRecoveryAction():RecoveryAction *

+setRecoveryAction(r:RecoveryAction *):void

The consistency check is performed by calling method doConsistencyCheck. The
consistency check test can either true (no consistency failure) or false (consistency check
failure). In case of detection of a consistency check failure, the failure detection manager
creates an event of type FailureEvent as described in the next section.

The AOCS framework prescribes that a recovery action be associated to each consistency
check. The getter and setter methods allow the recovery action objects to be retrieved or
defined.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 9

5.3 Property Monitoring

Failures are detected by monitoring the properties of some objects for specific changes.
Property monitoring can be performed in several manners but the failure detection manager
performs it exclusively through the direct monitoring mechanism.

A property monitoring is encapsulated in a monitoring check object which packages in a single
object the property to be checked, the change object defining the type of change and the
recovery action to be performed in case the change is found to have occurred.

A monitoring check object has the following structure:

The public methods specific to this class (ie. not inherited from base classes) are described in
the table:

MonitoringCheck(p, c, r)

Constructor that builds a monitoring object for object p and change object c and
associate recovery action r to the monitoring action (ie. r is the recovery action
associated to the failure event generated when the value of property p is found to
have undergone the change specified by c).

getPropertyValue

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 10

Return the value of the property encapsulated in the monitoring object.

getProperty

Return property object encapsulated in the monitoring object.

getChangeObject

Return the change object encapsulated in the monitoring object.

getRecoveryAction

Return the recovery action encapsulated in the monitoring object.

The monitoring action consists in passing the property value – obtained from the Property
object – through the change filter – as encapsulated in the ChangeObject object. If the
change in the property value is found to have occurred, a failure event is created and stored
in the failure event repository.

5.4 Consistency Checks and Property Monitoring

The two types of failure detection tests performed directly by the failure detection manager –
consistency checks and property monitoring checks – are not orthogonal. Indeed, a
consistency check ultimately reduces to a comparison of the value of a certain variable against
a certain threshold. Hence, consistency checks could be subsumed under the more general
category of property monitoring checks.

The two types of tests are, however, conceptually separate. The criterion for separating them
lies in where the knowledge required to carry out the check is located. In the case of a
consistency check, the knowledge to carry out the test is located inside the object to be tested.
In the case of monitoring checks, this knowledge is located outside.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 11

6 FAILURE EVENTS

Detections of failures are reported as failure events in the failure event repository. Failure
events are implemented as instances of class FailureEvent which is itself derived from the
generic AocsEvent class.

Failure events are stored in dedicated a event repository instantiated from class
FailureEventRepository.

The AocsEvent class is defined as follows:

FailureEvent

+FailureEvent()

+initialize(creator:AocsObject *,evtType:EventType,location:AocsObject *,recoveryA

+getLocation():AocsObject *

+getRecoveryAction():RecoveryAction *

+resetConfiguration():void

+isConfigured():bool

+writeToTelemetry(stream:TelemetryStream *):void

+getTelemetryImageLength():int

AocsObject

AocsEvent

Thus, failure events add the following attributes to those defined by the base class
AocsEvent:

• location : the object where the failure was detected.
• recoveryAction: the recovery action associated to the failure

Creation of failure events is usually done indirectly by calling method reportFailure that
class AocsObject offers to all its derived classes. This operation is provided to allow all
objects – not just the failure detection manager – to report failures (see also section 5.1).

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 12

6.1 The Telemetry Interface

Failure events are telemetry objects because they (indirectly, through AocsEvent) inherit
from AocsData the telemeterable interface.

The data sent to the telemetry stream by a failure event in each telemetry mode are
summarized in the table:

TM Format TM Data

Short none

Normal none

Long instance identifier of failure location and recovery action

Debug same as long TM

6.2 The Reset and Configurable Interface

Failure event objects inherit from AocsObject the Resettable and Configurable
interfaces and must therefore implement the corresponding method.

Failure events have no dynamic state associated to them and therefore they do not define a
class-specific reset method.

Failure events define a class-specific resetConfiguration method that resets all event
attributes to zero. Method isConfigured returns true if the reference to the failure location
is non-NULL.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 13

7 THE FAILURE DETECTION DESIGN PATTERN

This design pattern is introduced to address the problem of separating the management of
failure detection tests from their implementations. It is based on the manager meta-pattern of
RD2.

The pattern is illustrated in the following class diagram:

The failure detection manager maintains lists of monitoring check objects and of consistency
checkable objects. When it is activated, it goes through the list and performs the failure
detection tests on each item in the lists.

The pseudo-code below shows a basic implementation for the activation cycle of the failure
detection manager where the failure checks are performed:

ObjectListTemplate<ConsistencyCheckable>* consistencyCheckableList;
ObjectListTemplate<MonitoringCheck>* monitoringCheckList;

. . .

// Perform the consistency checks
for (all objects ‘obj’ in ‘consistencyCheckableList’) do

if (!obj->doConsistencyCheck())
. . . // check failed, failure has been detected!

// Perform the monitoring checks
for (all object ‘obj’ in ‘monitoringCheckList’) do

if (obj->getChangeObject()->checkValue(obj->getPropertyValue()))

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 14

{ . . . // check failed, failure has been detected!
}

7.1 Instantiation of Failure Detection Pattern

The failure detection pattern is instantiated as follows for the framework:

u the failure detection manager is an active object and its activate method is the run
method declared by interface Runnable.

u If failures are found, they are reported as failure events in the failure event repository.

u If a monitoring check fails, then a property change event is created.

u In most cases, the list of components to be subjected to consistency checks and the list of
monitoring check objects depends on operational conditions. This is taken into account by
making the failure detection manager mode-dependent. The failure detection mode
manager then manages two strategies corresponding to the list of consistency checkable
objects and to the list of monitoring check objects.

The class diagram for the instantiated failure detection pattern is:

0..1

0..1 1

1..*

1

1..*

FailureDetectionModeManagerAocsObject

FailureDetectionManager

Runnable

RootObject

Resettable

Configurable

Telemeterable

AocsObject

ConsistencyCheckable

ConcreteComponent

EventRepository

ChangeEventRepository
MonitoringCheck

ConcreteFailureDetectionModeManager

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 15

The mode manager is characterized by an abstract interface as discussed in greater detail in
section 7.3.

The failure detection manager does not have an explicit link to the failure event repository
because it can use the failure reporting service offered by its AocsObject base class.

The pseudo-code for the failure detection tests now becomes:

class FailureDetectionManager : public AocsObject, public Runnable {

FailureDetectionModeManager* modeManager;
ObjectListTemplate<ConsistencyCheckable>* consistencyCheckableList;
ObjectListTemplate<MonitoringCheck>* monitoringCheckList;

public :

void run(AocsTime t) {

// Retrieve the list of objects to be checked in this cycle
consistencyCheckableList=modeManager->get consistencyCheckableList();
monitoringCheckList=modeManager->get monitoringCheckList();

// Perform the consistency checks
for (all objects obj in the consistencyCheckableList) do

if (!obj->doConsistencyCheck())
. . . // check failed, create failure event

// Perform the monitoring checks
for (all object obj in the monitoringCheckList) do

if (obj->getChangeObject()->checkValue(obj->getPropertyValue()))
{ . . . // check failed, create failure event

. . . // create a property change event
}

}
}

7.2 The Failure Detection Manager

The failure detection manager class is defined as follows:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 16

The public methods specific to this class (ie. not inherited from base classes) are described in
the table:

setFailureDetectionModeManager, getFailureDetectionModeManager

Setter and getter methods for the failure detection mode manager.

setChangeEventRepository, getChangeEventRepository

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 17

Setter and getter methods for the change event repository.

7.3 The Failure Detection Mode Manager

In general, the type of checks to be performed at a given type depends on the operational
conditions of the rest of the AOCS software. This dependency is modelled by endowing the
failure detection manager with operational mode.

The mode manager is constructed by instantiating the mode management pattern prescribed
in RD3 as shown in the last class diagram of section 7.1.

The failure detection mode manager must be able to supply to the failure detection manager
the lists of consistency checkable objects and monitoring checks. Its interface is accordingly
defined as follows:

The semantics of the operations defined by this interface are summarized in the following
table:

getConsistencyCheckableList()

This method is called by the failure detection manager to retrieve the list of objects to
be subjected to a consistency check in the current activation cycle.

getMonitoringCheckList()

This method is called by the failure detection manager to retrieve the list of
monitoring check objects to be used in the current activation cycle.

loadConsistencyCheckableList (int i,
ObjectListTemplate<ConsistencyCheckable>* ccList)

This method is used to configure the failure detection mode manager. It associates
the consistency checkable list ccList to operational mode i.

loadMonitoringCheckList (int i, ObjectListTemplate<MonitoringCheck>*

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 18

mcList)

This method is used to configure the failure detection mode manager. It associates
the monitoring check list mcList to operational mode i.

Concrete failure detection mode managers are defined by the mechanism that they use to
decide which particular consistency checkable and monitoring check lists should be returned
at any given point in time.

The prototype framework provides a default failure detection mode manager that is based on
the follower mode manager. This default failure detection mode manager is instantiated from
the following class FollowerFailureDetectionModeManager:

Thus, the default failure detection mode manager uses the services offered by the generic
follower mode manager component exported by the operational mode framelet.

In a typical configuration, this mode manager would be slaved to the AOCS mission mode
manager.

This failure detection mode manager also performs hard-coded mode change actions: when
there a mode transition, all the change objects in the monitoring check list that becomes active
are reset. This is advisable because change objects normally have an internal state.

7.4 Failure Detection Manager Telemetry Interface

The telemetry manager is itself a telemetry object because it inherits (indirectly, through
AocsObject) the telemeterable interface.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 19

The data sent to the telemetry stream by a core mode manager in each telemetry mode are
summarized in the table:

TM Format TM Data

Short none

Normal instance ID of current consistency checkable and monitoring check lists

Long same as normal TM

Debug long TM + instance ID of failure mode manager

7.5 The Failure Detection Manager Reset and Configurable Interfaces

The failure detection manager inherits from AocsObject the Resettable and
Configurable interfaces and must therefore implement the corresponding method.

Failure detection managers have no internal state and therefore they do not provided a class-
specific implementation of method reset.

A call to method resetConfiguration unloads the following plug-in components: the
failure detection mode manager, the change event repository.

Method isConfigured returns true if both the failure detection mode manager and the
change event repository have been loaded.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 20

8 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD4.

8.1 Failure Detection Mode Manager Plug-In

Name: Failure Detection Mode Manager Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in FailureDetectionManager class (method
setFailureDetectionModeManager)

Pre-defined Options: FollowerFailureDetectionModeManager component exported by this
framelet.

Related Hot-Spots: none

Description

Failure detection managers need a mode manager to supply them with the list of consistency
checkable and monitoring check objects. This hot-spot allows the failure detection mode manager
to be loaded in the failure detection manager.

8.2 Consistency Checkable Hot-Spot

Name: Consistency Checkable Hot-Spot

Visibility Level: framelet-level

Adaptation Time: compile-time

Adaptation Method: virtual method in ConsistencyCheckable interface

Pre-defined Options: none

Related Hot-Spots: none

Description

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 21

The implementation of interface ConsistencyCheckable defines how consistency checks are
performed on selected classes of AOCS objects.

8.3 Change Event Repository Plug-In

Name: Change Event Repository Plug-In

Visibility Level: framelet-level

Adaptation Time: run-time

Adaptation Method: plug-in component in FailureDetectionManager class (method
setChangeEventRepository)

Pre-defined Options: default ChangeEventRepository component exported by the inter-component
communication framelet.

Related Hot-Spots: none

Description

The failure detection manager performs monitoring checks where the value of a property is
checked for a certain type of change. The occurrence of a change in a property has to be reported
both as a failure (it is a failure of a monitoring check) and as a change event (a property has
undergone a change). Hence, the failure detection manager needs a reference to the change event
repository to create and store the change event.

8.4 Monitoring Check Hot-Spot

Name: Monitoring Check Hot-Spot

Visibility Level: framework-level

Adaptation Time: compile-time

Adaptation Method: instantiation and definition of monitoring check objects (instances of class
MonitoringCheck).

Pre-defined Options: none

Related Hot-Spots: none

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 22

Description

The failure detection manager performs systematic monitoring of the values of properties. A
property monitoring check is encapsulated in an object of class MonitoringCheck. For each
property that the application developer wishes to be at least potentially monitorable, a
corresponding MonitoringCheck object must be defined and initialized.

8.5 Consistency Checkable List Plug-In

Name: Consistency Checkable List Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in FailureDetectionModeManager class (method
setConsistencyCheckableList).

Pre-defined Options: none

Related Hot-Spots: Monitoring Check List Plug-In

Description

The failure detection mode manager maintains a list of consistency checkable objects. This hot-
spot defines the point where a new list is loaded into a failure detection mode manager.

8.6 Monitoring Check List Plug-In

Name: Monitoring Check List Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in FailureDetectionModeManager class (method
setMonitoringCheckList).

Pre-defined Options: none

Related Hot-Spots: Consistency Checkable List Plug-In

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Detection Framelet
30 April 2002
Issue 2.2
Page 23

Description

The failure detection mode manager maintains a list of monitoring check objects. This hot-spot
defines the point where a new list is loaded into a failure detection mode manager.

