

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 1

 AOCS UNIT MANAGEMENT FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the AOCS unit management framelet. This framelet
defines an architecture to manage external AOCS units.
The framelet enhances reusability because it provides a
standard interface for AOCS units that decouples the
managers and users of unit data, from the units
themselves.

Written By: A. Pasetti

Date: 30 April 2002

Issue: 2.3

Reference: SWE/99/AOCS/017
__

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 2

TABLE OF CONTENTS

1 REFERENCES.. 4
2 ACRONYMS.. 5
3 INTRODUCTION... 6

3.1 Context ... 6
3.2 Applicability to Java Version .. 6
3.3 Notation ... 6

4 FRAMELET CONSTRUCTS.. 8
5 AOCS UNIT MODEL... 10

5.1 Unit Data Formats .. 10
5.2 Data Exchange Model .. 11
5.3 Operation Model... 12
5.4 Model Limitations .. 15
5.5 AOCS Unit Class Structure ... 15

6 HARDWARE UNIT OBJECTS.. 17
6.1 The UnitInstruction Structure .. 18
6.2 Abstraction Levels .. 19
6.3 The MacsTcController Component ... 19

7 AOCS UNIT OBJECTS ... 22
7.1 The AocsUnitHousekeeping Interface ... 22
7.2 The AocsUnitFunctional Interface.. 25
7.3 Error Handling.. 27
7.4 Non-Nominal Transactions... 28
7.5 Split Units .. 28

8 THE AocsUnit CLASS ... 30
8.1 The Telemetry Interface ... 32
8.2 The Reset and Configurable Interface ... 32

9 CONCRETE AOCS UNIT OBJECTS.. 33
9.1 The FssPrototype Unit.. 33
9.2 The GyrPrototype Unit.. 34
9.3 The RwPrototype Unit .. 34
9.4 The SapPrototype Unit.. 35
9.5 The Telemetry Interface ... 37
9.6 The Reset and Configurable Interface ... 37

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 3

9.7 Unit Data Converters ... 37
10 FICTITIOUS UNIT DESIGN PATTERN.. 39

10.1 Recursion ... 40
10.2 The TorquingThrusters Fictitious Unit .. 40
10.3 The Reaction Wheel Set Fictitious Unit ... 42

11 TRIGGER LISTS .. 43
11.1 The Telemetry Interface ... 47
11.2 The Reset and Configurable Interface ... 47

12 UNIT TRIGGER OBJECTS... 48
12.1 The Telemetry Interface ... 50
12.2 The Reset and Configurable Interface ... 50

13 FRAMELET HOT-SPOTS .. 51
13.1 Unit Trigger Mode Manager Plug-In... 51
13.2 AOCS Unit Hot-Spot.. 51
13.3 AOCS Hardware Unit Hot-Spot... 52
13.4 Fictitious Unit Hot-Spot... 52
13.5 Trigger List Hot-Spot ... 53

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 4

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

RD3 Modular Attitude Control System (MACS) Handbook

RD4 A. Pasetti (2000), AOCS Framework - Prototype Definition, AOCS Framework Document
ref. SWE/99/AOCS/019

RD5 A. Pasetti (2000), AOCS Framework – AOCS Prototype Definition, AOCS Framework
Document ref. SWE/99/AOCS/020

RD6 A. Pasetti (2000), AOCS Framework – Methodological Issues, AOCS Framework
Document ref. SWE/99/AOCS/018

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 5

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
OBDH On-Board Data Handling system (aka as OBDS)
NM Normal Mode
NTT Non-Time-Tagged
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 6

3 INTRODUCTION

This document describes the AOCS unit management framelet for the AOCS framework. The
framelet is described at both the framelet concept level and at the framelet architectural level.

This framelet defines an architecture to manage external AOCS units. The framelet enhances
reusability because it provides a standard interface for AOCS units that decouples the
managers and users of unit data, from the units themselves.

3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD2 and in particular with the sections dealing with AOCS
unit management and with the fictitious unit management.

The architecture proposed here follows the concept outlined in RD2.

In comparing the present document with RD2, it should be kept in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce an
architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version. Generally speaking, the description of the
framelet at design level – in particular its design patterns – is language-independent and is
equally applicable to both the C++ and Java versions whereas the architectural-level
description is more tied to the C++ version. For a detailed description of the architecture of
the Java framework, readers should refer to the JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following
address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html..

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 7

UML class diagrams were obtained with the Together tool.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 8

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

AOCS UNIT FRAMELET

Design Patterns

Fictitious Unit Pattern : pattern to make objects that process unit data look like units

Framelet Interfaces and Abstract Base Classes

AocsUnitHardware : interface for objects managing low level exchanges with external units.

UnitInstruction : interface structure defining a generic protocol for data exchanges with external
units

AocsUnitFunctional : interface for objects representing the functional exchanges between the
AOCS software and an AOCS unit (either real or fictitious)

AocsUnitHousekeeping : interface for objects representing the housekeeping exchanges
between the AOCS software and a real (ie. non fictitious) AOCS unit

AocsUnit : abstract class serving as base class for all objects representing external unit proxies in
the AOCS software

TriggerList : interface for trigger list objects, namely list of units due to be triggered at the same
time in the AOCS cycle

Framelet Core Components

PollingTrigger : trigger object to perform full data transfer (transaction + refresh cycle) with
polling on registered units

UnitTrigger : trigger object to perform full data transfer (transaction + refresh cycle) without
polling on registered units

RefreshTrigger : trigger object to perform refresh operations on registered units

TrasactionTrigger : trigger object to perform transaction operations on registered units

Framelet Default Components

FullTriggerList : full implementation of interface TriggerList

FunctionalTriggerList : partial implementation of interface TriggerList covering only

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 9

functional units

MacsTcController : implementation of interface AocsUnitHardware for a MACS telecom
controller

FssPrototype : two-axis fine sun sensor AOCS unit for the AOCS prototype

GyrPrototype : single-axis gyro AOCS unit for the AOCS prototype

RwPrototype : reaction wheel AOCS unit for the AOCS prototype

SapPrototype : solar acquisition and propulsion electronics AOCS unit for the AOCS prototype

TorquingThrusters : fictitious AOCS unit to command a set of thrusters directly with the torque
requests around spacecraft axes

The components listed above are those envisaged for the prototype version of the AOCS
framework. Later versions may offer a richer set of default implementations of the framelet
interfaces. In particular, more hardware interface and AOCS unit objects might be offered.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 10

5 AOCS UNIT MODEL

The AOCS framework assumes that units are passive, namely incapable of initiating data
exchanges with the AOCS computer. All data transactions with a unit occur in response to a
command from the AOCS computer.

Data transactions between the AOCS computer and the AOCS units fall under two categories:

• Functional Transactions

This type of transaction is cyclical and relates to the primary function for which a unit was
designed. Thus, for instance, a thruster unit periodically receives firing profiles, a gyro
periodically supplies rate information, a reaction wheel periodically receives torque
requests.

• Housekeeping Transactions

This type of transaction may be occasional and it consists of commands sent by the AOCS
computer to the unit (eg. to change its operational mode, to switch the unit on or off, etc)
and of housekeeping data sent by the unit to the AOCS computer (eg. temperature
readings, results of self-tests)

The unit status is defined by:

• Power Status

Units can either be “power on” or “powered off”

• Operational Mode

Units may be in one of several operational modes

• Health Status

Units can either be “healthy” or “unhealthy”

Finally, units may be able to perform a self-test. The result of a self-test is reported as an
integer.

5.1 Unit Data Formats

Data in the AOCS units can exist at two levels of abstraction:

• the raw data level representing the data as they are transmitted on the physical
communication link between the unit and the AOCS computer;

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 11

• the AOCS data level representing the data as they are used by clients of the AOCS unit
objects in the AOCS software. Such data are expressed in engineering units and, if they
depend on reference frame, are expressed in the spacecraft reference frame.

The raw data level is mission-specific and cannot be defined here. This data level, however, is
internal to the AOCS unit components. All exchanges between the AOCS unit components
and other AOCS software objects take place at the AOCS data level. It is the responsibility of
the AOCS unit object to perform conversions between raw and AOCS data levels.

5.2 Data Exchange Model

The model for the exchange of data between hardware and AOCS unit objects is illustrated in
the figure below. The figure assumes the case of a unit that can both receive and send data
(this could for instance be the case of a reaction wheel that receives torque requests and sends
wheel velocity measurements). Many units will only work in receive or send mode.

��
��

��
��

��	

�

���
��

�
�
��

��
��

��
��

���
�	

��
���

��

��������	�
��
�

��
��

��

�

�

��

��
��

�
��

��
�	

��

��

��
��

�

��

��

��
�
�

��
��

��
�

��

��

��
��

��
��

��
��

�

��	��
���

��	��
���

���������
���������

���������
��������� ���������	

���������

������	�������

������	�������

�������	�������

�������	�������

As shown in the figure, the AOCS unit object maintains hardware buffers where incoming or
outgoing data are deposited at raw data format. The transfer between these buffers and the
hardware interface is done by low level mechanisms.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 12

In a typical example. The hardware interface could be a MACS bus controller. Data reception
triggers an interrupt whose servicing routine deposits the incoming data word in the
hardware input buffer where it remains available for further processing by the AOCS unit.
Data to be sent to the unit must instead be written to an I/O address. In that case, the
hardware output buffer serves as the source for the data written to the I/O port by a
dedicated routine.

Only single hardware buffers are shown in the figure. In reality, the buffers may be made up
of several memory locations holding related data. The hardware output buffer for a thruster,
for instance, will consist of at least two locations holding the firing duration and firing delay
data.

The AOCS unit object maintains links to data pool locations where the incoming and
outgoing data are stored as variables at AOCS data level. The location where incoming data
are stored is called destination data buffer and the location from which outgoing data are
retrieved is called source data buffer. The destination and source data buffers are sets of data
items in the data pools.

In the case of a sun sensor, for instance, the destination data buffer is made up of two (or,
depending on the representation, three) data items representing the sun vector as measured
by the sun sensor but expressed in engineering units and referred to the spacecraft coordinate
frame.

When the data to be sent by a unit represent a measurement performed by the unit, it may be
necessary to send a synchronization command to the unit. This command directs the unit to
acquire the measurement and store it in an internal buffer form which it can then be retrieved
by the AOCS computer through a data acquisition operation.

5.3 Operation Model

The following types of operations can be performed upon unit objects:

• Data Acquisition

Data are transferred from the external unit to their destination buffer in the data pool

• Data Send

Data are transferred from a source buffer in the data pool to an external unit

• Synchronization

The AOCS computer sends a synchronization command to the unit

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 13

• Command Send

The AOCS computer sends a command to the unit to perform one of the following:

− change in the current operational mode
− unit reset
− interruption of on-going bus transaction
− unit initialization
− initiate self-test

The above operations are executed in one or two phases:

• Bus Transaction Phase

A transaction is an actual data or command exchange taking place on the physical link
between the external unit and the AOCS computer.

• Refresh Phase

A refresh operation cover the translation between raw and AOCS data levels, and hence a
transfer between hardware buffers and destination/source buffers.

The refresh phase only applies to operations that result in an exchange of data (as opposed to
commands) between the external unit and the AOCS computer.

The order in which the two phases are executed depends on the operation type. For data
acquisition operations, the bus transaction must be executed first and followed by the refresh
phase. For the data send operations, the opposite order applies.

The AOCS unit object exposes dedicated methods to perform each phase of each operation as
shown in the table below. As explained in the next section, AOCS units present two interfaces
to the rest of the AOCS software: the AocsUnitFunctional and the
AocsUnitHousekeeping interface. The operations listed at the beginning of this section
may refer either to the acquisition or sending of housekeeping or of functional data. Where
two methods are presented for the same operation-phase pair in the table, one applies to the
functional and the other to the housekeeping interface of AOCS units.

 Bus Transaction Phase Refresh Phase

Data Acquisition Operation AcquireHousekeepingData
acquireFunctionalData

refreshHousekeepingIn
refreshFunctionalIn

Data Send Operation sendHousekeepingData
sendFunctionalData

refreshHousekeepingOut
refreshFunctionalOut

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 14

Synchronization Operation SynchronizeHousekeeping
synchronizeFunctional

phase not applicable

Command Send Operation see interface desc. phase not applicable

Calls to the bus transaction methods result in transactions being initiated on the
communication link with the external unit. The transmission may take some time to complete.
In some implementations, transaction methods may be non-blocking: they initiate the
transaction and immediately return. Separate methods are provided to check whether the
initiated transaction has been completed. Note that no call-back mechanism is foreseen
whereby clients are directly notified of the termination of a transaction.

Refresh actions are always executed, regardless of whether new data have arrived since the
previous refresh. In a future implementation, they might only be actually executed if they can
lead to an update of the target buffer. If, for instance, no new data were received in the input
buffer since the last time a refreshIn method was called, then a new call to the refreshIn
method will return without performing any action. This would improve efficiency as it would
avoid duplicate data conversion processes but would require associating and maintaining
time-tags to the hardware buffers.

Refresh operations are carried out by control channel objects that are called data converters
because they convert the unit data to and from raw data level. The data converter may
include bias and scale factor corrections, coordinate frame transformation, pre-filtering, and
any other operation that may have to be performed to the incoming or outgoing unit data.
The AOCS unit data sees the data converter only through the abstract control channel
interface and therefore need not be concerned about the exact nature of the operations
performed by it.

As an example of a full data transfer, consider a data acquisition transfer cycle. This could be
articulated over the following steps:

− Call dataAcquire to initiate the bus transaction to acquire data from the physical unit
− Check that the acquisition process is finished through method isTransactionFinished
− Call refreshIn to convert acquired data to AOCS level and transfer them to data pool.

At the end of this three-step process, the newly acquired data are located in a data pool in
AOCS format and referred to the satellite reference frame. From the data pool, they are
accessible to all other objects in the AOCS software.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 15

5.4 Model Limitations

The unit model proposed here treats all the incoming and outgoing data associated to a
certain sensor as a single data block. The interfaces through which AOCS unit objects are seen
(AocsUnitFunctional and AocsUnitHousekeeping) expose methods to acquire and to
send data which act on the incoming and outgoing data blocks as a single unit. There is no
way to command the acquisition or the sending of individual data items. Thus, this unit
model is only suitable for real units which take as inputs or generate as outputs data that are
logically related and that are to be provided or generated at approximately the same time.

5.5 AOCS Unit Class Structure

The internal structure of units varies enormously from unit to unit. Hence, no components
encapsulating generic unit features can be provided by the framelet. The unit framelet thus
consists exclusively of abstract classes. The framelet exports two interfaces –
AocsUnitFunctional and AocsUnitHousekeeping – and an abstract class – AocsUnit –
that implements the interfaces. Additionally, the framelet defines an interface –
AocsUnitHardware – that is used only internally to the framelet.

The mutual relationships among these constructs are shown in the figure:

0..1AocsUnitHardware
AocsObject

AocsUnit

RootObjec

Resettabl

Configurabl

Telemeterabl

AocsObject
AocsUnitFunctionalAocsUnitHousekeeping

ConcreteHardwareInterfac ConcreteUnit

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 16

Concrete units as seen by the rest of the AOCS software are represented by instances of concrete
classes derived from AocsUnit. Concrete unit objects delegate low level operations to objects
of class AocsUnitHardware. AocsUnitHardware objects encapsulate the direct exchanges
with the hardware. They are normally not visible outside the framelet. Several AOCS units
may share access to the same AOCS unit hardware object.

Like most non-trivial objects in the AOCS software, unit objects are ultimately derived from
class AocsObject.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 17

6 HARDWARE UNIT OBJECTS

Direct interaction with the hardware – the AOCS bus linking the AOCS computer to the
AOCS units – is delegated by AOCS unit objects to hardware unit objects. Hardware unit
objects implement the interface AocsUnitHardware:

In general, a hardware unit object is associated to each external unit. In many cases, however,
several units may share the same hardware unit object. Thus, for instance, in the case of a
MACS-based AOCS, communication with the external units is through a MACS bus
controller and a single hardware unit object – encapsulating the interface to the MACS
controller – is shared by all unit objects.

The semantics of the methods defined by interface AocsUnitHardware are summarized in
the table:

switchOn(), switchOff(), isSwitchedOn()

Control and check the unit’s power status.

sendInstructionAndReturn(UnitInstruction instr)

Initiate the bus transaction encapsulated in the argument instr and return without
waiting for the bus transaction to be completed (“non-blocking send”).

sendInstructionAndWait(UnitInstruction instr)

AocsUnitHardware

switchOn() : void
switchOff() : void
isSwitchOn() : bool
resetInterface() : void
resetTransaction() : void
sendAndWait(instr : UnitInstruction) : bool
sendAndReturn(instr : UnitInstruction) : void
isTransactionFinished() : bool
wasTransactionSuccessful() : bool
getAddress() : int

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 18

Initiate the bus transaction encapsulated in the argument instr and wait for its
completion before returning (“blocking send”).

isTransactionFinished()

Returns true if the last transaction has completed and returns false if the
transaction is still under way.

wasTransactionSuccessful()

Returns true if the last completed transaction terminated without reporting any
errors.

resetTransaction()

Reset any on-going bus transaction.

resetInterface()

Command a hardware reset to the interface with the external units.

Essentially, hardware unit objects serve as vehicles to send instructions to real units without
making any commitment to the specific type of link connecting the units to the AOCS
computer. All higher level functions – management of health status, data conversions, failure
reporting, etc – are left to AOCS unit objects. Hardware units therefore encapsulate the
mechanism used to put outgoing data and commands on the bus and to retrieve incoming
data from the bus. The data and instruction to be put on or retrieved from the bus are stored
in the unitInstruction structure described in the next sub-section.

6.1 The UnitInstruction Structure

The UnitInstruction structure is defined as follows:

struct UnitInstruction {
unsigned short priority;
unsigned short address;
unsigned short subAddress;
unsigned short command;
unsigned short* data;
unsigned short nDataWords;

}

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 19

This structure provides fields for the definition of the information required to construct a
generic instruction for the hardware interface controlling the exchanges between the AOCS
computer and an external unit. The actual construction of the instruction is done by the
AocsUnitHardware object that takes the data in UnitInstruction and assembles them in
the manner required to control the unit hardware interface.

6.2 Abstraction Levels

It is important to appreciate that this framelet introduces two levels of abstractions to handle
external units. The abstract class AocsUnit discussed in the next section provides an abstract
interface through which individual units can be managed by the AOCS software. The
AocsUnitHardware interface and the UnitInstruction structure are instead intended to
provided generic handles through which the hardware interface to external units can be
managed by the AocsUnit objects. Since such hardware interfaces come in many different
kinds, it is possible that in some cases the abstract operations declared by
AocsUnitHardware or the abstract fields offered by UnitInstruction may not be
adequate. In that case, application-specific interfaces would have to be defined. However, the
existence of the second layer of abstraction – the AocsUnit interface – would mean that such
change would have no impact on the AOCS framework and only a minimal impact on the
AOCS software.

6.3 The MacsTcController Component

The AOCS framework offers one default component implementing the AocsUnitHardware
interface. Component MacsTcController encapsulates the interface to a MACS telecom
controller (see RD3).

The component assumes that the communication with the MACS controller is via memory-
mapped I/O as described in detail in RD4.

The MacsTcController component maps the UnitInstruction fields to the instruction
fields required by the MACS TC protocol according to the following table:

UnitInstruction Field MACS TC Instruction Field

priority extension

subAddress subaddress to which instruction is sent

address address of receiving unit

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 20

command command

data address of data word associated to
instruction

nDataWords not used by the MACS TC protocol

The class definition of component MacsTcController is:

MacsTcController

+MacsTcController(MacsCs:short *,MacsInstr:short *,MacsDa

+resetInterface():void

+resetTransaction():void

+sendAndWait(instr:UnitInstruction):bool

+sendAndReturn(instr:UnitInstruction):void

+wasTransactionSuccessful():bool

+isTransactionFinished():bool

+switchOn():void

+switchOff():void

+isSwitchOn():bool

+getAddress():int

+getMaxPolling():int

+setMaxPolling(n:int):void

RootObject AocsUnitHardware

Thus, MacsTcController adds only two operations getMaxPolling and
setMaxPolling to those defined by the AocsUnitHardware interface. These operations
are used to set and get the maxPolling parameter. Component MacsTcController uses a
polling mechanism to implement method sendInstructionAndWait: it puts the
instruction on the bus and then loops until the “instruction sent” bit in the MACS status
register indicates that the instruction, and any data words associated to it, were put on the
bus. Parameter maxPolling defines the maximum number of cycles in the waiting loop
before a failure is declared to have occurred.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 21

The class constructor takes three parameters that define the addresses of the registers where
the MACS control status, instruction and data word are located. See RD4 for their layout.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 22

7 AOCS UNIT OBJECTS

External units are represented inside the AOCS software by proxy objects called AOCS unit
objects. AOCS unit objects are instances of class AocsUnit. Their complete class diagram is
shown in the figure of section 5.5. Class AocsUnit adds no operations to those it inherits
from interfaces AocsUnitFunctional and AocsUnitHousekeeping which are discussed
in the next two subsections.

7.1 The AocsUnitHousekeeping Interface

The AocsUnitHousekeeping interface is defined as follows:

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 23

The semantics of the methods defined by this interface are summarized in the table below:

selfTest(), isSelfTestFinished(), getSelfTestResults()

sefTest Initiate a self-test and returns without waiting for the self-test to be
terminated. Method isSelfTestFinished() returns true when the self test has
been completed and method getSelfTestResults results an integer representing
the outcome of the self-test. The interpretation of this return value is unit-specific.

switchOn(), switchOff(), isSwitchedOn()

Control and retrieve the power status of the unit.

acquireHousekeepingData(), isHousekeepingTransactionFinished()

A call to acquireHousekeepingData initiates the bus transaction(s) for the
acquisition of housekeeping data from the unit. This method may be non-blocking
and the completion status of the acquisition can be checked by calling
isHousekeepingAcquisitionFinished().

resetTransaction()

Resets any on-going transactions (of any type).

refreshHousekeepingIn()

Housekeeping data are acquired at raw data level and placed in a hardware buffer
internal to the AOCS unit. A call to this method causes them to be converted to
AOCS data level and transferred to a data pool location.

setHousekeepingInConverter(AbstractControlChannel* cc)

Data conversion from raw data level to AOCS data level, and any other processing
on the raw data (eg. bias correction), is done by a control channel object. This
method allows the converter control channel to be loaded. Note that a unit of
housekeeping data may consist of several individual data items (see section 5.4).
Thus, the control channel will in general be a multi-input-multi-output control channel.
The correct number of inputs and outputs is checked when the control channel is
loaded. An incorrect number of inputs and/or outputs represents a configuration
error.

setHousekeepingInLink(DataItemWrite diw, int i)

This method specifies the destination of the housekeeping data in the data pool. It
establishes a link with the destination buffer. More specifically, it ensures that the j-th
housekeeping datum collected by the unit is written to the write data item diw. Note

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 24

that links to the input buffers are hard-coded in the AOCS unit object.

synchronizeHousekeeping(), isSynchronizeHousekeepingFinished()

The first method initiates a synchronization operation for the housekeeping data and
the second one checks whether the underlying bus transaction has been completed.

setMode(int i)

Units can have different operational modes. This method sets the unit in the i-th
operational mode.

isHeathy(), getHealthProperty()

A health status can be associated to units. The health status is checked by calling
isHealthy. The health status is treated as a property and method
getHealthProperty returns the associated property object.

addHealthMonitor(Monitor* m, ChangeObject c),
removeHealthMonitor(Monitor* m)

The health status is a bound property that can be subjected to monitoring through
change notification. These two methods allow property monitors to register and
unregister their interest in certain types of changes in the health status.

initialize (), isInitialized()

AOCS Units often have to perform some kind of initialization procedure after being
switched on. A call to initialize() causes this initialization procedure to be carried
out. The initialization procedure may involve bus transactions that take some time.
The method may be non-blocking and the completion status of the initialization
procedure can be checked by calling method isInitialized.

resetUnit()

Reset the unit. Note that this is different from the generic reset method that applies
to all AOCS objects: the latter resets the software object, the former issues
commands to reset an external unit.

Typically, the implementation of the acquireHousekeepingData and other operations involving
direct interaction with the external unit are delegated to a hardware unit object. The housekeeping data
acquired through a call to acquireHousekeepingData are automatically placed in the
appropriate hardware buffer. The hardware buffers are internal to the unit proxy object and the link to
them is hardcoded in the unit object.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 25

Note that, as discussed in section 5.4, housekeeping data are acquired as a single block of data. The call
to acquireHousekeepingData may be translated into several low level acquisition instructions,
one for each individual data item in the unit housekeeping data block. From the point of view of the
rest of the AOCS software, however, only one acquisition operation occurs.

7.2 The AocsUnitFunctional Interface

The AocsUnitFunctional interface is defined as follows:

The semantics of the methods defined by this interface are summarized in the table below:

acquireFunctionalData(), isAcquireTransactionFinished()

A call to acquireFunctionalData initiates the bus transaction(s) for the
acquisition of functional data from the unit. This method may be non-blocking and
the completion status of the acquisition can be checked by calling
isAcquireTransactionFinished().

refreshFunctionalIn()

Functional data are acquired at raw data level and placed in a hardware buffer

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 26

internal to the AOCS unit. A call to this method causes them to be converted to
AOCS data level and transferred to a data pool location.

setFunctionalInConverter(AbstractControlChannel* cc)

Data conversion from raw data level to AOCS data level, and any other processing
on the raw data (eg. bias correction), is done by a control channel object. This
method allows the converter control channel to be loaded. Note that a unit of
functional data may consist of several individual data items (see section 5.4). Thus,
the control channel will in general be a multi-input-multi-output control channel. The
correct number of inputs and outputs is checked when the control channel is loaded.
An incorrect number of inputs and/or outputs represents a configuration error.

setFunctionalInLink(diw, i), getFunctionalInLink

The setter method specifies the destination of the functional data in the data pool. It
establishes a link with the destination buffer. More specifically, it ensures that the j-
the functional datum collected by the unit is written to the write data item diw. Note
that links to the input buffers are hard-coded in the AOCS unit object. The getter
method returns the data item write object associated to the i-th destination buffer.

sendFunctionalData(), isSendTransactionFinished()

A call to sendFunctionalData initiates the bus transaction(s) to send the
functional data to the unit. This method may be non-blocking and the completion
status of the acquisition can be checked by calling
isSendTransactionFinished().

refreshFunctionalOut()

Functional data to sent to the external unit are taken from hardware buffer internal to
the AOCS unit. A call to this method causes the content of the hardware buffer to be
updated with the latest data from the source buffers in the data pool.

setFunctionalOutConverter(AbstractControlChannel* cc)

Data conversion from AOCS data level (in the source buffers) to raw data level (in
the hardware buffer) is done by a control channel object. This method allows the
converter control channel for outgoing data to be loaded. Note that a unit of
functional data may consist of several individual data items (see section 5.4). Thus,
the control channel will in general be a multi-input-multi-output control channel. The
correct number of inputs and outputs is checked when the control channel is loaded.
An incorrect number of inputs and/or outputs represents a configuration error.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 27

setFunctionalOutLink(dir, i), getFunctionalOutLink(i)

This method specifies the source in the data pool of the data to be sent to the
external unit. It establishes a link with the source buffer. More specifically, it ensures
that the j-th functional datum to be sent out by the unit is taken from the read data
item dir. Note that links to the input buffers are hard-coded in the AOCS unit object.
The getter method returns the data item write object associated to the i-th source
buffer.

synchronizeFunctional(), isSynchronizeFunctionalFinished()

The first method initiates a synchronization operation for the functional data and the
second one checks whether the underlying bus transaction has been completed.

The implementation of most of the methods in the table is delegated by the AOCS unit objects
to its associated hardware unit object.

Note that, as discussed in section 5.4, functional data are acquired and sent as a single block
of data. Hence calls to acquireFunctionalData and sendFunctionalData may be
translated into several low level acquisition/send instructions, one for each individual data
item in the unit functional data block. From the point of view of the rest of the AOCS
software, however, only one acquisition operation occurs.

7.3 Error Handling

Neither of the two AOCS unit interfaces expose operations to check the success of failure of a
transaction with an external unit. Error checking is done internally to the unit object and
invisibly to its user. Low level errors can be detected by calling method
wasTransactionSuccessful on the hardware unit object. Such errors are reported as
failure events.

When a unit object has detected an error in a transaction with incoming data, it may,
depending on the type of error, refuse to perform a refreshIn operation. In other words,
the unit object may refuse to update the source buffer with data that are known or suspected
to be erroneous. Refusal of service is done invisibly to the caller of refreshIn who has no
way of knowing whether its refresh request has been carried out or not1. This approach is in
line with the inter-component communication philosophy that decouples production of data

1 Unless, of course, it were to check whether any bus failure events have been generated in the failure event
repository.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 28

from their consumption and allows components to exchange data only through shareable
data areas

7.4 Non-Nominal Transactions

The AOCS unit interfaces presented above do not give unfettered access to the underlying
hardware units. Access is restricted to the forms foreseen by the unit mode described in
section 5. The main reason for this restriction is the need to define a generic interface that can
fit all types of units currently in use and the desirability of allowing uniform treatment of real
and fictitious units.

In most cases, the AOCS unit interface will be sufficient to control the external units. When a
unit needs finer control, however, this can be provided by giving direct access to its hardware
unit object. In practice this can be done by adding a method with the following signature:

AocsUnitHardware* getAocsHardwareUnit()

to the concrete class derived from class AocsUnit.

The concrete unit holds a reference to the hardware unit. Normally, this reference is not
accessible from the outside but where required the concrete unit class can be endowed with a
method to return it. Access to the hardware unit gives access to its sendInstruction
operations that can be used to operate directly on the real unit.

An alternative implementation might have one or both of the AOCS unit interfaces expose a
generic getAocsUnitHardware method that returns the hardware unit associated to the
unit. This was not done because direct operations on the hardware unit should, whenever
possible, be avoided and will be necessary in only rare instances

7.5 Split Units

One of the main limitations of the unit model adopted here is discussed in section 5.4: units
can only acquire or send one single block of data in atomic operations. Only one send and
only one acquire methods are provided by the AocsUnit interface and the methods have
no parameters so that there is no way to specify which unit data should be sent or acquired. It
is always assumed that to each unit a single block of send and a single block of acquire data
are associated. This section outlines one way in which this limitation could be overcome.

Consider a hypothetical unit that generates both angular velocity and attitude measurements
and suppose that the two measurements are generated (or required) at different rates. This
unit clearly does not fit the unit model proposed above since its outputs cannot be treated as

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 29

an atomic data block. One way to address this problem is to create two AocsUnit objects to
model the unit in the AOCS software.

One object will be responsible for the collection and management of the angular velocity
measurements while the other will be responsible for the attitude measurements. The original
unit is now seen within the AOCS software as two simpler units. It will be said that the unit
has been split into two units.

AocsUnit objects interact with external units through a hardware unit object that
encapsulates the low-level hardware interface to the unit. Normally, to each AOCS unit
object, there corresponds one dedicated hardware object. In the case of split units however, all
AocsUnit objects split from the same real unit are linked to the same HardwareUnit object.
It then becomes necessary for the AocsUnit objects to coordinate their behaviour and
changes in their internal state to ensure that they present a consistent picture of the unique
real unit that is behind them. Thus, for instance, if one AocsUnit object issues a
resetTransaction command, other AocsUnit objects need to be notified since their on-
going transactions will also be affected. Similarly, if one AocsUnit object changes the unit
health status, the other AocsUnit objects again need to be notified.

This type of coordination could be naturally implemented using the property monitoring
mechanism. This implementation, however, is not offered as a default by the framework since
split units are not required to model units currently in use in AOCS systems and therefore
this facility is outside the boundaries of the AOCS framework.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 30

8 THE AOCSUNIT CLASS

Class AocsUnit is defined in the figure in the next page.

Thus, AocsUnit only adds a constructor and two sets of operations to those it inherits as
shown in the table below:

AocsUnit(nHkInpBuf,nHkDdBuf,nFcInpBuf,nFcDdBuf,nFcOutBuf,nFcDsBuf)

Constructor specifying the number of functional (Fc) and housekeeping (Hk)
hardware input (Inp) buffers and destination buffers (Dd) and source buffers. This
allows the constructor to allocate the memory for its internal buffers (including the
hardware buffers)

setFcHwInpBuff(),getFcHwInpBuff()

The hardware input buffers are normally set by the internal AocsUnit logic in
response to the arrival of data from the external unit and are not accessible from
outside the object. However, AOCS units objects are often tested without hardware
connections to the real external units These methods allow the hardware input
buffers to be set and read during such testing phases.

getAocsUnitHardware (AocsUnitHardware* u), setAocsUnitHardware()

Getter and setter method for the unit hardware object associated to the AOCS unit
object.

Class AocsUnit is not abstract because it provides default implementations for all the
methods it inherits from the AOCS unit interfaces. In many cases, trivial implementations are
provided to facilitate the construction of the concrete AOCS unit subclasses which, in most
cases, will only need to implement a small subset of the methods declared by
AocsUnitFunctional and AocsUnitHousekeeping. Class AocsUnit provides non-
trivial implementation for the operations to manage the data flow between the hardware
buffers and the destination/source buffers. These operations can in general be taken over by
concrete unit subclasses since the management of this data flow will usually not depend from
the specific unit model.

The next section describes a few concrete AOCS unit objects that are provided as default
components by the AOCS framework.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 31

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 32

8.1 The Telemetry Interface

AOCS objects are telemetry objects because they inherit from AocsObject the
telemeterable interface.

The data sent to the telemetry stream by an AocsUnit object in each telemetry mode are
summarized in the table:

TM Format TM Data

Short none

Normal hardware buffers + health status

Long normal TM + instance ID of hardware unit object

Debug long TM + links to source and destination buffers + ID of converters

8.2 The Reset and Configurable Interface

AOCS objects inherit from AocsObject the Resettable and Configurable interfaces
and must therefore implement the corresponding method.

AOCS unit defines a class-specific Reset method that clears all hardware buffers and resets
all converters.

AOCS unit defines a class-specific resetConfiguration method that unloads the
converter objects and the AOCS unit hardware object and clears all links to the source and
destination buffers.

AOCS unit defines a class-specific method isConfigured that returns true if: converter
objects have been loaded; links have been set up to all source and destination buffers; an
AOCS unit object has been loaded.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 33

9 CONCRETE AOCS UNIT OBJECTS

The primary constructs exported by the unit framelet are the abstract AOCS unit interfaces. In
its mature state, however, the framelet will also provide a number of default implementations
of these interfaces serving as proxies for commonly used AOCS units. The prototype
framework only offers four such default components representing, respectively, a fine sun
sensor, a single-axis gyro, a sun acquisition and propulsion electronics, and a reaction wheel.
In all cases, the units will assume a MACS-based interface (telecom protocol) and they will
only acquire or send functional data. These default units were developed for the AOCS
prototype testing campaign (see RD5).

9.1 The FssPrototype Unit

The FssPrototype class is a concrete AOCS unit class (see UML diagram of section 5.5) that
encapsulates a simple two-axis fine sun sensor (FSS).

The operations specific to this class are described in the table:

FssPrototype(address, subAddressFssX, subAddressFssY)

Constructor that defines the MACS address of the FSS unit and the MACS
subaddresses from which the FSS read-outs representing the sun position on the
sensor X and Y axes are retrieved.

initialize()

Initialize the FSS unit by sending it a MACS RC instruction to initialize its MACS
controller.

synchronizeFunctional()

Send a MACS broadcast instruction that causes the FSS measurements tobe
latched in the internal register from which they are acquired with an
acquireFunctional operation. Note that, as a broadcast, the MACS instruction
associated to this operation is received by all MACS units on the bus.

acquireFunctional()

Send two MACS TI instructions in sequence to acquire the channel X and channel Y
read-outs of the FSS. The operation is implemented to return only after the bus
transaction has been concluded and the FSS data have been written to the hardware
buffers.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 34

setMacsFailureRecoveryAction(),getMacsFailureRecoveryAction

If a MACS bus failure is reported by the hardware unit object associated to the unit, a
failure event is generated. These are the getter and setter methods for the recovery
action associated to this failure event.

9.2 The GyrPrototype Unit

The GyrPrototype class is a concrete AOCS unit class (see UML diagram of section 5.5) that
encapsulates a simple single-axis gyro sensor (GYR).

The operations specific to this class are described in the table:

GyrPrototype(address, rateAddress)

Constructor that defines the MACS address of the GYR unit and the MACS
subaddress from which the GYR read-outs representing the spacecraft angular rate
around the gyro’s sensing axis is retrieved.

initialize()

Initialize the GYR unit by sending it a MACS RC instruction to initialize its MACS
controller.

acquireFunctional()

Send one MACS TI instruction to subaddres rateAddress to acquire the rate
measurement. The operation is implemented to return only after the bus transaction
has been concluded and the GYR data has been written to the hardware buffers.

setMacsFailureRecoveryAction(),getMacsFailureRecoveryAction

If a MACS bus failure is reported by the hardware unit object associated to the unit, a
failure event is generated. These are the getter and setter methods for the recovery
action associated to this failure event.

9.3 The RwPrototype Unit

The RwPrototype class class is a concrete AOCS unit class (see UML diagram of section 5.5)
that encapsulates a simple reaction wheel actuator (RW).

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 35

The operations specific to this class are described in the table:

RwPrototype(address, subAddressSpeed, subAddressTorque)

Constructor that defines the MACS address of the RW unit and the MACS
subaddress from which the wheel speed is retrieved and to which wheel torque
commands are sent.

initialize()

Initialize the RW unit by sending it a MACS RC instruction to initialize its MACS
controller.

acquireFunctional()

Send one MACS TI instruction to subaddres subAddressSpeed to acquire the
wheel speed measurement. The operation is implemented to return only after the
bus transaction has been concluded and the speed data has been written to the
hardware buffers.

sendFunctional()

Send one MACS RD instruction to subaddress subAddressTorque to send the
wheel torque command. The operation is implemented to return only after the bus
transaction has been concluded and the torque data has been put on the MACS bus.

setMacsFailureRecoveryAction(),getMacsFailureRecoveryAction

If a MACS bus failure is reported by the hardware unit object associated to the unit, a
failure event is generated. These are the getter and setter methods for the recovery
action associated to this failure event.

9.4 The SapPrototype Unit

The SapPrototype class is a concrete AOCS unit class (see UML diagram of section 5.5) that
encapsulates a simple Sun Acquistion and Propulsion (SAP) electronics unit. The SAP unit
controls a set of 3 sun acquisition sensors (SAS) and 6 thrusters (THU).

A SAP unit provides 12 SAS measurements corresponding to channel X and channel Y
measurements for each SAS.

A SAP unit can receive 12 commands corresponding to the delay-time and on-time command
for each thruster.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 36

The operations specific to this class are described in the table:

SapPrototype(address, sasBaseSubaddress, thuBaseSubaddress)

Constructor that defines the MACS address of the SAP unit and the MACS
subaddress from which the SAS measurements are retrieved and to which THU
commands are sent. Subaddress (sasBaseSubaddress+2*i) provides the
channel X measurement for the i-th SAS. Subaddress
(sasBaseSubaddress+2*i+1) provides the channel Y measurement for the i-th
SAS. Subaddress (thuBaseSubaddress+2*i) receives the delay-time command
for the i-th THU. Subaddress (thuBaseSubaddress+2*i+1) receives the on-time
command for the i-th THU.

initialize()

Initialize the SAP unit by sending it a MACS RC instruction to initialize its MACS
controller.

acquireFunctional()

Send six MACS TI instruction to subaddress sasBaseSubaddress to
(sasBaseSubaddress+5) to acquire the SAS measurements. The operation is
implemented to return only after the bus transaction has been concluded and the
SAS data have been written to the hardware buffers.

sendFunctional()

Send twelve MACS RD instructions to subaddress thuBaseSubaddress to
(thuBaseSubaddress+11)to send the THU delay-time and on-time commands.
The operation is implemented to return only after the bus transaction has been
concluded and the THU data have been put on the MACS bus.

setMacsFailureRecoveryAction(),getMacsFailureRecoveryAction

If a MACS bus failure is reported by the hardware unit object associated to the unit, a
failure event is generated. These are the getter and setter methods for the recovery
action associated to this failure event.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 37

9.5 The Telemetry Interface

The concrete unit objects described in this section are telemetry objects because they inherit
the telemeterable interface. The data they send to the telemetry stream in each telemetry
mode are summarized in the table:

TM Format TM Data

Short none

Normal none

Long instance ID of MACS failure recovery action

Debug long TM + MACS addresses and subaddresses

9.6 The Reset and Configurable Interface

The concrete unit objects described in this section inherit from AocsObject the Resettable
and Configurable interfaces and must therefore implement the corresponding method.

No class-specific Reset method is defined.

A class-specific resetConfiguration method is defined that unloads the MACS failure
recovery action.

A class-specific method isConfigured is defined that returns true if the MACS failure
recovery action has been loaded.

9.7 Unit Data Converters

AOCS unit objects use control channel objects to perform the data conversions between raw
data level and AOCS data level. Three converter control channels are defined specifically for
the prototype AOCS unit described in this section:

• RawBusDataConverterIn

Performs data conversion from raw to AOCS data level for incoming data for a unit with
m input channels. The following format is assumed for the raw bus data from each
channel:

− bits 0-14 : binary representation of absolute value of datum
− bit 15 : sign bit (datum is positive if bit is equal to 1)

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 38

The number of channels m and the resolution level for the raw bus datum are passed as
constructor parameters.

• RawBusDataConverterOut

Performs data conversion from AOCS to raw data level for outcoming data for a unit with
m output channels. The following format is assumed for the raw bus data from each
channel:

− bits 0-14 : binary representation of absolute value of datum
− bit 15 : sign bit (datum is positive if bit is equal to 1)

The number of channels m and the resolution level for the raw bus datum are passed as
constructor parameters.

• BiasScalingCompensator

Performs bias and scaling factor compensation according to the following formula:

output = bias + scalingFactor * input

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 39

10 FICTITIOUS UNIT DESIGN PATTERN

The fictitious unit design pattern is introduced to address the problem of combining
components that process unit data without impacting the final users of the unit data.

The design pattern is based on the concept of fictitious AOCS unit that is defined as an object
that implements the AocsUnitFunctional interface (see RD2 for some concrete examples).
By implementing this interface, an object offers to its clients the same functional interface as an
AOCS unit.

The fictitious unit pattern is illustrated by the following UML diagram:

1

1..* 1AocsUnitFunctional

UnitDataProcessor

UnitDataClient

The UnitDataProcessor is a concrete class that performs some kind of processing on the
unit data. It is a fictitious AOCS unit because it implements interface AocsUnitFunctional.
The unit data processor obtains the unit data from components that it sees as instances of type
AocsUnitFunctional. These components may either true AOCS units or fictitious AOCS
units. Interaction through the AocsUnitFunctional interface shields the unit data
processor from having to know whether it is interacting with a real or a fictitious unit.
UnitDataClient is the final user of the unit data. It too sees its source of unit data as an
instance of type AocsUnitFunctional with the same advantages.

The fictitious data unit concept allows data processors to be easily combined without
disrupting client’s operation. An example of a combination of unit data processing elements
is shown in the figure using informal notation:

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 40

��������

�����������	���
 ������ �!��	�����"��	�� ���	������

�������#

��������	
�������� ��������	
��������

The controller is the final user of the sensor data. Its operation is independent of how many
filters and other processing elements are interposed between itself and the actual sensors.

The fictitious unit design pattern can also be seen as an instance of the composite pattern of
RD1.

10.1 Recursion

The fictitious unit design pattern introduces recursion (as does its close relative the composite
pattern). Calls to AocsUnitFunctional methods may be recursive and the maximum depth
of recursion is given by the maximum number of elements that are linked together in a
fictitious unit chain.

10.2 The TorquingThrusters Fictitious Unit

The AOCS framework prototype provides an example of fictitious unit with the
TorquingThrusters class that is designed for use in the AOCS prototype (see RD5). The
purpose of this class is to offer a high-level interface to the set of thrusters in the SAP
prototype unit. The SAP thrusters are commanded through delay-time and on-time
commands sent to the six individual thrusters. TorquingThrusters object instead allow
the thruster set to be commanded directly with the torque requests around the spacecraft
axes. They take care of converting these torque requests to on-time and delay-time requests
for each thruster and do so invisibly to their client that can thus maintain the illusion of
dealing with a set of ideal thrusters that apply torques directly around the spacecraft axes.

The class diagram for TorquingThrusters is:

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 41

The class adds only one method – setLowLevelThrusterUnit – to those it inherits from its
parent classes. This new method is used to load the component implementing the low-level
thruster unit. Note that this component is seen as an instance of type AocsUnitFunctional
so that no assumptions are made about the specific type of AOCS unit that must be plugged
in. This makes it possible to build chains of thruster command processing units.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 42

10.3 The Reaction Wheel Set Fictitious Unit

Class RwSet is another example of fictitious unit provided by the prototype framework. The
real units in this case are a set of four reaction wheels. Normally, only three out of the four
wheel are used with the fourth one being kept as a redundant unit for use in case of failure.
Class RwSet encapsulates the management of the redundancies among the four units and it
gives the reaction wheel client the illusion of dealing with a fixed set of (non-redundant)
reaction wheels.

This is an example of a more general situation where unit reconfiguration managers are
implemented as fictitious units.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 43

11 TRIGGER LISTS

A trigger list is an object that holds a list of references to AocsUnitFunctional or
AocsUnitHousekeeping objects together with the type of operation – data acquisition, data
sending or synchronization – that needs to be performed upon them. As discussed in the next
section, a trigger list maintains a list of units upon which a certain operation – either a
synchronization, or a data acquisition, or a data send – should be performed at the same time
in the AOCS cycle. Trigger lists also provide operations to iterate through the items in the list.

Trigger lists are useful for the construction of unit trigger objects discussed in the next section.

Trigger lists are characterized by the following abstract interface:

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 44

TriggerList

+addHousekeepingSynchronize(unitToBeSynchronized:AocsUnitHousekeeping *):void

+addHousekeepingAcquire(unitToBeTriggered:AocsUnitHousekeeping *):void

+addFunctionalSynchronize(unitToBeSynchronized:AocsUnitFunctional *):void

+addFunctionalAcquire(unitToBeTriggered:AocsUnitFunctional *):void

+addFunctionalSend(unitToBeTriggered:AocsUnitFunctional *):void

+removeHousekeepingSynchronize(unitToBeSynchronized:AocsUnitHousekeeping *):v

+removeHousekeepingAcquire(unitToBeTriggered:AocsUnitHousekeeping *):void

+removeFunctionalSynchronize(unitToBeSynchronized:AocsUnitFunctional *):void

+removeFunctionalAcquire(unitToBeTriggered:AocsUnitFunctional *):void

+removeFunctionalSend(unitToBeTriggered:AocsUnitFunctional *):void

+firstHousekeepingSynchronize():AocsUnitHousekeeping *

+nextHousekeepingSynchronize():AocsUnitHousekeeping *

+isLastHousekeepingSynchronize():bool

+firstHousekeepingAcquire():AocsUnitHousekeeping *

+nextHousekeepingAcquire():AocsUnitHousekeeping *

+isLastHousekeepingAcquire():bool

+firstFunctionalSynchronize():AocsUnitFunctional *

+nextFunctionalSynchronize():AocsUnitFunctional *

+isLastFunctionalSynchronize():bool

+firstAcquireFunctional():AocsUnitFunctional *

+nextAcquireFunctional():AocsUnitFunctional *

+isLastAcquireFunctional():bool

+firstSendFunctional():AocsUnitFunctional *

+nextSendFunctional():AocsUnitFunctional *

+isLastSendFunctional():bool

+addInitShutdownUnit(initShutdownUnit:AocsUnitHousekeeping *):void

+removeInitShutdownUnit(initShutdownUnit:AocsUnitHousekeeping *):void

+initialize():void

+shutdown():void

The semantics of the methods defined by this interface is described in the table:

addHousekeepingSynchronize(),removeHousekeepingSynchronize()

Add and remove an item of type AocsUnitHousekeeping to which a synchronize

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 45

message should be sent.

addHousekeepingAcquire(),removeHousekeepingAcquire()

Add and remove an item of type AocsUnitHousekeeping from which
housekeeping data should be acquired.

addFunctionalSynchronize(),removeFunctionalSynchronize()

Add and remove an item of type AocsUnitFunctional to which a synchronize
message should be sent.

addFunctionalAcquire(),removeFunctionalAcquire()

Add and remove an item of type AocsUnitFunctional from which functional data
should be acquired.

addFunctionalSend(),removeFunctionalSend()

Add and remove an item of type AocsUnitFunctional to which functional data
should be sent.

addInitShutDownUnit(),removeInitShutDownUnit ()

Add and remove an item of type AocsUnitHousekeeping representing a unit upon
which initialization and shut-down operations must be performed when the list is
switched in/switched out at a mode transition (see section 12).

firstHousekeepingSynchronize(), nextHousekeepingSynchronize(),
isLastHousekeepingSynchronize()

Iterator methods to go through the list of items of type AocsUnitHousekeeping to
which synchronization messages should be sent.

firstHousekeepingAcquire(), nextHousekeepingAcquire(),
isLastHousekeepingAcquire()

Iterator methods to go through the list of items of type AocsUnitHousekeeping
from which housekeeping data should be acquired.

firstFunctionalSynchronize(), nextFunctionalSynchronize(),
isLastFunctionalSynchronize()

Iterator methods to go through the list of items of type AocsUnitFunctional to
which synchronization messages should be sent.

firstFunctionalAcquire(), nextFunctionalAcquire(),
isLastFunctionalAcquire()

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 46

Iterator methods to go through the list of items of type AocsUnitFunctional from
which functional data should be acquired.

firstFunctionalSend(), nextFunctionalSend(), isLastFunctionalSend()

Iterator methods to go through the list of items of type AocsUnitFunctional fto
which functional data should be sent.

initialize()

Operation to be called when the list is first switched in after an operational mode
transition. It causes all the units associated to the list to be initialized (see section
12).

shutdown()

Operation to be called when the list is first switched out after an operational mode
transition. It causes all the units associated to the list to be shutdown (see section
12).

Trigger lists are implemented using up to six object lists that hold the references to items of
type AocsUnitFunctional and AocsUnitHousekeeping divided by type of operation –
synchronize, data acquire, data send and initialize/shutdown – to be performed upon them.

The prototype AOCS framework offers two default implementation of interface
TriggerList:

• FullTriggerList

Full implementation of a trigger list allowing both kinds of items –
AocsUnitFunctional and AocsUnitHousekeeping – and all three types of
operations – synchronization, data acquisition and data send – to be stored

• FunctionalTriggerList

Partial implementation of a trigger list allowing only items of type
AocsUnitFunctional to be stored. Some AOCS systems will not have housekeeping
interactions with their external units. Such systems should use a
FunctionalTriggerList since this type of trigger list uses less memory than the
FullTriggerList.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 47

11.1 The Telemetry Interface

Trigger list objects are telemetry objects because they inherit the telemeterable interface.
The data they send to the telemetry stream in each telemetry mode are summarized in the
table:

TM Format TM Data

Short none

Normal none

Long instance ID of all object lists they maintain

Debug same as long TM

11.2 The Reset and Configurable Interface

Trigger list objects inherit from AocsObject the Resettable and Configurable
interfaces and must therefore implement the corresponding method.

The Resettable and Configurable methods are implemented by trigger list objects by
delegation to the corresponding methods of the object lists they maintain

.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 48

12 UNIT TRIGGER OBJECTS

A unit trigger is an active object. Its function is to perform operations on units that need to be
performed cyclically. The purpose is to relieve consumers and producers of unit data from the
burden of managing bus transactions and buffer refresh operations.

Not all AOCS applications will use unit triggers. Some applications will choose to leave
control of data transfers to and from units to the producers and consumers of unit data. Thus,
for instance, an attitude controller may be given responsibility for triggering the acquisition
of attitude measurements from the sensors and, after polling the sensor to wait for the
acquisition to be finished, for performing a refresh operation on the newly acquired data.

If the trigger mechanism were used, then the attitude controller could rely on the converted
attitude data being already present in the data pool since the acquisition and refreshing of the
data would be done by separate and autonomous trigger objects.

A unit trigger object holds a reference to a trigger list. A trigger list can be seen as a list of
operations to be performed on unit objects. Operations can be performed in two phases.
When the trigger object is activated, it goes through the units in the trigger lists and performs
one or both phases of the operation associated to each of them.

Which operation phase and whether only one or both are performed depends on the trigger
object type. Several types of trigger objects can be defined: normal trigger, polling trigger,
transaction trigger and refresh triggers. Their respective characteristics are:

• Normal Triggers

Normal triggers perform a full data transfer on the unit including both bus transaction and
buffer refresh but they assume that the bus transaction operations are of the blocking kind,
ie. that the transaction methods return after the bus transaction has been completed.

• Polling Triggers

Polling triggers perform a full data transfer on the unit including both bus transaction and
buffer refresh. This means that, on incoming data, they initiate the acquisition transaction,
wait for it to be finished and then refresh the acquired data. On the outgoing data, they
refresh the outgoing data, initiate the send transaction, and wait for it to be finished.

The wait for the completion of a transaction is done by polling the
isTransactionFinished service offered by the unit objects. A time out mechanism is
used to decide when to stop waiting for successful completion of a transaction and declare
an error that is reported as a failure event.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 49

• Transaction Triggers

Transaction triggers perform the bus transaction part of the operation associated to the
units in the trigger list. This means that they initiate the bus transactions implied by the
items in the trigger list but they do not wait for their completion.

• Refresh Triggers

Refresh triggers perform the buffer refresh part of the operation associated to the units in
the trigger list. This means that they call the refresh methods on the unit objects but do not
initiate any bus transaction.

The only type of unit trigger supplied by the AOCS prototype framework is the normal
trigger encapsulated in class UnitTrigger:

Method run goes through all the items in a trigger list and performs on each a bus
transaction and a refresh operation. The trigger list is provided by a mode manager that
implements interface UnitTriggerModeManager.

The AOCS prototype framework provides a default unit trigger mode manager that
implements the follower mode manager mechanism.

The mode manager performs initialization and shutdown operations on trigger lists that are
switched in or out as a result of a mode transition. In an initialization operation units are

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 50

powered on (their switchOn method is called) and initialized (their initialize method is
called). In a shutdown operation, units are power off (their switchOff method is called).

12.1 The Telemetry Interface

Unit trigger objects are telemetry objects because they inherit the telemeterable interface.
The data they send to the telemetry stream in each telemetry mode are summarized in the
table:

TM Format TM Data

Short none

Normal instance ID of current trigger object

Long Normal TM + instance ID of unit trigger mode manager

Debug same as long TM

12.2 The Reset and Configurable Interface

Unit trigger objects inherit from AocsObject the Resettable and Configurable
interfaces and must therefore implement the corresponding method.

Unit triggers have no internal state and therefore do not provide any class-specific Reset
method.

Unit triggers provide a class-specific ResetConfiguration method that unloads the mode
manager component and a class-specific isConfigured that returns true if a mode manager
component has been loaded.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 51

13 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD6.

13.1 Unit Trigger Mode Manager Plug-In

Name: Unit Trigger Mode Manager Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in UnitTrigger class (method
setUnitTriggerModeManager)

Pre-defined Options: FollowerUnitTriggerModeManager component exported by this framelet.

Related Hot-Spots: none

Description

Unit triggers need a mode manager to provide them with a trigger list. This hot-spot allows the
mode manager to be loaded.

13.2 AOCS Unit Hot-Spot

Name: AOCS Unit Hot-Spot

Visibility Level: framework -level

Adaptation Time: compile-time

Adaptation Method: concrete implementation of class AocsUnit

Pre-defined Options: concrete AOCS unit objects exported by this framelet (see section 9)

Related Hot-Spots: none

Description

Concrete AOCS units are represented in the AOCS software by proxy objects instantatiated from
subclasses of AocsUnit. Class AocsUnit offers default implementation of all of its methods.

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 52

Which ones of these have to be overridden by unit subclasses depends on the unit characteristics.
In general, the methods catering to the transfer of data between the hardware buffers and the
source and destination buffers should remain unchanged.

13.3 AOCS Hardware Unit Hot-Spot

Name: AOCS Hardware Unit Hot-Spot

Visibility Level: framework –level

Adaptation Time: compile-time

Adaptation Method: implementation of class AocsUnitHardware

Pre-defined Options: MacsTcController components exported by this framelet implementing an
interface to a MACS telecom controller

Related Hot-Spots: none

Description

AOCS hardware unit objects encapsulate an interface with the hardware device controlling the
communication between the AOCS computer and the external unit. Their implementation is highly
device-specific.

13.4 Fictitious Unit Hot-Spot

Name: Fictitious Unit Hot-Spot

Visibility Level: framework –level

Adaptation Time: compile-time

Adaptation Method: implementation of interface AocsUnitFunctional

Pre-defined Options: TorquingThrusters component exported by this framelet and reconfiguration
manager components exported by the unit reconfiguration framelet

Related Hot-Spots: none

Description

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 53

Fictitious units are characterized by the AocsUnitFunctional interface. Their implementations
are highly component-specific.

13.5 Trigger List Hot-Spot

Name: Trigger List Hot-Spot

Visibility Level: framework –level

Adaptation Time: run-time

Adaptation Method: plug-in component in unit trigger mode manager (method loadTriggerList in
interface UnitTriggerModeManager)

Pre-defined Options: none

Related Hot-Spots: none

Description

The unit trigger mode manager provides the trigger list to be processed by the unit trigger objects.
This hot spot allows the trigger list objects to be loaded onto the unit trigger mode manager.

NB: remove getAddress from AocsUnitHardware

add unit-identifier parameter to getAddress in AocsUnitHardware

trivial implementation for isInitialized in AocsClass: return true

change ángle´ to rate in parameter of GyrProtoype constructor

University of Constance
Department of Computer Science

Software & Web Engineering Group
AOCS Unit Framelet
Issue 2.3
30 April 2002
Page 54

