

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 1

 RECONFIGURATION MANAGEMENT FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the reconfiguration management framelet. This framelet
proposes an architecture to handle reconfigurations of
AOCS functionalities. The framelet enhances reusability
because it decouples the task of managing
reconfigurations from the reconfiguration algorithm and
from the use of the functionality by other objects.

Written By: A. Pasetti

Date: 30 April 2002

Issue: 2.2

Reference: SWE/99/AOCS/015

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 2

TABLE OF CONTENTS

1 REFERENCES.. 3
2 ACRONYMS.. 4
3 INTRODUCTION... 5

3.1 Context ... 5
3.2 Applicability to Java Version .. 5
3.3 Notation ... 6

4 FRAMELET CONSTRUCTS.. 7
5 RECONFIGURATION MODEL ... 8

5.1 Reconfiguration Group .. 8
5.2 Triggering of Reconfigurations... 8
5.3 Representation of Configurations .. 9
5.4 Management of Objects’ Health Status ... 9
5.5 Notification of Reconfigurations .. 9
5.6 Reconfiguration Examples .. 9

6 THE RECONFIGURATION DESIGN PATTERN.. 10
6.1 Instantiation of Reconfiguration Pattern... 12

7 THE RECONFIGURATION MANAGER HELPER... 16
7.1 The Telemetry Interface ... 17
7.2 The Reset and Configurable Interface ... 18

8 RECONFIGURATION EVENTS .. 19
8.1 The Telemetry Interface ... 20
8.2 The Reset and Configurable Interface ... 20

9 CONFIGURATION STATE OBJECTS... 21
10 DEFAULT RECONFIGURATION MANAGERS... 23

10.1 The Basic Unit Reconfigurer Object ... 23
10.2 The Reaction Wheel Set Reconfiguration Manager ... 23

11 FRAMELET HOT-SPOTS .. 25
11.1 Reconfigurable Hot-Spot ... 25
11.2 Recovery Action Plug-In for Illegal Configurations.. 25
11.3 Change Event Repository Plug-In.. 26
11.4 Reconfiguration Event Repository Plug-In... 26

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 3

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

RD3 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 4

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
OBDH On-Board Data Handling system (aka as OBDS)
NM Normal Mode
NTT Non-Time-Tagged
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 5

3 INTRODUCTION

This document describes the AOCS reconfiguration management framelet for the AOCS
framework. The framelet is described at both the framelet concept level and at the framelet
architectural level.

This framelet proposes an architecture to handle reconfiguration of AOCS functionalities. The
framelet enhances reusability because it decouples the task of managing reconfigurations from
the reconfiguration algorithm and from the use of the functionality by other objects.

3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD2 and in particular with the section dealing with
reconfiguration management.

The architecture proposed here follows the general concept outlined in RD2.

In comparing the present document with RD2, readers should bear in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce an
architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level – in particular its design
patterns – is language-independent and is equally applicable to both the C++ and Java
versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following
address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific
points to note are:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 6

− Events in the Java framework are implemented using the Java event mechanism.

− Reconfiguration managers in the C++ framework expose their reconfiguration state as a
monitorable property. This is not the case in the Java framework.

− As a consequence of the previous point, the change event repository hot-spot (section
11.3) does not exist in the Java framework.

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

UML class diagrams were obtained with the Together tool.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 7

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

RECONFIGURATION MANAGEMENT FRAMELET

Design Patterns

Reconfiguration Design Pattern : pattern to make handling of reconfigurable objects independent of
their reconfigurability

Framelet Interfaces

Reconfigurable : interface to be implemented by all reconfiguration managers.

Framelet Core Components

ConfigurationState : encapsulation of the state of a reconfiguration group

Framelet Default Components

ReconfigurerHelper : helper object to handle the management of a reconfiguration group

BasicUnitReconfigurer : reconfiguration manager for a group of identical objects

RwSet : reconfiguration manager for a set of 4 identical reaction wheels

The components listed above are those envisaged for the prototype version of the AOCS
framework. Later versions may offer a richer set of default implementations of
reconfiguration managers.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 8

5 RECONFIGURATION MODEL

If the same functionality can be implemented in two or more independent ways, then the
functionality is said to be redundant.

A redundant functionality can be reconfigured.

To reconfigure an object means to switch between different independent implementations of
the same functionality offered by the object.

Reconfiguration usually occurs in response to detection of an error: if one implementation of
a functionality is found to be faulty, reconfiguration makes the functionality available again
by switching from a faulty to a (hopefully) correct implementation.

5.1 Reconfiguration Group

Functionalities in the AOCS software are implemented as services (method calls) provided by
objects. The functionality with respect to which reconfiguration takes place is called the
reconfigurable functionality. The reconfigurable functionality is often represented by an abstract
interface.

A reconfiguration group is a set of objects that together offer a redundant functionality. A
reconfiguration group can be the object of a reconfiguration.

A redundant object is an object belonging to a reconfiguration group.

The order of the reconfiguration group is the number of independent, functionally equivalent,
configurations offered by the group.

Configurations in a reconfiguration group may be ranked according to the performance level
with which they implement the group’s functionality.

A configuration in a reconfiguration group is marked either “healthy” or “unhealthy”. When a
reconfiguration takes place, the configuration the group is configuring away from is marked
as “unhealthy”.

5.2 Triggering of Reconfigurations

The reconfiguration group manages the reconfiguration process but does not decide when a
reconfiguration should take place. As discussed in section 6, a reconfiguration group is
represented by a reconfiguration manager object. This object exposes, among others, a
reconfigure method. A call to this method will cause a reconfiguration to take place
(assuming that there are still healthy configuration available). Thus, the reconfiguration

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 9

manager offers reconfigurations as a service to other objects. Its task is to hide the details of
how the reconfiguration takes place.

5.3 Representation of Configurations

Configurations within a reconfiguration group are represented by integers in the range [0,n-1]
where n is the group’s reconfiguration order.

The rank of a configuration is also represented by an integer in the range [1,m] where m is the
highest configuration rank in the configuration group.

5.4 Management of Objects’ Health Status

As mentioned above, when a reconfiguration takes place, the configuration the group is
configuring away from is marked as “unhealthy”. It must be stressed that the unhealthy
marking applies exclusively to the abstract configuration and not to any concrete objects that
may be implementing the configuration.

Thus, for instance, if a reconfiguration occurs from a primary unit to its redundant back-up,
the unit that is being configured out is not marked unhealthy. It is not the job of the
reconfiguration manager to set the health status of AOCS objects in general and of unit
objects in particular. However, it may happen that the reconfiguration is commanded as a
consequence of some other entity (such as the failure detection manager) having marked a unit
or an object unhealthy.

5.5 Notification of Reconfigurations

RD2 proposed a mechanism whereby objects that are excluded from the currently active
configuration can advertise the fact through a change notification. The notification might
allow a reconfiguration manager to autonomously start a reconfiguration in response to
reconfigurations occurring in other, intersecting, reconfiguration groups. This mechanism has
been dropped from the framelet since the responsibility of the reconfiguration managers
should be limited to the management of the reconfigurations and not to the decision as to when
a reconfiguration should take place (see also section 5.4).

5.6 Reconfiguration Examples

See RD2 for some examples of reconfiguration groups.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 10

6 THE RECONFIGURATION DESIGN PATTERN

This design pattern is introduced to address the problem of separating the management of a
reconfiguration group from the provision of the reconfigurable functionality. This pattern is
illustrated by the following class diagram:

The redundant objects are instantiated from class ReconfigurableObject. The
reconfigurable functionality they offer is encapsulated in the abstract interface
ReconfigurableFunctionality. The reconfigurations are managed by Reconfiguration
Manager. This component is characterized by interface Reconfigurable whose key method
is reconfigure. A call to reconfigure triggers a reconfiguration: the reconfiguration
manager chooses the highest-ranking configuration among the alternative configurations that
are still marked “healthy”. The configuration that is abandoned is automatically marked
“unhealthy”. Components that are responsible for performing reconfiguration (class
ReconfigurationClient in the diagram) thus see the reconfiguration as an instance of
type Reconfigurable.

The reconfiguration manager also implements interface ReconfigurableFunctionality
which makes it “look like” a redundant object. The reconfiguration manager implements the
methods declared by ReconfigurableFunctionality through delegation to the
redundant objects in the reconfiguration group. The reconfiguration manager must be able to

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 11

act as the sole functional interface between the reconfiguration group and the users of the
reconfigurable functionality. Components that use the reconfiguration functionality (class
FunctionalityClient in the diagram) thus see the reconfiguration manager as an instance
of type ReconfigurableFunctionality.

The implementation of method reconfigure in interface Reconfigurable is one of the
framework hot-spot (reconfigurable hot-spot) as it is here that AOCS applications define their
application-specific reconfiguration logic.

As a concrete example, consider again the gyro reconfiguration group example described in
See RD2.. The gyros – as AOCS units – would be characterized by interface
AocsFunctional which then becomes the reconfigurable functionality. A typical user of
this functionality could be an attitude controller that needs 3-axis rate information. A typical
component responsible for performing reconfiguration could be a failure recovery component
that would trigger a reconfiguration in response to the detection of a gyro failure.

The architecture for this example is shown in the figure using an informal notation:

������

������

������

�����	

������
���
���������
���������������
�

������
����

��������	
��������
�������
�����

�������
���������
�

������
��
���
��

������
����

������

����

������
����

������
����

�
���
����

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 12

The lightly shaded boxes represent objects. The darker boxes are abstract interfaces. The
dashed arrows are implementation links (thus, gyro 1 is an object that implements interface
AocsUnitFunctional). The solid arrows represent association links.

The figure shows that reconfiguration manager has two faces: it has an
AocsUnitFunctional face that it exposes towards the attitude controller (to which it
supplies the rate estimate obtained from merging the rate measurements from the three active
gyros) and it has a Reconfigurable face that it exposes towards the failure recovery
manager (to which it supplies a method to reconfigure the set of four gyros to exclude faulty
units).

This example illustrates a very common case in which a reconfiguration manager handles
reconfiguration across real units. In that case, the reconfigurable interface is
AocsUnitFunctional and the reconfiguration manager thus becomes a fictitious unit.

Instantiation

6.1 Instantiation of Reconfiguration Pattern

The AOCS framework instantiates the reconfiguration design pattern by specifying the
Reconfigurable interface as follows:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 13

The semantics of the methods defined by this interface are summarized in the table below:

getConfiguration()

Returns the current configuration. The configuration is indicated by an number in the
range [0,n-1] where n is the order of the configuration group.

getConfigurationPropertyId(), getConfigurationProperty()

The current configuration is a monitorable property. The first method returns its
property identifier and the second returns the current configuration as a property
object.

setConfiguration(n)

This method forces the configuration to n. The reconfiguration is performed even if
the target configuration had previously been marked “unhealthy” or if reconfiguration
are currently disabled.

markConfiguration(n, mark), isConfigurationHealthy(n)

The first method marks configuration n as healthy if mark is true and as unhealthy

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 14

if mark is false. The second method can be used to verify the health status of the
n-th configuration.

rankConfiguration(n, rark), getConfigurationRank(n)

The first method sets the rank of configuration n to rank. The second method
returns the rank of the n-th configuration.

enableConfiguration(n), disableConfiguration(n)

Enable or disable reconfiguration to the n-th configuration. The effect of this method
is the same as marking the n-th configuration as healthy or unhealthy.

enableReconfigurations(), disableReconfigurations()

Enable or disable reconfigurations. A call to method reconfigure has no effect
when reconfigurations are disabled. However, it does not interfere with calls to
method setConfiguration.

reconfigure()

Perform a reconfiguration to the highest-ranking healthy configuration that has not
been disabled. Reconfigurations are performed only if they are enabled. If no
reconfiguration is possible, the method returns without taking any action. The
generation of a failure event should be done by the caller of the reconfigure
method.

canReconfigure()

Returns true if further reconfigurations are possible. Calls to reconfigure should
normally be preceded by calls to canReconfigure to verify that the reconfiguration
is possible.

getConfigurationState(),setConfigurationState()

Getter and setter methods for the configuration state. See section 9.

getConfigurationOrder()

Return the order of the reconfiguration group.

addMonitor(), removeMonitor()

The current configuration is a monitorable property. These methods allow monitors to
register their interest in the current configuration and to be automatically notified in
case of configuration changes.

setIllegalConfigurationRecoveryAction(),getIllegalConfigurationRecove

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 15

ryAction()

Attempts to operate on non-existent configurations give rise to the generation of a
failure event. These are the getter and setter methods for the associated recovery
action.

The standard procedure for commanding a reconfiguration is as follows:

• a call to method canReconfigure is performed to verify that the reconfiguration is
possible

• if canReconfigure reports that no reconfigurations are possible, then contingency
action is taken. This could for instance consist of generating a failure event

• if canReconfigure reports that further reconfigurations are possible, a call to
reconfigure is issued to perform the reconfiguration.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 16

7 THE RECONFIGURATION MANAGER HELPER

The reconfigurable functionality is usually represented by an abstract interface (as shown in
the first figure of this section) but might also be represented by a concrete or abstract class.
Since the design rules for the AOCS framework forbid the use of multiple inheritance of
implementation, Reconfigurable was implemented as a pure interface so as to make it
possible for reconfiguration managers to inherit both from it and from any class representing
the reconfigurable functionality.

There are however certain standard operations pertaining to the management of a
reconfiguration group that apply in general to all reconfiguration groups and it would be
convenient to capture their implementation and make it available to reconfiguration
managers. For this purpose a reconfiguration manager helper – the ReconfigurerHelper
object – was introduced. Its class definition is shown in the next page. The public methods
that are specific to this class (ie. not inherited from other classes) are described in the table:

ReconfigurerHelper(n, m, d, manager)

Constructor that specifies the number of configuration n, the maximum number m of
monitors for the configuration property, the default configuration d and the
configuration manager manager to which this helper is attached.

setReconfigurationEventRepository(),getReconfigurationEventRepository

Reconfigurations are recorded as reconfiguration events (see section 8). The
reconfigurer helper therefore needs access to the corresponding repository. These
are the getter and setter methods to the reconfiguration event repository.

setChangeEventRepository(),getChangeEventRepository()

The current configuration is a monitorable property. If monitors have registered their
interest in it, change events may have to be generated as a result of
reconfigurations. These are the getter and setter methods for the associated change
event repository.

Essentially, the reconfigurer helper manages a set of n identical configurations and
implements all the methods defined by interface Reconfigurable for this situation. Specific
reconfiguration managers would normally create an internal instance of the reconfigurer
helper and delegate to it implementation of as many of the Reconfigurable operations as
is possible. Classes BasicUnitReconfigurer and RwSet provide two examples of how
this delegation is performed in practice.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 17

7.1 The Telemetry Interface

The reconfigurer helper is a telemetry objects because it inherits from AocsObject the
telemeterable interface. The data sent to the telemetry stream by it object in each
telemetry mode are summarized in the table:

TM Format TM Data

Short none

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 18

Normal current configuration

Long normal TM + health status and rank of all configurations

Debug long TM + instance ID of recovery action and repository events

7.2 The Reset and Configurable Interface

The reconfigurer helper object inherits from AocsObject the Resettable and
Configurable interfaces and must therefore implement the corresponding method.

The reconfigurer helper defines a class-specific Reset method that:

• enables all reconfigurations,
• marks all configutations as healthy
• set the rank of all configurations to 1

The reconfigurer helper defines a class-specific resetConfiguration method that unloads
the recovery action objects and resets the configuration of the object lists associated to the
monitoring of the configuration property.

The reconfigurer helper defines a class-specific method isConfigured that returns true if:

• the recovery actions have been loaded
• the event repositories have been loaded
• if the object lists associated to the monitoring of the configuration property are configured

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 19

8 RECONFIGURATION EVENTS

Reconfigurations are recorded in events of type ReconfigurationEvent. The class
diagram for this class is:

AocsObjec

AocsEvent

ReconfigurationEvent

+ReconfigurationEvent()

+initialize(creator:AocsObject *,evtType:EventType,oldConfiguration:Configu

+getOldConfiguration():ConfigurationId

+getNewConfiguration():ConfigurationId

+getConfigurationManagerId():InstanceId

+resetConfiguration():void

+isConfigured():bool

+writeToTelemetry(stream:TelemetryStream *):void

+getTelemetryImageLength():int

Thus, the reconfiguration event adds the following attributes to those defined by the base
class AocsEvent:

• oldConfiguration : the configuration before the reconfiguration took place.
• newConfiguration : the configuration after the reconfiguration took place.
• the object identifier of the reconfiguration manager that performed the reconfiguration

Creation of reconfiguration events is the responsibility of the reconfiguration manager.

Reconfiguration events are created for reporting purposes only. They provide a vehicle
through which reconfigurations can be recorded for possible reporting to the ground in the
telemetry stream. Objects that need to observe reconfigurations should do so through by
registering their interest in the configuration property exposed by each reconfiguration
manager.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 20

Reconfiguration events are generated in response to the occurrence of a reconfiguration.
Sometimes, reconfiguration requests cannot be fulfilled because there are no other healthy
configurations in a configuration group. This situation, too, is recorded as a reconfiguration
event.

8.1 The Telemetry Interface

Reconfiguration events are telemetry objects because they (indirectly, through AocsEvent)
inherit the telemeterable interface.

The data sent to the telemetry stream by a Reconfiguration event in each telemetry mode are
summarized in the table:

TM Format TM Data

Short the new configuration indicator + old configuration indicator

Normal short TM + instance identifier of reconfiguration manager

Long same as normal TM

Debug same as long TM

8.2 The Reset and Configurable Interface

Reconfiguration event objects inherit from AocsObject the Resettable and
Configurable interfaces and must therefore implement the corresponding method.

Reconfiguration events have no dynamic state associated to them and therefore they do not
define a class-specific reset method.

Reconfiguration events define a class-specific resetConfiguration method that resets all
event attributes to zero. Method isConfigured returns true if the new and old
configuration indicators are equal or if the reconfiguration manager reference is NULL.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 21

9 CONFIGURATION STATE OBJECTS

A reconfiguration is usually the result of a detected or suspected fault in an object that,
through the reconfiguration, is excluded from the normal flow of AOCS data.
Reconfiguration information should therefore be preserved across software and hardware
resets in order to allow safe autonomous re-initialization of the AOCS software.

Configuration information is stored in an object of type ConfigurationState. This object
encapsulates the configuration of a reconfiguration group by storing the following
information:

• Configurations that have been marked “unhealthy”
• The current configuration

Individual configuration managers may add more specific information.

Storage of configuration information is done using the memento design pattern from RD1.

Since the exact format of the configuration state data cannot be specified in advance, the
internal structure of the ConfigurationState type remains correspondingly open.
Essentially, configuration state object reserve a fixed amount of memory that reconfiguration
managers can use to store class-specific information. In the framework prototype
implementation, this “memory pad” area consists of a single integer.

The configuration state class diagram is:

The public methods that are specific to this class (ie. not inherited from other classes) are
described in the table:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 22

getReconfigurationManagerId()

Returns the instance identifier of the reconfiguration manager whose state is
recorded in the object.

getMemoryPad()

Return the integer encoding the configuration state of the reconfiguration manager.
The latter is the only object that can decode the information in the memory pad .

Configuration state objects are created by reconfiguration managers. The system manager
object holds a list of all the reconfiguration managers and of their configuration state objects.
Configuration managers register with the system manager – by calling its method
addReconfigurationManager – as part of their initialization process.

The system manager exposes a method – configurationStateChange – that can be
invoked by a reconfiguration manager to notify the system manager that a change in
configuration state has occurred.

In case of system reset, the system manager will then pass its latest copy of configuration state
object to each reconfiguration manager thus reestablishing the configurations that prevailed
before the system reset was commanded. If the system reset is to preserve configuration
information across complete reboots or other destructive events, it could be endowed with
the capacity to store configuration information in some kind of permanent memory area
external to the AOCS computer.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 23

10 DEFAULT RECONFIGURATION MANAGERS

The framework prototype offers two default reconfiguration managers as described in the
next two subsections.

10.1 The Basic Unit Reconfigurer Object

In a common situation a primary AOCS unit is backed up by one or more identical redundant
units. The BasicUnitReconfigurer can be used as a reconfiguration manager for this
situation. It handles reconfigurations across a set of n identical units. The reconfiguration
management is delegated to a reconfigurer helper object (see section 7).

The basic unit reconfigurer internally treats units as objects of type AocsUnit. This is
necessary because it needs housekeeping access to them to switch them on and off and to
initialize them. Its reconfigurable functionality, however, is represented by the
AocsUnitFunctional interface.

When a reconfiguration is due to take place the basic unit reconfigurer performs the
following actions:

• switch off the unit being configured out
• update the configuration indicator
• switch on the unit being configured in
• initialize the unit being configured in

Thus the model assumed by the reconfigurer is one of so-called cold redundancy.

10.2 The Reaction Wheel Set Reconfiguration Manager

In another common situation, four reaction wheels are flown on a satellite in a skewed
configuration that allows any given three to be used to control the satellite attitude. The
RwSet reconfiguration manager is provided to manage the reconfigurations across the four
redundant sets of wheels.

Configuration i – with i ranging from 1 to 4 – corresponds to the situation where the i-th
wheel is inactive.

The functional inputs and outputs to reaction wheels are the wheel speeds and the wheel
torques. The functional inputs and outputs to object RwSet are the wheel angular momentum
vector expressed in spacecraft reference frame and the wheel torque vector also expressed in
spacecraft reference frame.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 24

The RwSet object maintains a set of matrices that allow it to map the wheel speed to the
wheel angular moment and to convert the torque requests around spacecraft axes to torque
requests around the axes of the currently active reaction wheels.

When a reconfiguration is due to take place RwSet performs the following actions:

• switch off the wheel being configured out
• update the configuration indicator
• switch on the wheel being configured in
• initialize the wheel being configured in

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 25

11 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD3.

11.1 Reconfigurable Hot-Spot

Name: Reconfigurable Hot-Spot

Visibility Level: framework –level

Adaptation Time: compile-time

Adaptation Method: implementation of interface Reconfigurable

Pre-defined Options: ReconfigurerHelper component and default reconfiguration manager
components (see section 10) exported by this framelet

Related Hot-Spots: none

Description

Reconfiguration managers are characterized by the Reconfigurable interface. This is the hot-
spot where specific reconfiguration managers are defined.

11.2 Recovery Action Plug-In for Illegal Configurations

Name: Recovery Action Plug-In for Illegal Configurations

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in objects implementing interface Reconfigurable (method
setIllegalConfigurationRecoveryAction)

Pre-defined Options: no recovery action is defined by default

Related Hot-Spots: none

Description

When an operation is attempted on a reconfiguration manager using an illegal value of

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 26

configuration indicator, then a failure event is generated. A recovery action should be associated to
this failure. This hot-spot allows this recovery action to be loaded.

11.3 Change Event Repository Plug-In

Name: Change Event Repository Plug-In

Visibility Level: framelet-level

Adaptation Time: run-time

Adaptation Method: plug-in component in ReconfigurerHelper class (method
setChangeEventRepository)

Pre-defined Options: ChangeEventRepository component exported by inter-component
communication framelet.

Related Hot-Spots: none

Description

Reconfigurer managers whose configuration is being monitored by other components log changes
in their configuration property as events stored in the change event repository. This hot-spot allows
the change event repository component to be loaded. Note that this component is loaded as a
static reference. The event repository is loaded by the reconfigurer helper object (see section 7)
to which management of reconfigurations is delegated by reconfiguration managers.

11.4 Reconfiguration Event Repository Plug-In

Name: Reconfiguration Event Repository Plug-In

Visibility Level: framelet-level

Adaptation Time: run-time

Adaptation Method: plug-in component in ReconfigurerHelper class (method
setReconfigurationEventRepository)

Pre-defined Options: ReconfigurationEventRepository component exported by inter-component
communication framelet.

Related Hot-Spots: none

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Reconfiguration Management Framelet
Issue 2.2
30 April 2002
Page 27

Description

Reconfigurer managers log reconfigurations as reconfiguration events stored in the reconfiguration
event repository. This hot-spot allows the event repository component to be loaded. Note that this
component is loaded as a static reference. The event repository is loaded by the reconfigurer
helper object (see section 7) to which management of reconfigurations is delegated by
reconfiguration managers.

