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AOCS FRAMEWORK – CONCEPT LEVEL DESCRIPTION 

 

Abstract 

This document was written as part of the study  “Design 
and Prototyping of a Software Framework for the AOCS” 
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a 
software framework for the Attitude and Orbit Control 
Subsystem (AOCS) of a satellite. The framework will be 
built as a collection of framelets. This document describes 
the design principles and the overall architecture of the 
AOCS software. The architecture is described at the 
concept level. For each architectural issue, a baseline 
solution is identified. An overview of each framelet is also 
given.  
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2 ACRONYMS 

AAD  Attitude Anomaly Detection 
AOCS  Attitude and Orbit Control Subsystem 
AST  Autonomous Star Tracker 
CSS   Coarse Sun Sensor 
ES  Earth Sensor 
FDIR  Failure Detection, Isolation and Recovery 
FPM  Fine Pointing Mode 
FSS  Fine Sun Sensor 
GYR  Gyroscope 
KF  Kalman Filter 
IAM  Initial Acquisition Mode 
OBDH  On-Board Data Handling system (aka as OBDS) 
NM  Normal Mode 
NTT  Non-Time-Tagged 
OCM  Orbit Control Mode 
OO  Object-Oriented 
MACS  Modular Attitude Control System 
PD  Proportional-Derivative controller 
PI  Proportional-Integral controller 
PID  Proportional-Integral-Derivative controller 
RRM  Rate Reaction Mode 
RTOS  Real-Time Operating System 
RW  Reaction Wheel 
SAS  Sun Attitude Sensor 
SBM  Stand-By Mode 
SPS  Sun Presence Sensor 
STR  Star Tracker 
SLM  Slewing Mode 
SM  Safe Mode 
TC  Telecommand 
THU  Thruster 
TM  Telemetry 
TT  Time-Tagged 
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3 INTRODUCTION 

This document is written as part of the project Design and Prototyping of a Software Framework 
for the AOCS done for ESA-Estec under contract Estec/13776/NL/MV.  

The objective of the project is to design a software framework for the AOCS software. 
Software frameworks are a form of software reuse that promotes the reuse of entire 
architectures optimized for a narrowly defined application domain.  

The application domain targeted by the AOCS framework is described in RD2. Most recent 
ESA missions with a dedicated AOCS processor would fall within the framework domain. 

The main features of the AOCS framework are:  

• Architectural reusability 

At present, most AOCS systems are re-designed from scratch for each new mission. In 
some cases, code is re-used across missions (generally only if the same contractor is 
responsible for software development in different missions) but architecture – often the 
toughest part to design – cannot be ported at all.  

The AOCS framework encapsulates a generic architecture for an AOCS system allowing 
re-use of architecture or architectural features across missions.  

• Component reusability 

AOCS software re-usability is currently possible at most at the subroutine level and even 
this is usually impossible because small functionality changes need code changes and 
hence complete re-testing of the subroutine. 

The AOCS framework is made up of components that can be re-used as binary units 
without changes while allowing functionality tuning through inheritance or object 
composition. 

•  Architectural extensibility 

At present, it is possible to extend the functionality of an AOCS system by modifying the 
algorithms coded in its subroutines. Changes with architectural impacts (eg adding a new 
mode or a new telecommand) are however much harder and more expensive to 
implement. 

While freezing certain architectural decisions, the AOCS framework leaves other 
explicitly open for modification. 
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• Compatibility with simulation environment 

Simulation of an AOCS software currently implies either the development of code that 
simulates the AOCS software or the use of (software or hardware) emulators for the 
AOCS processor. 

The AOCS framework allows an AOCS system to be built as a collection of components 
that can be used without change either in the AOCS system itself or in an off-line 
simulator during testing.  

• Compatibility with autocode tools 

The AOCS framework allows embedding of code generated by th Xmath autocode tool. 

• Object-oriented design 

Current AOCS software systems follow the modular paradigm. 

The AOCS framework conforms to object-oriented principles which are regarded as the 
soundest paradigm in software design available at the moment. 

3.1 Purpose of this Document 

Using the terminology of RD19, the present document covers the framework concept 
definition. More specifically, its objectives are: 

• To define the general design principles for the AOCS framework  

The general design principles are the overall constraints on the framework design. They 
define the policy to be adopted in regard of general issues like: use of multiple 
inheritance, use of dynamic memory and task allocation, use of non-standard language 
constructs, use of templates, specialization mechanisms, general class structure, allowed 
implementation languages, use of component standards, etc. 

• To define the high-level abstractions in the framework domain 

The domain abstractions capture the commonalities of the AOCS applications in the 
framework domain. They describe concepts and functional features that span application 
boundaries and are found in all domain applications.   

• To identify the main framework hot-spots 

A framework is a tool to help generate concrete applications within its domain. The hot-
spots are the points where the framework is customized during the application 
instantiation process to adapt it to the needs of a specific concrete application. 
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• To identify the main  framework design patterns 

The design patterns are one of the basic constructs offered by a framework to application 
developers. Design patterns provide architectural solutions to the adaptation problems of 
the framework. 

• To identify the framelets  

In order to simplify its design, the framework was subdivided into framelets. Framelets 
are self-standing units of design that address specific design problems within the 
framework. 

The difference between identification of a feature and definition should be noted. Identification 
requires simply that the presence and need for the feature be recognized and that its function 
be informally and perhaps incompletely described. Definition instead implies full formal 
description of the feature. Features that are only identified in this document are defined in the 
lower level documents describing the framelet architectures (see RD20 to RD33).  

3.2 Design Methodology 

The design and development of the AOCS framework did not follow any formal 
methodology. This was partly because of manpower and schedule constraints, and partly 
because of the lack of mature methodological tools targeted at framework (as opposed to 
application) development. Use was, however, made of many of the methodological concepts 
described in RD19.  

3.3 Boundary Conditions 

Broadly speaking, the ultimate objective of the AOCS framework project is to improve the re-
usability – and hence lower the cost and enhance the reliability – of AOCS software. This 
objective is achieved by exploiting recent advances in software engineering (the transition to 
the OO paradigm) and in microprocessor technology (the space-qualification of the ERC32 
SPARC processor).  

In general, technological advances could be used either to expand the functionality of a piece 
of software or to improve its quality1. The intention of this project was to concentrate on the 

                                                      
1 Historically, the emphasis has been on the former task. This is why successive revolutions in software 
engineering – the transition to compiled languages, then to procedural languages, and still later to modular 
languages – have not had a major impact on software quality (programs are as error-prone and as poorly 
readable/reusable today as they were in the sixties!).   
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latter task. Hence, the framework to be designed in the present study cover only the present 
functionalities of AOCS systems. By constraining functionality to its present level, 
technological advances are leveraged to improve quality and reduce development costs. 

3.4 Applicability to Java Version 

The AOCS Framework was first implemented in C++ and then ported to Java. This document 
was originally written for the C++ version. However, since it deals with the framework at 
design level it remains largely applicable for the Java version. In particular, the description of 
the framework design principles and framework design patterns that forms the core of this 
document is entirely language-independent.  

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The 
issues that should be borne in mind when using this document for the Java version of the 
AOCS framework are presented in the project web site currently located at the following 
address: http://www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. 

3.5 Notation 

Architectural solutions are presented using UML notation. The diagrams included in this 
document were obtained with the Together tool (version 4.0). Note that this is only a concept-
level document and therefore the class and object diagrams may be incomplete as their 
purpose is merely illustrative. 

Where appropriate, implementation outlines are given in this document using pseudo-code. 
The notation and pseudo-code examples are not always consistent. Their purpose is not to 
represent a design but to convey ideas and concepts that will then be more formally 
developed in an architectural design document.  

The following naming conventions are adopted in the pseudo-code examples: 

• Type, class and interface names begin with a capital (as in ‘Runnable’ which denotes an 
interface) 

• Variable names begin with a small letter (as in: ‘modeManager’ which denotes the name 
of an object.) 

• Variable names are sometimes derived from their class name by prefixing ‘a’ or ‘the’ (as 
in: ‘theModeManager’ which denotes an object of class ‘ModeManager’ or 
‘aAocsController’ which denotes an object of class ‘AocsController’). 
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3.6 Appendices 

Sections 29 to 31 are reference appendices that give a list of the framework abstractions, the 
framework design patterns and the framework hot-spots. Readers may want to refer to them 
as an aid to their understanding of this document. 
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4 SOFTWARE FRAMEWORKS 

Software frameworks are a form of software reuse that primarily promotes the reuse of entire 
architectures within a narrowly defined application domain. They propose an architecture 
that is optimized for all applications within this domain and make its reuse across 
applications in the domain possible. See RD3 for a general introduction to software 
frameworks.  

Experienced software engineers who develop several related applications reuse architectures 
as a matter of course. Software frameworks are intended to formalize and make explicit this 
form of architectural reuse. They allow the investment that is made into designing the 
architecture of an application to be made available across projects and across design teams. 
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Framework and Application Levels 

A framework therefore serves as the basis for the generation of a whole family of applications 
(see previous figure). The process whereby a concrete application is derived from the 
framework is called framework instantiation. The two key problems in framework design are to 
identify the points at which the framework behaviour is adapted to the requirements of a 
specific applications, the so-called hot-spots, and to devise ways to implement this adaptation. 
In this paper, frameworks are assumed to be object-oriented and the adaptation mechanisms 
are therefore based on abstract coupling (run-time adaptation) and inheritance (static 
adaptation).  
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The term “framework”, like so many others in computer science, is heavily overloaded and 
although most experts will agree with the definitions given above of what frameworks are 
for, there is as yet no consensus as to what exactly constitutes a framework. In the AOCS 
project, a framework was defined as consisting of: 

! abstract interfaces 
! design patterns 
! concrete components 

These are the constructs that the framework offers to application developers and that the 
latter use to build a particular application in the framework domain. 

The abstract interfaces are declarations of sets of related operations for which no 
implementation is provided. Abstract interfaces capture behavioural signatures that are 
common to all applications in the framework domain. In a language like C++, they are 
implemented as pure virtual classes. 

The design patterns are optimized solutions to recurring architectural problems in the 
framework domain (see RD1). Since they encapsulate reusable architectural solutions, and 
since frameworks are intended as vehicles for architectural reuse, design patterns are 
normally the heart of a framework. 

Additionally, design patterns promote architectural uniformity by ensuring that similar 
problems in different parts of the same application receive similar solutions. This endows the 
application architecture with a single “look & feel” that makes using and expanding it 
considerably easier. Design uniformity is an important aspect of architectural reusability and 
a second important contribution of design patterns to frameworks. 

The concrete components are binary units of reuse that implement one or more interfaces and 
that can be configured for use in a specific application at run-time. 

Framework components can be of two types: core components and default components. Core 
components encapsulate behaviours that are common to all applications in the framework 
domain. They are therefore used by all applications instantiated from the framework. 

Default components represent default implementations for some of the abstract interfaces in the 
framework. They encapsulate behaviours that are found in many applications in the 
framework domain but that are not intrinsic to the framework domain. 

A framework will in general provide default components to implement the most common 
behaviours found in its domain. When very specific behaviours are required that are not 
catered for by the default components, application-specific components need to be created. 
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These will have to conform to the framework interfaces and may often be obtained by 
specializing the default components either through inheritance. 
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5 GENERAL STRUCTURE OF THE AOCS FRAMEWORK 

The primary objective of the AOCS framework project was to define a framework architecture 
for the AOCS domain. The resulting architecture is described in the remainder of this 
document. This section concentrates on presenting the general structure of the framework. In 
particular, an analogy with Real Time Operating Systems (RTOS) is developed that is 
interesting both because it provided the inspiration for the AOCS framework and, from a 
more theoretical point of view, because it points to an interesting parallel between 
frameworks and operating systems. 

5.1 The RTOS Example 

One of the challenges of the AOCS framework project lay in the real-time and embedded 
character of this type of applications which have seldom been the targets of frameworks. In 
the initial phase of the project, however, it was realized that there is at least one highly 
successful example of frameworks for real-time systems. As will be shown in a moment, 
RTOS’s fully fit the definition of framework given in section 4 and, because of their record in 
providing reusable software solutions, it was felt that they could serve as conceptual models 
for the AOCS framework. Accordingly, the AOCS framework project started with an attempt 
to answer the question: “How does an RTOS achieve reusability?”. Three complementary 
answers were identified. They are illustrated below for the case of task scheduling which is a 
typical functionality offered by RTOS’s. 

Firstly, an RTOS enforces an architectural infrastructure. Namely, it assumes an application to 
be made up of tasks with certain well-defined characteristics (single entry point, single thread 
of execution, etc). Applications that wish to use the RTOS must conform to this architecture. 
Using the terminology of section 4, the RTOS proposes a design pattern. 

Secondly, the RTOS relies on the separation of the management of a functionality from its 
implementation and achieves this separation through an abstract interface. In the case of task 
scheduling, for instance, and using UML notation, the RTOS sees a task as a component 
implementing the following abstract class: 

Schedulable

+init():void

+execute():void
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where a call to init() causes the task to initialize itself and a call to run() causes it to start 
executing. Separation through an abstract interface fosters reusability because it decouples 
the implementation of the task, which is necessarily application-specific, from the scheduling 
policy which is used to activate it and which is application-independent. 

Thirdly, the RTOS provides an application-independent and hence reusable component that 
encapsulates the management of the RTOS functionalities. The RTOS executable, for instance, 
will normally include a scheduler component that can be made application-independent 
because it sees the tasks it manages only through the abstract schedulable interface: 

1 1..*

taskList

Schedulable

Scheduler

ConcreteTask 2ConcreteTask 1

 

In the terminology of section 4, the scheduler is a core component.  

Thus, the RTOS offers all three frameworks constructs identified in section 4and qualifies as a 
framework because the design pattern and the abstract interfaces are introduced to model 
adaptability and the component packages the invariant part of RTOS-based applications. It 
may be noted in passing that, conceptually, the primary entities are the design pattern and 
the schedulable abstract interface. The scheduler component is secondary as its function is 
essentially defined once the design pattern and abstract interface have been defined. 

The next figure gives an alternative view of an RTOS-based system. The RTOS module is 
shown as a component exposing slots where application-dependent components can be 
plugged. The application-dependent components represent the tasks to be managed by the 
RTOS. The slots in the RTOS are therefore the hot-spots where the RTOS customisation takes 
place. The “shape” of the slots that determines whether a certain component can be plugged 
in is defined by the abstract interfaces that separate task management from task 
implementation. 
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Plug-In View of an RTOS Scheduler 

5.2 The Lesson for the AOCS 

One conclusion of the analysis in the previous section is that in an AOCS there is at least one 
functionality – task scheduling – where a framework approach can improve reusability. Task 
scheduling is of course only one of many functionalities implemented by an AOCS and it is 
therefore natural to ask whether the same principles that make scheduling management 
reusable could be applied to the other AOCS functionalities.  

A large part of the design of the AOCS framework can be seen as an attempt to provide a 
positive answer to this question. This was done by first isolating the functionalities present in 
an AOCS and then systematically applying to each the reusability model of the RTOS. 

The functionalities that were identified in an AOCS are: 

! The Telemetry Functionality covering the formatting and despatching of housekeeping 
information to the ground station. 

! The Telecommand Functionality covering the processing and execution of commands 
received from the ground station. 

! The Failure Detection Functionality covering the implementation of checks to autonomously 
detect failures in the AOCS software. 

! The Failure Recovery Functionality covering the implementation of the corrective measures 
to counteract the failures reported by the failure detection functionality. 

! The Controller Functionality covering the management and implementation of the control 
algorithms for the control loops operated by the AOCS. 

! The Reset Functionality covering the control of the reset functions that bring the AOCS 
components to some initial default state. 
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! The Configuration Functionality covering the control of the configuration functions to clear 
all configuration information in the AOCS components, and to check that all components 
are correctly configured and ready to start normal operation.  

! The Unit Functionality covering the acquisition of data from and the forwarding of 
commands to the external units managed by the AOCS (the sensors and the actuators).  

From the point of view of the framework architecture designer, these functionalities can be 
treated as independent of each other. This is obvious in all cases with the possible exception 
of the failure detection and failure recovery functionalities that in some systems are merged 
together. In the AOCS framework, however, the failure detection manager constructs failure 
events encapsulating the description of any failures it has encountered and deposits them in 
shared repositories. In a separate activity, the failure recovery manager inspects the failure 
event repository and processes the failures according to their description. 

The mutual independence of the functionalities was crucial in simplifying the framework 
design as it allowed architectural solutions to be developed in isolation for each functionality. 
Architectural independence, however, did not degenerate into arbitrariness of solutions. As 
argued in section 5.4, design unity was maintained by imposing the same meta-pattern on all 
functionality management problems.  

The influence of the RTOS example on the AOCS framework design will now be illustrated 
by retracing the steps that led to the definition of an architectural solution for the telemetry 
management problem. This description anticipates that of section 27 documenting the 
telemetry framelet. 

5.3 The Telemetry Functionality in the AOCS Framework 

In current AOCS systems, telemetry processing is controlled by a so-called telemetry handler 
that directly collects telemetry data, formats and stores them in a dedicated buffer, and then 
has them transferred to the ground. To accomplish its task, the telemetry handler needs an 
intimate knowledge of the type and format of the telemetry data: it has to know which data, 
in which format, and from which objects have to be collected. It is this coupling between 
telemetry handler and telemetry data that makes the former application-specific and hinders 
its re-use. 

In keeping with the RTOS reuse model, the approach taken in the AOCS project is based on a 
design pattern – the telemetry design pattern – that calls for a separation of telemetry 
management from the implementation of telemetry data collection. This is achieved by 
endowing selected components in the AOCS software with the capacity of writing themselves 
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to the telemetry stream. Telemetry processing is then seen as the forwarding to the ground of 
an image of the internal state of some of the AOCS components. The resulting architecture is: 

1 1 1..*

telemetryList

1
Telemeterable

+writeToTelemetry():v

AnyAocsClassactivate() {

for (all items in telemetr

item->writeToTelemetry(

... // send TM data to

}

TelemetryManager

+activate():voi

TelemetryStream

ConcreteTelemetryStream

 

The ability of a component to write its own state to the telemetry stream is encapsulated in 
the abstract interface Telemeterable which must be implemented by all components 
intended for inclusion in telemetry. Its basic method is writeToTelemetry. Calling it 
causes a component to write its internal state to the telemetry stream. The telemetry manager 
is responsible for keeping track of the components whose state should be sent to the telemetry 
stream and for calling their writeToTelemetry methods to start the forwarding of 
telemetry data to the ground. The telemetry manager also needs to be aware of the data 
stream to which the telemetry data should be written. Since the hardware characteristics of 
the channel over which telemetry data are transmitted to the ground differs across AOCS 
systems, the telemetry stream is identified by an abstract interface, TelemetryStream. This 
interface defines the generic operations that can be performed on a data sink representing an 
ideal telemetry channel.  

The second step in the development of an architectural solution for AOCS telemetry 
management was the instantiation of the telemetry pattern for the AOCS domain. This chiefly 
involved providing exact definitions for the Telemeterable and TelemetryStream 
interfaces. The former, for instance, was defined as follows: 
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Telemeterable

+writeToTelemetry(stream:TelemetryStream *):vo

+setTelemetryFormat(newFormat:TelemetryFormat)

+getTelemetryFormat():TelemetryFormat

+getTelemetryImageLength():int

 

In the selected implementation, the telemetry stream is passed as an argument to method 
writeToTelemetry and methods are provided to check the size and set the format of the 
telemetry image generated by each component. 

In the third and final step of the architecture design process, the telemetry manager 
component was characterized. The semantics of the telemetry pattern and of its associated 
abstract interfaces make its definition straightforward. The core of the telemetry manager 
component can be represented in pseudo-code as follows: 

Telemeterable* tmList[N_TM_OBJECTS];
TmStream* tmStream;
. . .
void activate() {

for (all TM objects ‘t’ in tmList)
{ t->setTelemetryFormat(tmFormat);

tmDataSize=t->getTelemetryImageLength();
if (object image fits in TM buffer)

t->writeToTelemetry(tmStream);
else

. . . // error!
}

}

 

Thus, the telemetry manager maintains a list of telemeterable components and, when it is 
activated, it calls their writeToTelemetry method. It uses the other operations exposed by 
Telemeterable to control the format of the telemetry images and to verify that the size of 
their image is consistent with the capacity of the telemetry channel. Additionally, and not 
shown in the pseudo code segment, the telemetry manager will offer operations to 
dynamically load and unload items from its internal list of telemeterable components and to 
set the telemetry stream at initialisation. Clearly, all these operations are application-
independent and hence the telemetry manager is fully reusable or, in other words, it becomes 
a core component in the framework. The AOCS framework also provides a default 
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component implementing the TelemetryStream interface for the case of a DMA-based 
telemetry channels that happens to be very common in AOCS systems. 

 The architectural solution to the telemetry management problem therefore exhibits the 
typical features of a framework being based on a design pattern that is specialized by abstract 
interfaces and a core component (the telemetry managers) and complemented by a default 
component (the default implementation of interface TelemetryStream). 

Figure 4 shows a plug-in view of telemetry management. It again draws attention to the 
similarity between the telemetry management and the RTOS scheduling architectures and on 
how in both cases reusability originates in the introduction of an abstract interface to separate 
the management of a functionality from its implementation. 
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Plug-In View of a Telemetry Manager 

5.4 The Manager Meta-Pattern 

The procedure described above for the telemetry functionality was followed for all other 
functionalities identified in the AOCS. In all cases, architectural solutions were produced that 
were conceptually similar to that for the telemetry functionality and that were inspired by the 
RTOS model of achieve reusability. This commonality of design solution is so significant that 
it deserves to be captured in a new concept: the manager meta-pattern.  

Design patterns define solutions for design problems at application level: they prescribe 
recipes that allow a class of related design problems confronting application developers to be 
solved in a uniform manner. The term meta-pattern is instead proposed to describe 
commonalities in different design patterns used to address different design problems in the 
same framework. Just as design patterns promote consistency at application level by ensuring 
that similar problems arising in different locations receive similar solutions, meta-patterns 
support design consistency at the framework level. 
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The manager meta-pattern addresses the problem of managing a functionality that requires 
the same actions to be repeatedly performed on a class of objects providing different 
implementations of the functionality itself. The solution it proposes can be summarized as 
follows: 

! Define an abstract interface capturing the behavioural signature of the functionality. This 
interface separates the management of the functionality from its implementation. 

! Build an application-independent and reusable functionality manager component (a core 
component). The functionality manager maintains a list of objects seen as instances of the 
functionality interface and it exposes an activation method that systematically performs 
all the actions required by the functionality management on all objects in the list  

! Where appropriate, provide default implementations of the functionality interface 
(default components) 

The class diagram for the manager meta-pattern is: 

1 1..*

List

Implementer 1 Implementer 2

void activate() {

for (all items in List)

{ ... // perform acti

... // required by

}

}

FunctionalityManag

+activate():void

FunctionalityInterf

 

The manager meta-pattern was applied to all the AOCS functionalities identified above. This 
resulted in a framework architecture that is both elegant and homogeneous. Extensions and 
upgrades are facilitated by the mutual independence of the functionality managers that 
makes addition of facilities to handle new functionalities easy.  

5.5 Overall Structure 

Systematic application of the manager meta-pattern leads to a framework that will generate 
AOCS applications with an architecture as shown in the next figure. A collection of 
functionality managers represent the reusable architectural skeleton of the application. This is 
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customized for a specific application by composition with components encapsulating the 
application-dependent functionalities implementations. To each functionality manager an 
abstract interface is associated. 

The RTOS could be one of the functionality managers and the framework can therefore be 
seen as offering a domain-specific extension to the operating system. 

It should be stressed that the same component can be used to customize several functionality 
managers. A closed-loop controller, for instance, would obviously be plugged into the 
controller manager but might also be plugged into the telemetry manager if it is desired to 
include its state in the telemetry stream. This situation is handled through multiple 
inheritance with a component implementing all the interfaces associated to the functionality 
managers it customizes. Component_1 in the figure, for instance, would have to implement 
(at least) the abstract interfaces corresponding to the functionality managers A and B.  

Use of multiple inheritance is often resisted because it can lead to ambiguities but the AOCS 
framework only requires multiple inheritance of abstract interfaces which is known to be safe. 
This kind of multiple inheritance is used extensively throughout the AOCS framework with 
typical AOCS components normally implementing 5 or 6 different abstract interfaces each 
representing a different functionality. 
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Structure of Framework-Generated AOCS 

The next figure shows how the application architecture implied by the AOCS framework can 
be recast according to the Generic Open Architecture (GOA) model (see RD4) . GOA is a 
reference architecture for embedded software to provide a foundation for effective open 
systems. It distinguishes four layers in a software system: application software, system 
services, resource access services, and physical resources. In a GOA perspective, an AOCS 
application is most naturally decomposed by placing the functionality managers in the 
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system services layer alongside the operating system. This choice is dictated by the 
application-invariant character of the functionality managers and by the fact that they – 
unlike the components implementing the functionalities – need access to the hardware 
drivers in the resource access layer. The telemetry manager for instance has an interface to the 
hardware channel through which telemetry data are routed to the ground. 
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GOA Model of the AOCS Architecture 

The previous figure illustrates again the affinity of functionality managers and operating 
systems and shows that the framework factors out of an application OS-like functionalities 
encapsulating them into application-independent modules. 

5.6 Architectural Infrastructure 

The functionality managers address localized design issues in the AOCS domain but do not 
exhaust the framework since they cannot handle non-localized infrastructure problems.  

One first example of infrastructural problem concerns inter-component communication. The 
architecture promoted by the AOCS framework is component-based. Some mechanism is 
required to allow these components to exchange information.  

A second example of infrastructure problem arises from the need of components to monitor 
each other both in order to synchronize their behaviour and for purposes of failure detection.  

Other infrastructural problems in AOCS applications concern the handling of unit 
reconfiguration, the handling of sequential data processing chains, and the implementation of 
mode-dependent behaviour. 

As will be seen in the remainder of this document, the AOCS framework provides solutions 
to all of the above infrastructure problems. These solutions are qualitatively different from 
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those proposed for the AOCS functionalities but they resemble them in being based on the 
definition of domain-specific design patterns and of the abstract interfaces required to 
specialize them. In many cases, core and default components were also developed but in the 
framework design process they always came second to the design patterns and abstract 
interfaces. 
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6 GENERAL DESIGN PRINCIPLES 

This section describes the general principles adopted in the design of the AOCS framework. 
The general design principles are the overall constraints on the framework design which 
define the policy to be adopted in regard of general design issues that affect the entire 
framework. 

6.1 An Object-Oriented Framework 

Many design methodologies carrying the label “object-oriented” (eg. HOOD) are more 
properly described as “object-based”. Such methodologies aim to build a software system as a 
collection of hierarchical objects that encapsulate data while exposing operations to handle 
them. The design process they prescribe typically starts with an analysis of the problem 
domain to identify concrete classes and concrete objects. They often result in designs that are 
hierarchical in the sense that objects and classes are nested within each other. 

The truly object-oriented design process is radically different as it puts the emphasis not on 
objects but on abstract interfaces. An abstract interface is a set of operations with no or 
incomplete implementation (abstract interfaces are represented in C++ by pure virtual 
classes). In this kind of object-oriented approach, the design begins by identifying abstract 
functionalities that are then encapsulated in abstract interfaces. These interfaces will only 
include high-level behaviour and will leave most of the functionality implementation open. 
Objects are derived at a later stage of the design process as instances of classes that 
implement one or more abstract interfaces. Object-oriented architectures are hierarchical in 
the sense that they are based on hierarchical class trees with abstract classes at the top of the 
tree and concrete classes at the bottom. 

The AOCS framework is based on true object-orientation. It adds a further dimension – 
specific to frameworks – to the typical object-oriented design process because it places 
additional emphasis on identifying points of behaviour adaptation where the framework can 
be tailored to the need of a particular application. At the architectural level, adaptation is 
based on the use of design patterns. At the implementation level, it is based on abstract 
coupling and dynamic binding.  

See RD19 for an example of the difference between object-based and object oriented design. 
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6.2 A Component-Based Framework 

The framework is intended to be component-based. By this, it is meant that all the modules 
defined in the framework should be re-usable without changes to the source code. Behaviour 
adaptation is to be achieved entirely through inheritance and/or object composition.  

At this stage, the term component is used to designate a binary unit of reuse that implements 
one or more framework interfaces and that can be configured for use in a specific mission at 
run-time. At a later stage – and in a different project – the option will be studied of 
implementing the framework upon a component infrastructure (eg DCOM or CORBA) that 
allows inter-operability across language, compiler and processor barriers while remaining 
compatible with the real-time and criticality requirements of the AOCS software.  

In order to understand the benefits of implementing the AOCS framework upon a component 
infrastructure consider again the example of telemetry management presented in section 5.3. 
The proposed solution is built on a telemetry manager component that, when it is activated, 
calls the operations defined by interface Telemeterable on the objects whose state should 
be included in telemetry.  

Telemetry management is a function that is usually performed by every subsystem on a 
satellite. If the subsystems are physically located on different processors, or even only in 
different partitions on the same processor, then each subsystem will require its own telemetry 
manager component. This is clearly wasteful. A more efficient architecture has a single 
telemetry manager that is able to see all its telemetry objects as if they resided in the same 
address space. A component infrastructure provides precisely the mechanisms to make this 
possible.  

6.3 Use of Design Patterns 

As explained in section 4, design patterns are one  the fundamental constructs of software 
frameworks. Wherever possible, the AOCS frameworks makes use of the design patterns of 
RD1 which are taken as model of good object oriented-design. Where these standard patterns 
are not adequate, AOCS-specific patterns are developed. 

6.4 Component Behaviour Adaptation 

The derivation of an AOCS software from the framework requires the adaptation of its 
behaviour to the specific needs of the AOCS software. The adaptation of the behaviour of a 
component is generally based on dynamic binding as achieved either through inheritance or 
through object composition. The former mechanism is used for static behaviour adaptation, the 
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latter for dynamic behaviour adaptation. In the present design, there no effort is made to 
favour one mechanism over the other. 
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6.5 Delegation of Responsibility 

If a certain task has to be performed by or upon an object, the responsibility for performing 
the task is as far as possible delegated to the object itself. Thus, for example, rather than 
having a procedure that writes the state of an object to telemetry, the object itself will be 
endowed with the ability to write itself to telemetry (ie. it will be given a method that, when 
called by an external telemetry manager, causes the object to write its state to the telemetry 
stream).  

Delegation of responsibility to objects results in a “bottom heavy” implementation where 
many functionalities are implemented in the objects at the bottom of the object hierarchy. This 
approach ensures that the higher level objects that embody the AOCS structure are mission-
independent and can be reused without changes. 

6.6 Avoidance of Multiple Implementation Inheritance 

As discussed in section 5.5, the selected framework architecture needs multiple inheritance. 
On the other hand, it is well known that multiple implementation inheritance presents 
semantic problems that advise against its use in critical applications (see RD9) and that its 
over-use can sometimes make component re-use difficult (see RD17). No such problems, 
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however, attach to multiple inheritance of interfaces (in the Java sense of the word). Hence 
the solution adopted for this project is as follows: 

• only single inheritance of implementation is allowed; 
• multiple inheritance of interfaces is allowed. 

This solution is borrowed from the Java language and it is both safe and well-tested. 

6.7 External Interfaces 

External interfaces – towards external devices and towards the processor – are encapsulated 
in objects that, within the AOCS software, act as proxies for the external objects. This is an 
instance of the proxy pattern from RD1.  

6.8 Façade Encapsulation for Components 

The framework design often results in components that are made up of several smaller 
components all of whom need to interact with external components. Consider for instance an 
attitude controller component. Its structure can be represented as follows: 
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The boxes within the dashed containers are the components required to implement controller 
management (the controller manaer, its mode manager and several controller implementers). 
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External entities wishing to interact with the controller functionality need to interact with the 
individual components inside it. Thus, for instance, if they wish to add or remove an 
implementer, they need to act on ModeManager whereas if they need to change the mode 
manager itself, they need to act on Controller. This makes interaction with the controller 
functionality difficult because it forces its partners to hold references to all its internal objects. 

The façade design pattern from RD1 offers an alternative solution. With this design pattern, a 
wrapper component (dashed box in the figure) is used that encloses all components involved 
in controller management. The wrapper component is provided with an interface that gathers 
together all operations that internal components need to expose to the outside world. The 
implementation of these operations simply consists of a delegation to the corresponding 
operation of an enclosed object. 

Use of a façade wrapper simplifies interactions among components although it adds a new 
level of indirection. Façade wrappers are not used in the present – prototype – version of the 
framework but may be added in future versions. 

6.9 Basic Classes 

A basic class is a class that serves as a base class to a large number of framework classes. Basic 
classes are introduced in the AOCS framework to allow uniform treatment of large numbers 
of objects. 

Two basic classes are present in the AOCS framework: RootObject and AocsObject. Class 
RootObject is used as the base for all concrete (non-interface) classes in the AOCS 
framework and in the applications instantiated from it. This class defines two read-only 
attributes: the instance and class identifiers. Its interface is defined as follows: 

class RootObject {
IdType getInstanceIdentifier();
IdType getClassIdentifier();

}

 

Class RootObject ensures that all objects and all classes in the framework and in AOCS 
applications can be uniquely identified.  

The AocsObject class is introduced as a base class for all non-trivial objects in the AOCS 
framework and in the AOCS applications. Its purpose is to gather together and provide to its 
children classes some basic services that are likely to be required by all but the simplest 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
Framework Concept Level Description 
30 April 2002 
Issue 3.3 
Page 35 
 
  

 

University of Konstanz - A. Pasetti 

objects in the framework. Objects that are directly or indirectly instantiated from 
AocsObjects are called AOCS Objects. 

Class AocsObject makes the following services available to its children through protected 
methods: 

u Time recovery 
u Failure reporting 
u Configuration error reporting 

Additionally, AOCS objects have the following properties that they inherit from abstract 
interfaces implemented by class AocsObject: 

u Telemeterability (AOCS objects can be included in telemetry) 
u Resettability (AOCS objects are capable of resetting their internal state) 
u Configurabiity (AOCS objects are capable of checking that they are correctly configured) 

AOCS objects in an application are intended to be created during initialization and never to 
be destroyed. To ensure that this is the case, the AocsObject destructor generates an error if 
it is called. Note that this means that AOCS objects cannot be passed as method parameters. 
Components must operate upon and exchange objects exclusively through pointers. 

Since AOCS objects are created statically and never destroyed, it is safe to use pointers to 
them. A design rule in the AOCS framework dictates that pointers can only be used on objects 
of type AocsObject. Adherence to this rule could in principle be checked by automatic 
inspection of the framework source code. 

6.10 Time Management 

The AOCS framework assumes that two kinds of timing information are available: a clock 
time measurement from an AOCS clock object and a cycle number that indicates the number 
of AOCS cycles elapsed from some starting cycle. 

An AOCS clock is an object implementing the following interface: 

interface AocsClock {
AocsTime getTime(); // get clock time
int getCycle(); // get cycle number
void synchronizeWithSystemTime();

}
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The AOCS framework assumes that all applications will make available one AOCS clock 
object. AOCS object have access to timing information via the services offered by class 
AocsObject. 

6.11 Language Selection 

The design presented here is intended to be language independent. The assumption made 
during the architectural design phase is that it should be powerful enough to support full 
object-orientation. This in particular implies support for the safe version of multiple 
inheritance used in the framework design.  

The framework prototype will be implemented in C++ but other language solutions are 
possible.  

Ada95 is still the recommended language for ESA-initiated space projects and ensuring 
compatibility with it would be correspondingly desirable. However, Ada95 does not directly 
support multiple inheritance. The effects of multiple inheritance can be achieved using the 
multiple view mechanism of RD34 but this is very awkward to use as it essentially represents a 
manual implementation of a construct that in languages like C++ and Java is automatically 
coded by the compiler. It may be suitable where usage of multiple inheritance is incidental 
but not in a system like the AOCS framework where it plays a fundamental role.  

There is one further point that deserves to be made on the contentious issue of language 
selection. The AOCS framework – like much modern design practice (see RD9) – is moving 
towards component-based architectures. Components are reused as binary units and, ideally, 
should offer language interoperability. If this vision is realized, then design attention will 
shift away from the internal architecture of the component and towards the interface that it 
exposes. At that point, language issues will become much less relevant at system level. This 
situation already exists today for operating systems – arguably the only case of commercially 
successful components – which are normally bought as binary entities and where the issue of 
the language in which they were originally written is of no interest.  

6.12 Execution Time Predictability 

AOCS systems must be demonstrably schedulable. An application is schedulable if it can meet 
all its deadlines under any operational conditions. The schedulability requirement derives 
from the hard real-time nature of the AOCS. Additionally, since AOCS systems are mission-
critical, schedulability must be demonstrable in the sense that it must be possible to verify it 
statically by analysing the source code.  
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A necessary condition for the demonstrable schedulability of a software application is that the 
execution time of any of its code segments be statically predictable. This requirement has a 
repercussion at framework level insofar as some of the code in an AOCS application is 
inherited from the framework (core and default components).  

The AOCS framework safeguards timing predictability primarily by avoiding constructs and 
operations that lead to non-predictable code. In practice, this led to the avoidance of 
exception handling and dynamic memory allocation. The former presented no particular 
problem as the framework infrastructure offers a mechanism for reporting events that can be 
used in lieu of exceptions. The latter was instead rather difficult to achieve. Most existing 
frameworks are targeted at non-real-time applications and make extensive use of dynamic 
object creation and destruction. Avoiding such operations required some rethinking of typical 
design patterns used in frameworks and sometimes resulted in slightly awkward constructs. 
On this point, see also the next sub-section. 

As already mentioned, the AOCS framework relies extensively on dynamic binding to model 
application adaptability. At first sight dynamic binding might seem to be incompatible with 
code execution predictability because of the impossibility of statically associating a definite 
piece of code to a particular method call. However, in embedded systems there is no dynamic 
class loading and hence the number of methods that might be called is finite (and often small). 
It is therefore always possible to determine worst-case execution times and use this estimate 
in the schedulability analysis. 

 The heavy reliance of the framework on design patterns poses a more serious problem since 
some design patterns have a recursive structure that makes static timing analysis impossible. 
In such cases, timing predictability can only be retained by adding meta-information to the 
source code that specifies the maximum depth of the recursion. In order to make it easy to 
provide this information, this and lower level documents clearly identify all recursive design 
patterns they introduce and explain how upper bounds on the depth of recursion can be 
inferred from their semantics. 
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7 FRAMELET OVERVIEW 

The AOCS framework is built as a collection of framelets. Framelets are introduced as 
subdivisions of a framework to simplify its design. They address the quantitative aspect of 
framework complexity that stems from the sheer size of frameworks: a single framework may 
encompass hundreds of constructs – classes, design patterns, interfaces, hot-spots, etc – 
embedded in an often tangled web of interconnections and semantic relationships.   

The need to tackle quantitative complexity is of course not restricted to frameworks. It also 
arises in the case of conventional application design where the classical solution is to 
subdivide the application into subsystems that partition the space of components making up 
the application. The subsystems are designed to be as self-contained as possible and to have 
minimal coupling. This makes it possible, to some extent, to develop them independently of 
each other thus reducing design complexity. 

This approach works well for individual applications that are just the sum of their 
components but is unsuitable for frameworks that consist of more than just components for 
they also include design patterns and abstract interfaces among their basic constructs. In fact, 
as should be clear from the discussion in section 5, in the case of frameworks, components 
take second place to design patterns and interfaces that are the true foundations upon which 
frameworks are built. The behaviours implemented by the core components are normally 
implied by the design patterns and are therefore conceptually subordinate to them while 
default components are simply implementations of abstract interfaces.  

Given these relative priorities among the constructs making up a framework, the 
transposition of the subsystem approach to framework design requires a shift of focus from 
components to abstract interfaces and design patterns. Simplification in other words must be 
achieved by partitioning not the space of components, but that of design patterns and abstract 
interfaces. The framelet term was introduced to designate non-overlapping groups of 
logically related design patterns and interfaces. The two ways of partitioning the design space 
– through framelets and through subsystems – are schematically contrasted in the next figure. 
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Design Simplification in Frameworks and Applications 

It is normally possible to partition the space of abstract interfaces and design patterns into 
homologous subsets because the abstract interfaces exist to support the variability and 
adaptability introduced by the design patterns and therefore abstract interfaces can normally 
be unambiguously associated to design patterns. 

Hot-spots are not primitive constructs in a framework because they are reducible to design 
patterns and abstract interfaces but it is interesting to note that, precisely for this reason, hot-
spots can be assigned to framelets. Framelets, therefore, can also be defined as a partitioning 
of a framework into subsets of logically related abstract interfaces, design patterns and hot-
spots. 

In practice, logical relationship means that each framelet addresses a specific design problem 
in the framework. Framelets in other words become units of design with the framework being 
obtained by combining the framelets. 

Some of the characteristic features of framelets that follow from all the above are:  

u Small size: since they are made up of closely related constructs, framelets will typically be 
small. In the AOCS framework, framelets consist of 2-3 design patterns and a handful of 
abstract interfaces. 

u No execution control  assumptions: since they are intended to be integrated with each other 
to form the framework, framelets must not assume that they have control of the 
application execution.  

u Self-standing: since they address a specific design problem, framelets will normally be self-
standing in the sense that they could be used in isolation from the other framelets 
(perhaps in a different framework). 

It is noteworthy that all the above features contribute to simplifying design and justify the 
claim that framelets help reduce the complexity of the framework design process. 
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It is important to stress that there is no guarantee that framework components can be mapped 
to single framelets. Indeed, in most cases they will implement several interfaces possibly 
belonging to different framelets and will participate in several design patterns possibly 
provided by different framelets. The framelet structure cannot therefore be imposed upon the 
space of components each of which will normally straddle framelet boundaries. However, 
specific components are normally introduced in response to the design need of a particular 
framelet and in this sense they will be said to be exported by or to belong to the framelet. This 
will normally imply that the component in question implements some of the interfaces 
defined by the framelet or that it serves as an implementation vehicle for some of its design 
patterns but it does not exclude implementation of interfaces or design patterns exported by 
other framelets. 

7.1 AOCS Framework Framelets 

The AOCS framework is made up of the following framelets:  

• System Management  Framelet 

This framelet proposes an architectural solution to the problem of performing the same 
action – such as a software reset – on all objects in the AOCS software. The system actions 
covered by the system management framelets are software reset, configuration check and 
configuration reset. 

The framelet enhances re-usability because it decouples the task of management of the 
system actions from their implementation. 

This framelet is covered in section 9. 

• Object Monitoring  Framelet 

This framelet proposes an architectural solution to the problem of monitoring an object 
and its properties. Object monitoring is useful for FDIR purposes and for managing 
operational mode changes.  

The framelet enhances re-usability because it decouples the task of managing the 
monitoring process from that of performing the monitoring checks. 

This framelet is covered in section 12. 

• Inter-Component Communication Framelet 
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This framelet proposes an architectural solution to the problem of managing the data 
exchanges among framework components and it defines a standard interface for the data 
representing AOCS-specific quantities exchanged among these components. 

This framelet enhances reusability in two ways. Firstly, through the use of shareable data 
areas for inter-component communications, it decouples the production of data and events 
from their consumption. Secondly, by allowing uniform treatment of all data types, it 
makes component interfaces independent of the type of data they process. 

This framelet is covered in section 13. 

• Sequential Data Processing Framelet  

This framelet defines a pattern for the sequential processing of AOCS data.  

The framelet enhances reusability because it provides a standard interface for components 
that must perform sequential processing on AOCS data and because it allows easy 
combination of data processing blocks.  

This framelet is introduced in section 14. Three architectural options are discussed in 
sections 15 to 17.  

• Aocs Unit Framelet 

This framelet defines an architecture to manage external AOCS units.  

The framelet enhances reusability because it provides a standard interface for AOCS units 
that decouples the managers and users of unit data, from the units themselves. 

This framelet is covered in section 18. 

• Unit Reconfiguration Framelet 

This framelet proposes an architecture to handle reconfiguration of AOCS units.  

The framelet enhances reusability because it decouples the task of managing unit 
reconfigurations from the task of processing of unit data and from the reconfiguration 
algorithms. 

This framelet is covered in section 20. 

• Operational Mode Management Framelet 

This framelet proposes an architectural solution to the problem of managing operational 
mode changes in AOCS objects.  
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The framelet enhances reusability because it separates the implementation of mode-
specific algorithms from the mode switching logic. 

This framelet is covered in section 21.  

• Manoeuvre Management Framelet 

This framelet proposes an architectural solution to the problem of managing manoeuvres 
such as wheel unloading, slews, delta-V, etc.  

The framelet enhances reusability because it separates the task of managing the 
manoeuvres from the task of carrying them out. 

This framelet is covered in section 22. 

• Failure Detection Framelet 

This framelet defines an architecture to handle failure detection tasks.  

The framelet enhances reusability because it decouples the task of managing the failure 
detection function from the task of carrying out failure detection tests. 

This framelet is covered in section 24. 

•  Failure Recovery Framelet 

This framelet defines an architecture to handle failure recovery tasks.  

The framelet enhances reusability because it decouples the task of managing the failure 
recovery function from the task of carrying out the failure recovery actions.  

This framelet is covered in section 25. 

• Telecommand Framelet 

This framelet defines an interface to which telecommands must conform and defines an 
architecture for the telecommand manager.  

The framelet enhances reusability because it decouples the task of managing the 
telecommands from the task of executing them.  

This framelet is covered in section 26. 

• Telemetry Framelet 

This framelet defines an interface to which objects that can be stored in telemetry must 
conform and defines an architecture for the telemetry manager.  
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The framelet enhances reusability because it decouples the task of managing the telemetry 
from the task of writing objects’ state to telemetry.  

This framelet is covered in section 27.  

• Controller Management 

This framelet proposes an architecture to implement closed-loop controllers. The framelet 
enhances reusability because it decouples the task of managing the controllers from the 
implementation of the control algorithms.  

This framelet is covered in section 28.  
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8 SCHEDULING ISSUES 

The AOCS software is usually organized as a multi-tasking system. In the overwhelming 
majority of cases, cyclic and non-preemptive scheduling is used. For reasons of efficiency and 
simplicity, scheduling is done by dedicated code (as opposed to using a standard real-time 
system or ADA’s built-in support for tasking). In the future, more sophisticated scheduling 
policies may be used and then the AOCS will have to be implemented upon an RTOS. 

The AOCS framework assumes that the AOCS is periodic but does not otherwise make any 
other assumptions about the scheduling policy implemented by the AOCS applications to be 
instantiated from it. 

The framework introduces the active object abstraction. An active object is characterized by the 
following abstract interface: 

Runnable

+run(deadline:AocsTime):voi

+initialize():bool

+terminate():bool

 

The key method is  run. A call to run will cause a component to perform all the actions 
associated to the current period.  

Method run takes one single parameter representing the maximum time available for the 
execution of the method. This parameter is not used in the current version of the framework 
but could be used in the future to implement some kind of cooperative scheduling policy. 

Consider for instance a telecommand manager that maintains a queue of telecommands due 
for execution. As will be seen in section 26, the telecommand manager is an active 
component. If it possessed an estimate of the time it takes to execute a telecommand (or at 
least has an upper bound for this quantity), it could check how many telecommands it can 
execute in the current AOCS period. 

In another example, consider a component that performs a background check on program 
integrity by computing the checksum on the code memory. Such a component would be 
likely to implement interface Runnable and if it knew how long it takes to process each 
memory location, it could determine how far it can go in carrying out the checksum check 
before having to return from method run. 
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Methods initialize and terminate are available to encapsulate actions that have to be 
performed when a component is first scheduled and when it is descheduled. 

The decoupling of the scheduling policy from the framework architecture is obtained by 
stipulating that method run can only be called from outside the framework (normally by an 
external scheduler or by an interrupt servicing routine) and that active components that are 
also core components do not to make any assumptions about the frequency with which their 
method run is called or about the source of the call. Whenever they are activated by a call to 
method run, they take whatever action is appropriate at the time they are called without 
regard to how recently they were last called in the past or to how soon they may expect to be 
called again in the future. This insulates them – and hence the framework – from the AOCS 
scheduling policy. 

As discussed in section 5.5, the framework conceptualizes an AOCS application as a bundle 
of functionalities. As will be seen in the remainder of this document, the functionality 
managers are active components and must therefore implement interface Runnable. 
Functionality managers are obvious examples of core components since they are application-
independent and hence their run method are implement not to make any assumptions about 
how frequently they are called.  

Obviously, the components that implement the AOCS functionalities and that customize the 
functionality managers will rely on their methods being invoked according to some timing 
pattern but these components are application-specific and are defined and configured by the 
application developer at application-level. Their dependency on a particular scheduling 
policy therefore does not carry over to the framework. 

As an example, consider the controller functionality described in section 28. A typical 
concrete controller component will normally implement a digital filter and therefore, in order 
to work properly, it will need to have its internal state propagated at regular intervals. Such a 
component will therefore have a built-in assumption about the frequency with which some of 
its methods must be called. No such assumption, however, applies to the controller manager 
component that sees the concrete controllers through an abstract interface whose operations 
do not imply any timing requirements.  

The framework architecture therefore achieves independence from the scheduling policy of 
the AOCS application by confining scheduling assumptions to the application-specific 
components. 

It should finally be noted that some scheduling policies require the implementation of 
synchronization mechanisms to coordinate access to shared resources. The framework 
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regards any public method as potentially giving access to a shared resource and therefore as 
potentially in need of an access synchronization mechanism. The type of mechanism to be 
used, however, is treated as an implementation rather than an architectural issue and is 
therefore neither provided nor dictated by the framework. 

8.1 The AOCS Framework and HRT-HOOD 

The previous section argues that the AOCS framework architecture is independent from the 
scheduling policy. In one notable case, this independence was concretely verified by 
demonstrating that the AOCS framework is compatible with HRT-HOOD.  

HRT-HOOD (see RD7-8 and RD13-16) is a modification of the HOOD methodology that was 
specifically designed to produce systems that can be statically analyzed for their timing 
properties. In other words, a software system obtained following the rules prescribed by 
HRT-HOOD is guaranteed to be amenable to static schedulability analysis. 

The HRT-HOOD method constrains a software system to be made up of objects of four types: 

• Passive Objects 

These are objects that have no control over when invocations of their operations are 
executed and do not spontaneously invoke operations in other objects.  

A passive object is either used by only one other object or it can be used concurrently 
without error. 

• Protected Objects 

These are objects that may control when invocations of their operations are executed 
(through monitor or other synchronization mechanisms) but do not spontaneously invoke 
operations in other objects. 

Protected objects model access to resources that are shared across threads. 

Protected objects must be analyzable for the blocking time they impose upon their callers. 

• Cyclic Objects 

These are objects that represent periodic activities and they may therefore spontaneously 
invoke operations in other objects. The only operations they expose are requests which 
demand immediate attention (ie. they represent asynchronous transfer of control 
requests). 

• Sporadic Objects 
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These are objects that represent sporadic activities and they may therefore spontaneously 
invoke operations in other objects. A sporadic object has a single operation which is called 
to invoke the sporadic and one or more operations which are requests that demand 
immediate attention (ie. they represent asynchronous transfer of control requests). 

In order to ensure static analyzability, HRT-HOOD imposes some constraints on how objects 
use each other’s operations and on how they can be included within each other. Loosely 
speaking, cyclic and sporadic objects can call any operation on any other object whereas 
protected objects cannot block once they start executing. Passive objects can only call 
operations on other passive objects. Similarly, cyclic and sporadic objects can include objects 
of any type whereas protected objects can only include protected or passive objects. Passive 
objects can only include other passive objects. Finally, deadlines should be assigned to cyclic 
and sporadic objects and worst-case execution times should be assigned to all externally 
visible operations. 

When the above restrictions – on object type, on their use and include relationships and on 
their attributes – are respected, then HRT-HOOD ensures that the resulting system can be 
statically analyzed for its schedulability.  

The HRT-HOOD method was conceived as a design tool. Owing to its HOOD heritage, HRT-
HOOD is an object-based design methodology (see section 6.1). The AOCS frameworks 
however is object-oriented. Thus, HRT-HOOD would appear not to be directly applicable to its 
design. 

Both an object-based and an object-oriented design process result in a final software system 
that is made up of objects that expose certain operations. Given such a system, it is possible to 
ask whether its architecture is of a kind that would be generated by the HRT-HOOD design 
process. In order to assess whether this is the case, the following questions must be answered: 

• Can all the objects in the system be represented by objects of the types allowed by HRT-
HOOD for terminal objects, namely sporadic, cyclic, protected and passive? 

• Are the ways in which the objects use each other’s operations compatible with HRT-
HOOD rules? 

Used in this way, HRT-HOOD becomes an analysis tool to investigate whether the 
schedulability of a given software system can in principle be statically analysed. 

Software systems for which the two above questions can be answered in the affirmative will 
be said to be HRT-HOOD compatible. Such systems look like they were designed with HRT-
HOOD even if they were not actually designed using an HRT-HOOD methodology.  
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In the context of a particular framework project, one can ask the following question: “are the 
concrete applications that can potentially be derived from the framework HRT-HOOD 
compatible?”. This is an interesting question to ask because an affirmative answer indicates 
that the framework generates applications whose schedulability is statically analysable. In the 
case of the AOCS framework project the answer to this question is affirmative. 

The first step to achieving HRT-HOOD compatibility for the AOCS framework is to recast the 
AOCS objects in terms of the canonical object types admitted by HRT-HOOD. Objects other 
than those implementing the Runnable interface should be mapped to HRT-HOOD 
protected objects. This is because the operations they expose can in principle be called by any 
component from any thread of execution and the framework gives no guarantee that public 
methods can be safely accessed by concurrently executing components. 

Objects implementing the Runnable interface instead correspond to HOOD’s active objects 
which are not permitted by HRT-HOOD. The next figure shows a runnable object using HRT-
HOOD notation: 
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Dashed arrows represent the way a method in a higher level object is mapped to a method in 
an included object and solid arrows representing use relationships. 

The runnable object can therefore be decomposed into a protected object and a second object 
that presents a single entry point – method run – that is activated either by a scheduler or by 
some asynchronous event. Such an object can be mapped to either an HRT-HOOD sporadic or 
to a cyclic object. The AOCS framework does not make any assumptions about the scheduling 
policy and therefore it does not dictate whether runnable objects should be activated on a 
cyclical or on a sporadic basis. This is left as a decision for the application implementer.  

This decomposition shows that runnable objects can be decomposed into HRT-HOOD 
terminal objects. It can therefore be concluded that all the objects directly defined by the 
AOCS framework can be mapped to HRT-HOOD objects. 

The next step in attaining HRT-HOOD compatibility is to ensure that the constraints 
introduced by HRT-HOOD on the way objects use each other’s operations are respected. This 
can be simply achieved in the AOCS framework by implementing method calls into shared 
objects as protected synchronous execution requests. This ensures that they are compatible with 
HRT-HOOD rules.  

Thus, it can be concluded that applications generated from the AOCS framework are HRT-
HOOD compatible and could therefore be subjected to static schedulability analysis.  
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9 SYSTEM MANAGEMENT FUNCTIONALITIES 

A system management function is a function that is performed systematically on all AOCS 
objects present in the AOCS software at a given time. The system manager is the component 
responsible for performing system management functions. 

Two system management functions are foreseen by the AOCS prototype: 

• System Reset 

A system reset causes the internal state of all AOCS objects to be reset to a default state.  

• System Configuration Check 

A configuration check causes the configuration of all AOCS objects to be checked.  

These two functions are described in greater detail in sections 9.2 and 9.3. 

The system management functionalities are the subject of a dedicated framelet described in 
RD20. 

9.1 The System Management Design Pattern 

The system manager design pattern is introduced to address the problem of systematically 
performing the same set of operations on a target set of objects. The system manager design 
pattern is obtained by instantiating the manager meta-pattern. 

The structure of the system manager design pattern is shown in the following UML diagram: 
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The functionality interface encapsulates the operations to be performed on the target set of 
objects. This interface is to be implemented by all objects in the target set. Additionally, all 
objects in the target set are to be derived from a single base class whose constructor registers 
with the functionality manager. Thus, the functionality manager is automatically provided 
with a list of all the objects in the target set. Deregistration is not required because AOCS 
objects are assumed never to be destroyed (see section 6.9). 

In the AOCS framework, the system manager design pattern is instantiated twice, once for 
the system reset function and once for the system configuration  check function, as follows: 

• The functionality manager is the SystemManager component 

• The base class is AocsObject. This means that the set of objects upon which the system 
manager acts is the set of AOCS objects.  

• The abstract interfaces associated to the system reset and system configuration checks 
functions are Resettable and Configurable, respectively 

The functionality interfaces Resettable and Configurable are implemented directly by 
AocsObject. This ensures that they are implemented by all objects upon which the system 
manager is required to act (ie by all AOCS objects). 

9.2 The System Reset Functionality 

The system reset functionality is defined by the Resettable interface: 

 

Its key method is reset. A call to method reset causes an object’s internal state to be 
brought back to some initial default value. The term ‘state’ is used here to designate the 
attributes of an object that are updated as part of the object’s performing its allotted task. The 
state of an object therefore does not cover those of its attributes that are normally set during 
the application initialization to configure it. 

Thus, in the AOCS framework a reset operation can be performed at two levels. At object’s 
level an individual object is reset by calling its reset method. At system level, a reset is 
performed by asking the system manager to reset all the AOCS objects in the AOCS 
application.  
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It should be stressed that in the AOCS framework a system reset should be distinguished 
from a system reboot. The system reboot will cause the AOCS application to  be reloaded and 
restarted. A system reset will simply reset the state of all objects. The system reset therefore 
does not destroy the configuration of the AOCS application. 

The system reset functionality is provided mainly for failure handling as it represents a less 
disruptive way of handling failures than a complete system reboot. 

The reset method is a hot-spot because it has to be defined for each specific objects in an 
AOCS application. 

9.3 The System Configuration Check Functionality 

AOCS objects are configured during initialization for use in a specific application. 
Configuration will often imply loading plug-in components. In order to verify that an 
application is correctly configured, configurable objects expose a method that reports whether 
they are configured or not. This functionality is defined by interface Configurable: 

 

The key method is isConfigured that returns false if the object is not properly configured. 
Often, this will simply mean that there are undefined references. 

The system manager can call isConfigured on all AOCS objects in an application and check 
whether any of them reports false. In this way, the configuration of the entire application 
can be verified at any time. 

The isConfigured method is a hot-spot because it has to be defined for each specific objects 
in an AOCS application. 

9.4 Storage of Configuration Data 

There is some information that should be preserved across resets. This in particular concerns 
the state of the reconfiguration managers (see section 0). This information should be preserved 
because it defines the health status of redundant functionalities or units. The system manager 
is responsible for maintaining and restoring the state of the reconfiguration managers. 
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10 OBJECT PROPERTIES 

A property is an attribute of an object that describes one aspect of its behaviour or of its 
internal state and that is accessible to external objects.   

A property can be wrapped into an object. The object is called a property object.  

Properties are useful for failure detection purposes: the mode of change of an object’s 
properties may indicate that a fault has arisen. Objects also monitor each other’s properties 
when they want to coordinate their behaviour. 

10.1 Properties 

The property model proposed here is derived from the JavaBeans component architecture 
(see RD6). 

Objects expose their properties through get and set methods. A property of name 
<PropertyName> and type <PropertyType> has getter and setter methods that conform to 
the following signature and naming pattern: 

<PropertyType> get<PropertyName>();
void set<PropertyName>(<PropertyType> value);

Objects that wish to directly monitor the object’s property call its get method. Objects that 
wish to set the property call its set method. Some properties are read-only and do not 
provide a set method. Properties of boolean type may have an is<PropertyName> method 
to check their value. 

10.2 Property Objects 

It is often useful to be able to treat properties as objects of the same type. Consider for 
instance the case of a failure detection manager. This object will need to keep a list of 
properties that must be monitored regularly. It would be convenient if an array of properties 
could be defined and if some kind of standard operations could be performed on all 
properties. 

In order to make this possible, property objects are defined. These are objects of class 
Property that encapsulate a property and give it a standard interface and type.  
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To see the advantages of having property objects, consider the case of the failure detection 
manager that needs to perform systematic checks on several unrelated properties. It can do so 
by maintaining and inspecting a list of properties as follows: 

Property properyList[20];
float value;
. . .
for (int k=1; k<20; k++)
{ value = property[k].get();

. . . // process ‘value’
}

where it is assumed that class Property exposes a get() method to retrieve the value of the 
property and that this value is (or can always be cast to) a float. 

The next two sections will show how the processing of the property value can be made in a 
generic fashion (see in particular the last example in section 12.1). 

10.3 Comparison with Data Items 

Property objects encapsulate variables and provide read access to them. They are thus very 
similar to data items (see section 13.6). Indeed, one could think of using data items in lieu of 
property objects (or vice versa). This is not done here because the intended usage for the two 
types of objects is very different. Data items are meant to facilitate linking components to 
their data sources and will therefore be used extensively in any AOCS application. They must 
therefore be light-weight and efficient. By contrast, property objects are meant for monitoring 
purposes and may have to contain other in addition to the bare value of the property (eg. a 
property identifiers, an identifier of the property type, etc).  

10.4 Reusability and Extensibility Issues 

The encapsulation of properties in objects furthers software reusability because it helps 
decouple the task of managing the properties from that of processing their values. This 
decoupling is in particular crucial to building a reusable failure detection manager in section 
24. 
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11 CHANGE OBJECTS 

The next section deals with the monitoring of objects. The term monitoring refers to the 
observation of changes in property values. At the most basic level, monitors are interested in 
any change in the monitored property. More frequently, however, they are only interested in 
certain types of changes.  

For instance, a failure detection manager may be interested in knowing when the output of a 
sun sensor exceeds certain pre-specified boundaries, as this might indicate that the spacecraft 
is going out of control or that the sensor itself is faulty. If the failure detection manager were 
notified every time the sun sensor output changes, it would have to implement a sensor-
specific filtering mechanism to identify the out-of-range changes that might signal a failure. 
In order to avoid burdening monitors with the need to implement highly specific (and hence 
non-reusable) filters, the concept of change is encapsulated in objects which will be called 
change objects.  

Thus, a change object is an object that encapsulates a specific time profile for a property value. 
The change is said to have occurred when the property value has violated the time profile. 

11.1 Change Types 

A change object may encapsulate any time profile. Typical change objects that are likely to be 
useful in an AOCS (and that are therefore provided as default components by the framework) 
include:  

• Simple change: the change occurs when the monitored property changes its value. 

Example: the mode manager of an object registers with the mission manager to be notified 
whenever the mission mode changes. 

• Out-of-range change: the change occurs whenever the monitored property moves outside a 
pre-defined range. 

Example: when a property drifts outside a range of values representing physically 
possible values, a fault is likely to have arisen. Hence, the failure detection manager 
registers with the objects representing sensors to be notified when their outputs leave the 
permitted range. 

• Delta change: the change occurs whenever the monitored property changes by more than a 
pre-defined delta value.  
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Example: when the output of a sensor suddenly “jumps” by more than a certain 
threshold, a fault is likely to have arisen. Hence, the failure detection manager registers 
with the objects representing sensors to be notified when their outputs change too 
abruptly.  

• Filtered delta change: monitors are notified whenever the filtered value of the monitored 
property changes by more than a pre-defined threshold.  

Example: the failure detection manager of the previous example may wish to ignore 
“spikes” in sensor outputs that might be due to freak conditions not indicative of a real 
fault. In that case, it registers with the sensor objects to be informed whether its output, 
after filtering for spikes, exhibits a suspicious change. 

Other types of changes may be defined on an ad hoc basis. 

11.2 Change Object Definition 

A change object implements the following interface: 

Interface ChangeObject {
bool checkValue(float value);

}

ChangeObjects objects are responsible for carrying out the check on the property value 
and deciding whether a specified change criterion is met. It is assumed that the property 
value is always a float or can be meaningfully converted to a float. 

Method checkValue takes as argument the current value of the property being monitored 
and it returns true if this value represents a violation of the change profile encapsulated by 
the change object. Note that change objects will in general encapsulate profiles that extend 
over time and hence change objects need to keep track of past value of a property. 

As an illustration, consider the implementation of a class representing a simple change: 

Class SimpleChange: public ChangeObject {

float oldValue;

bool checkValue(Real newValue) {
if (newValue != oldValue) {

return true;
}
oldValue := newValue;
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return false;
}

}

Here method checkValue checks whether the new value is different from the old one 
(which it remembers from the previous activation) and, if it is, it returns true to signal that 
the change has occurred.  

As another example consider a change that must detect out-of-range changes in values. This 
could be built as follows: 

Class OutOfRangeChange: public ChangeObject {

float maxValue, minValue;

bool checkValue(float value) {
if ( (value>maxValue) || (value<minValue) ) {

return true;
}
return false;

}
}

In this case, checkValue return true if the value it inspects is outside a pre-defined range. 

Section  12.1 shows an example of how the change object concept can be used to perform 
systematic checks on generic properties. 

Change objects are framework hot-spots since applications must supply the exact definition 
of the change profile in which they are interested. 

11.3 Reusability and Extensibility Issues 

The encapsulation of change types in objects furthers software reusability because it helps 
decouple the task of managing the checks on property changes from that of performing the 
checks. This decoupling is in particular crucial to building a reusable failure detection 
manager in section 24. 

Extensibility is furthered because it is easy to subclass ChangeObject to deal with new 
types of changes tailored to the needs of specific missions. 
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12 PROPERY MONITORING 

The term monitoring or monitoring action refers to the observation of a change over time in the 
value of a property.  

The object performing the monitoring action is called the monitor. The property being 
monitored is called the monitored property. 

In general, objects need to monitor each other in order to coordinate their behaviour and for 
purposes of failure management. 

The monitoring mechanism proposed here is loosely based on the JavaBeans property model 
(see RD6) and on the observer design pattern from RD1.  

Two monitoring mechanisms are identified that are encapsulated in two design patterns: the 
direct monitoring design pattern and the monitoring through change notification design pattern. 

12.1 The Direct Monitoring Design Pattern 

The direct monitoring design pattern is introduced to address the problem of granting access 
to an internal property to a monitoring component. This pattern is very simple as it prescribes 
that the monitor directly accesses the monitored property through its getter methods: 

1 1

Call getProperty when acc

to the propery is require

MonitoringComponent

Real getProperty() {

. . . // return pro

}

MonitoredComponent

+getProperty():Re

 

Thus, for instance, an object that is interested in monitoring property <property> belonging 
to object <object> will periodically access it by calling method get<property> on 
<object>.  

If the monitoring object is interested in detecting changes of a certain type, recourse can be 
made to a change object. Consider for instance the case of a monitored object of type 
SunSensor and suppose that the monitor is interested in detecting whether its X output is 
out of range. This can be done with the following statements: 
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output = aSunSensor.getXoutput();
if ( aOutOfRangeChange.checkValue(output) )

. . . // X output is out of range!

Object aOutOfRangeChange encapsulates an out-of-range change (see section 11.2 for a 
definition of its class).   

In another example, consider a failure detection manager that keeps a list of property objects 
that must be checked periodically and systematically. To each property, a change object is 
associated that specifies the type of change that needs to be detected: 

ProperyObject propertyList[20];
ChangeObject changeList[20];
float value;
ChangeEvent evt;
. . .
for (int k=1; k<20; k++)
{ value = propertyList[k].getValue();

if ( changeList[20].checkValue(value) )
. . . // the change has occured!

}

This example generalizes the example of section 10.2. 

12.2 The Monitoring through Change Notification Design Pattern 

This design pattern is introduced to address the problem of a monitoring component that 
wishes to be automatically notified when a change of a certain type occurs in a specific 
property in which it is interested. 

The JavaBeans component architecture (see RD6) implements a simple mechanism of 
monitoring through change notification with the bound property mechanism: property 
monitors can register with the owner of a property to be notified whenever the value of that 
property changes.  

The JavaBeans mechanism is rather limited because it does not discriminate between different 
types of change: any change results in a notification. In the case of the AOCS, the change 
notification design pattern uses change objects to ensure that notification of a monitor only 
takes place when a change of a pre-specified type has occured.  

The property owner must allow monitors to register and unregister their interest in a 
property. It does so by exposing methods with signatures like:  
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void add<Property>Monitor(Monitor* monitor, ChangeObject* changeObject);
void remove<Property>Monitor(Monitor* monitor);

When a monitor monitor calls add<Property>Monitor it notifies the property owner that 
it is interested in property <property>. The second parameter in the method call indicates 
the type of change in which the monitor is interested. 

When a monitor monitor calls remove<Property>Monitor it notifies the property owner 
that it is no longer interested in property <property>. 

The property owner maintains a list of registered monitors together with their change objects 
and every time the property is changed, the new value is passed through its corresponding 
checkValue method.  

Monitors are notified through a call to method propertyChange. They must therefore 
implement the following interface: 

Class PropertyMonitor {
void propertyChange(…)=0;

}

The arguments of propertyChange serve to identify the property that has undergone the 
change and its owner. The code for updating the value of property property would then 
look like this: 

property := newValue;
for (all currently registered monitors) do {

if (changeObject->checkValue(newValue) // a change has occurred!
monitor->propertyChange(…); // notify the monitor

}

Note that, as in the JavaBeans architecture, the monitors are notified after the change has 
taken place.  

In keeping with the notation used by the JavaBeans architecture, properties that offer a 
notification mechanism are called bound properties. 

The UML diagram of the monitoring through change notification design pattern is: 
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1

0..1

1

0..1

AocsObject

ChangeObject

PropertyMonitor

+propertyChange(changeOrigin

MonitoringComponent

ConcreteChangeObject

updateProperty() {

... // pass property value through

... // change objects and propertyC

... // when the change occurs

}

MonitoredComponent

-updateProperty():

+addMonitor():void

+removeMonitor():v

 

The action to be taken in response to the detection of a change in a monitored property is 
application-specific and therefore method propertyChange defines a framework hot-spots 
(the property change hot-spot). 

12.3 Change Event Adapters 

In the sample implementation proposed above, notification of a change causes a generic 
method propertyChange to be invoked on the property monitor. Since the same object 
might be monitoring several properties or states, monitors have to discriminate among 
several types of change notifications. Sometimes, it may be more efficient to use some kind of 
adaptation mechanism that directly routes the property change event to its handler. This 
would be similar to the event adapter mechanism of the JavaBeans architecture.  

In the present version of the framework, the identification of the change that triggered a call 
to propertyChange is done though its parameters. Use of an event adapter mechanism miht 
be introduced in future versions if it is found that monitors typically have to monitor several 
change sources. 
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12.4 Autocode Generation 

It is worth emphasizing that commercial tools exist that allow users to configure the 
properties and property change notification mechanisms of JavaBeans through graphical user 
interfaces. Beans are represented as icons and users can define and link the properties of 
different beans entirely through graphical means. The tool then automatically generates the 
code that implements the properties and the links graphically specified by the user. 

Such tools could be adapted to the property mechanism described here to allow autocode 
customization of AOCS components.  

12.5 Alternative Implementation  

The JavaBeans architecture also envisages constrained properties whose change can be vetoed 
by the property monitor. It is unclear whether constrained properties are needed in the 
AOCS. They offer flexibility in coordinating state changes between objects but, by the same 
token, they also increase the coupling between the objects. Since the objective is to minimize 
inter-object coupling, the present version of the framework does not use constrained 
properties but this decision may have to be reviewed in later versions.  

12.6 Reusability and Extensibility Issues 

The architecture proposed here for object monitoring furthers software reusability because it 
decouples the task of managing the monitoring process from that of performing the 
monitoring checks. Monitors thus become independent from the type of monitoring checks 
that are performed. 
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13 INTER-COMPONENT COMMUNICATION 

The AOCS software is built as a collection of software components. Framework components 
can exchange three types of information:  

! Command Requests 

Command requests are sent by a component to another to force a change in the latter’s 
internal state. Examples include: command to reset a component, command to reconfigure 
a unit proxy component, etc.  

! Event Data 

Event data are produced asynchronously by objects that wish to signal a change in their 
internal state or the occurrence of some event. Examples of events include the notification 
of an error condition, the notification of a unit reconfiguration, the notification of a 
successful telecommand execution, etc. 

• Cyclical Data (also simply called “data” or “AOCS data”) 

Cyclical data are data that are produced or consumed on a periodic basis by AOCS 
components. Examples include the sensor outputs produced by sensor objects, the torque 
requests produced by the controller object, the telemetry data produced by the telemetry 
manager object, etc. 

In principle, three mechanisms can be identified for inter-component communication: 

! message passing; 
! shared memory; 
! method calls across component boundaries. 

With a message passing mechanism the information transfer is mediated by a transmission 
channel over which a data packet is transferred that contains the information item. This 
mechanism is the most general but also carries the heaviest overhead. It would be useful if 
the AOCS software were distributed. This is not the case at present and is not expected to be 
the case in future systems. Hence, this mechanism is not used in the framework. 

Shared memory has the advantage of decoupling production of data from consumption of 
data. The main disadvantage is that data integrity requires access in mutual exclusion. In the 
proposed AOCS architecture, shared data areas are used for cyclical and event data.  
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Command requests could in principle be packetized as events and passed through a shared 
data area. This approach would have the advantage of confining the execution threads of 
active objects within their own boundaries.  

However, this mechanism would introduce a delay between the time when the command is 
issued (ie. the time when the command event is deposited in the shared data area) and the 
time when the command is executed (ie. the time when the command is picked up from the 
shared memory area). It would also cause both memory and execution overheads.  

For these reasons, command requests from a component A to a component B are 
implemented in the framework as calls performed by A upon methods exposed by B. Thus, 
for instance, to the command to reset a component there must correspond a reset method 
that must be called on the component to be reset: if object A wishes to send a “reset” 
command to object B, it will call its reset method. 

13.1 AOCS Events 

AOCS are encapsulated in objects that are derived from the base class AocsEvent. Class 
AocsEvent defines the three following read-only properties for an event: 

• time stamp (the time when the event was created) 
• event creator 
• event identifier  

Class AocsEvent can be subclassed to construct more specific types of events. For example, 
an event flagging the failure of a failure detection test might include information on the failed 
test.  

The main event classes in the AOCS framework are shown in the UML diagram below. The 
event class names are self-explanatory. 
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ConfigurationEve

SystemEvent

RecoveryEvent

ManoeuvreEvent

ChangeEvent

ReconfigurationEve

FailureEven

ModeEvent

TelecommandEvent

AocsEvent

RootObjec

Resettabl

Configurabl

Telemeterabl

AocsObject

 

The event subclasses implemented by the framework are listed in the table: 

Event Subclass Name Event Description 

TelecommandEvent Describes telecommand-related events  

FailureEvent Describes failures detected by the AOCS 

RecoveryEvent Describes failure recovery actions 

ManoeuvreEvent Describes manoeuvre-related events 

ChangeEvent Describes changes in a property value 

ReconfigurationEvent Describes a component reconfiguration 

ModeEvent Describes a change in operational mode 

ConfigurationEvent Describes an error in the configuration of an object 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
Framework Concept Level Description 
30 April 2002 
Issue 3.3 
Page 66 
 
  

 

University of Konstanz - A. Pasetti 

SystemEvent Records the occurrence of a system event. 

 

13.2 The Shared Event Design Pattern 

This design pattern is introduced to address the problem of allowing components to share 
access to event objects that are generated asynchronously. The pattern is illustrated in the 
following UML diagram: 

0..1 1 0..11
Repository

+create():voi

+first():Item

+next():Item

+isLast():booStores a new event by

calling create() on Repo

Producer

Inspects events using

iteration methods of Repos

Consumer

 

Both the producer and the consumers of the events have access to a repository component 
that acts as a shared data area for the exchange of the events. The event producer calls 
method create to ask the repository to create and store a new event. The event consumer 
uses the iteration methods to retrieve all the events in the repository and process them as 
necessary. 

13.3 Event Repositories 

Event repositories are based on the shared event design pattern. They are the shared data areas 
where AOCS events are stored. Event producers store events in a repository and event 
consumers inspect repositories to verify whether any events of interest to them have been 
produced. 

Event repositories serve two purposes: 

! they act as factories of objects of type AocsEvent; 
! they act as storage points for objects of type AocsEvent. 

Events by their very nature must be created dynamically. However, in an embedded system, 
it is undesirable to allocated memory dynamically. Hence, each event repository pre-allocates 
memory and calls to its create method will simply result in a pre-allocated  event area being 
filled with the description of the event. 
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Event repositories expose methods to allow event consumers to iterate through all events 
currently in the repository. 

Events are never explicitly destroyed. The repository has a pre-defined capacity and when 
that capacity is reached, the oldest event is overwritten. 

Several event repositories are present, one for each category of logically related events. For 
each category of events of type <EventType>, an object of type <EventTypeRepository> 
exists (eg. Events of class FailureEvent are stored in repository objects instantiated from 
class FailureEventRepository). 

13.4 AOCS Data  

AOCS data or cyclical data represent the data periodically produced and consumed by AOCS 
objects. They are encapsulated in objects that are derived from the base class AocsData. This 
is a base type from which the various concrete types that are used in an AOCS are derived. 
The subclasses that are provided by the framework are: 

AocsObject

ConsistencyCheckable

AocsData

ThreeEulerAnglesScalar TwoEulerAnglesNVector

 

Ideally, it would be desirable to have components that process AOCS data in a manner that is 
independent of their concrete type. Thus, components should be able to perform operations 
on the abstract AocsData type in the knowledge that this operation would be invisibly 
dispatched to the correct concrete sub-type.  

This in particular applies to arithmetic operations: components should, for instance, be able to 
add together two AocsData variables without worrying about whether the addition is 
implemented as scalar addition, a vector addition, a quaternion addition, etc. 

This concept was investigated but was found to be impossible to implement without making 
recourse to dynamic memory allocation. The concept adopted for the AOCS framework only 
partially attains the goal of generality of treatment.  
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Basically, it is recognized that AOCS data present two “faces” to the rest of the AOCS 
software that reflect the two main purposes for which AOCS components may need to access 
them. Some components access AOCS data for housekeeping purposes like integrity checking, 
telemetry reporting, failure investigations, etc. Other components access AOCS data for 
computational purposes, namely they use them as inputs or outputs of arithmetic computations. 

The proposed architecture allows uniform treatment of data with respect to housekeeping 
access only. Computational access must instead be done on individual data items. The two 
forms of access are presented in the next two subsections. 

13.5 Housekeeping Access to AOCS Data 

All concrete data types – scalar, vectors, quaternions, etc – are derived from the base class 
AocsData. This base class offers all the functionalities required for housekeeping access to 
AOCS data. The AocsData base class is defined as illustrated in the figure: 

AocsObject

ConsistencyCheckable

AocsData

+AocsData()

+getNumberOfItems():int

+distance(d:AocsData *):Real

+close(d:AocsData *):bool

+close(d:AocsData *,epsilon:Real):bool

+size():Real

+getEarliestTimeTag():AocsTime

+getLatestTimeTag():AocsTime

+getTimeTag(i:int):AocsTime

+normalize():Real

+getDataItemRead(i:int):DataItemRead

+getDataItemWrite(i:int):DataItemWrite

+getProperty(i:int):Property

+reset():void

+resetConfiguration():void

+isConfigured():bool

+writeToTelemetry(stream:TelemetryStream *):void

+getTelemetryImageLength():int

+doConsistencyCheck():bool

+getFormat():AocsDataFormat

+setClosenessThreshold(epsilon:Real):void

+setNormalizationThreshold(newThreshold:Real):void

+getRecoveryAction():RecoveryAction *

+setRecoveryAction(r:RecoveryAction *):void
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The methods: distance, equal, size and close, are metrics methods. They assume 
that the concrete data types are defined in a space in which a metric can be defined. The basic 
method is distance that computes the distance between two AOCS data. In the case of 
scalars, this distance is simply the absolute value of the difference between the two items. In 
the case of vectors and Euler angles, the Euclidean distance is computed. In other cases, type-
specific notions of distance must be implemented.  

Method equal returns true only if the distance is zero. 

Method size returns the distance of the object from the zero point in the metric space. 

Method close returns true if the distance is less than epsilon. 

By convention, attempts to compute a metrics function on a pair of data not of the same 
concrete type will result in some default large value being returned. 

Metrics functions are useful for failure detection as they can be used to perform property 
monitoring. Consider for instance the monitoring of an attitude control error. If this error is 
represented as a variable of AocsData type, it will be possible to use its size methods to 
encapsulate it in a property object and hence to subject it to monitoring to ensure that it 
remains within certain boundaries. 

Some data types - vectors, quaternions, and Euler angles -  can be normalized. A call to 
method normalize causes the normalization to be performed. In the case of a quaternion or 
unitary vector, for instance, a call to normalize rescales the elements of the data type to 
ensure that their quadratic sum evaluates to 1. In the case of Euler angles, method 
normalize moves all angles to the interval [-180deg, +180deg].  

Method normalize returns a Real indicating how far from the normal range the datum 
was. This return value can be used to perform consistency checks on data. Thus, for instance, 
if it was found that the quaternion representing the satellite attitude after integration of the 
Euler equations had a quadratic sum of, say, 1.1, then it is likely that the integration algorithm 
is misbehaving and the fact can be reported as an error. 

The normalization threshold is set by calling method setNormalizeThreshold. 

It is not possible to associate a single time tag to an AocsData as this is a composite type that 
contains several individual data items (eg. a Vector contains three elements that can be set at 
different times). Methods getFirstTimeTag and getLastTimeTag return. respectively, 
the oldest and the most recent time tags of the element in the AOCS data composite. Both 
may be of interest for failure detection purposes. 
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Class AocsData is derived from AocsObject which means that AOCS data inherit the 
telemeterable and resettable interfaces and can therefore be reset or written to 
telemetry. 

Additionally, class AocsData implements interface ConsistencyCheckable and hence 
consistency checks can be performed upon its instances. An AocsData variable has a 
consistent state if it is normalized (ie. if a call to its normalize method returns a value below 
the normalization threshold). 

All the methods discussed so far imply a pure read-only access to the datum and do not 
require any knowledge of its concrete type. They thus realize the objective of generality of 
treatment of all AOCS data.  

The getDataItem methods by contrast are used for the computational access to the AOCS 
data which is discussed in the next sub-sections. 

13.6 Computational Access to AOCS Data 

Concrete AOCS data are retrieved from data pools as references to types AocsData. 
However, as mentioned above, computations cannot be performed directly on this type. 
Instead, components in the AOCS framework that need to perform operations on each other’s 
data will have to do so at the level of atomic variables of primitive type.  

The term data item is used to designate one of the elements of primitive type that make up an 
AOCS datum. Unlike AOCS data, data items cannot be further decomposed into lower level 
entities. A variable of class ThreeVector, for instance, contains three data items 
representing the three elements of the 3-dimensional vector. 

Data items are normally private class attributes that cannot be directly accessed from the 
outside. Access to them must therefore take place through wrapper objects. Two types of 
wrappers are defined to provide read-only and read-write access, respectively. The two 
wrappers are represented by classes DataItemRead and DataItemWrite shown in the 
UML diagram below: 
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RootObject

DataItemRead

-dataItem:Real *

+set(newValue:Real):v

DataItemWrite

-timeTag:AocsTime *

+set(newValue:Real):v

+get():Real

 

Attribute dataItem is the reference to the encapsulated data item. A call to method get 
causes the value of the data item to be returned. A call to method set (exposed by the 
DataItemWrite class only) can be used to change the data item value. Note that it is 
assumed that the data item is of basic type Real and that to each data item a time tag can be 
associated defining the time when the data item was last updated. 

DataItemRead objects can be used to establish links between producers and consumers of 
data. Suppose for instance that component A uses a data item d from component B as an input 
for its operations. Component B will then expose a method to allow A to get a 
DataItemRead object that encapsulates d. A will then use this DataItemRead object to 
access d.  

Class DataItemRead is designed to be very light-weight because instances of this class are 
extensively used in the AOCS framework 

DataItemWrite objects extend DataItemRead objects to give write access to the data item 
they encapsulate. 

This class adds to the DataItemRead class: a reference to the time tag of the data item and 
methods to set the variable and to read its time tag. The time tag is automatically set by the 
set method. 
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13.7 The Shared Data Design Pattern 

This design pattern is introduced to address the problem of allowing components to share 
access to data that are generated synchronously. The pattern is illustrated in the following 
UML diagram: 

1 1 0..11
Pool

+setDataItem(newValue:Real)

+getDataItem():Real

Producer Consumer

Update the data item

calling setDataItem
Read data item value

calling getDataItem

Single storage poin

the data item

DataItem

 

The data pool component contains a single instance of the shared datum. The datum 
producer (of which there should be only one: the datum owner) calls the setter method to set 
the datum parameters. The datum consumers can use the getter methods to retrieve the 
attributes of the shared datum and, if necessary, to reconstruct it internally.  

Note that data pools could in principle be either active or passive. In active data pools, clients 
register their interest in certain data items and are notified when the data item is updated. 
This design pattern prescribes a passive concept to have maximum decoupling between data 
producers and data consumers. 

13.8 Data Pools 

Data pools are based on the shared data design pattern. They are the shared memory areas 
through which AOCS data are exchanged among framework components.  

The data pools physically contain the data items. Data users access the data in the pool 
through references.  

Only one instance of a data of a certain type can be stored in the pool. This means that if, for 
instance, the method to set the control torque in the attitude data pool is called twice, then the 
datum written to the pool at the second call overwrites the datum written at the first call. 
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This mechanism is rigid but safe. It is suitable for cyclical data whose number and type is 
fixed and can be determined at design time.  

Note that data pools introduce some overhead because data have to be copied to a data pool.  

Several classes of data pools may be present where every data pool class groups together 
logically related data. The framework thus provides an interface DataPool from which 
application specific data pools can be instantiated. This is the data pool subclass hot-spot. 

13.9 Alternative Implementation for Aocs Data 

The data item interface in AocsData may seem superfluous. In an alternative design, one 
could endow AocsData with the following methods:  

void set(int j, Real newValue);
Real get(int j);

These methods could be used to set and get the j-th component of the datum. However, in 
order to link components to locations in the data pools, it is necessary to have references to 
them.  

In an another alternative design, one might then think to provide class AocsData with the 
following method: 

Real* get(int j);

This method would return the reference to the j-th element and could be used to read and 
write the element. Now linking to components that use the element is possible but no access 
control is possible: any component can set the value of any AOCS data element. The data item 
mechanism instead discriminates between read-only and read-write access. 

Finally, the type AocsData is a composite type that gathers together the individual elements 
of the concrete types it represents. These individual elements may have individual properties. 
For instance, each element may have its own time tag. For this reason, too, is encapsulation of 
individual data items useful: it makes access to the item’s properties easy and natural.  

13.10 Reusability and Extensibility Issues 

This framelet enhances reusability in three ways. Firstly, through the use of shareable data 
areas for inter-component communications, it decouples the production of data and events 
from their consumption. Secondly, by allowing uniform treatment of all data types, it makes 
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component interfaces independent of the type of data they process. Thirdly, with the data item 
concept, it provides a way to link components together at run-time. 

Ease of extensibility is guaranteed by the possibility of creating new subclasses of AocsData 
and AocsEvent to encapsulate new types of data or events. 
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14 SEQUENTIAL DATA PROCESSING CHAINS 

AOCS data that are passed through several consecutive stages of processing will be said to go 
through a sequential data processing chain.  

As an example of a sequential data processing chain consider the processing of the raw data 
collected by a sensor:  

• conversion from raw data to engineering units2; 
• correction for sensor misalignments; 
• bias correction; 
• transformation from sensor to satellite reference frame 

In another example, an attitude controller processes the raw attitude measurement as follows: 

• filtering of raw data to remove the measurement noise; 
• filtering to cut off frequencies that might excite solar panel oscillations; 
• passage through a controller to compute the control torque. 

Once again, each bullet can be seen as representing a processing stage in a sequential data 
processing chain. 

In the previous examples, each processing stage was single-input-single-output. A processing 
chain can include multi-input-multi-output stages as in the case shown in the next figure. The 
figure shows a 2-axis controller where the sensor measurements are first passed through a 
Kalman Filter (KF) and are then fed to an attitude controller. 

 

 
 

sensor_1 data        Axis_1 control torque 
 
 
         KF   Controller 
 
 
 sensor_2 data        Axis_2 control torque 
 
 
 

                                                      
2 By sensor raw data it is meant the data as they are acquired from the physical bus that links the sensor to 
the AOCS computer. The engineering unit data are the same data transformed to physical quantities (eg. 
Volts, degrees, rad/sec, etc.) 
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14.1 Implementation 

In considering the implementation of sequential processing chains, a trade-off must be made 
between generality and complexity: the most general implementation is also the most 
complex and the simplest implementation cannot cover all cases of processing chains. 

During the framework design process, three implementation concepts for sequential 
processing chains were considered. The first two – the data converter and the control channel 
concepts – stand at the two ends of the complexity/generality spectrum. The third one – the 
formal language concept – takes a more radical approach. 

The Data Converters described in section 15 are suitable to deal with processing chains that are 
linear (as opposed to tree-like) and that have a well-defined first or last stage. Their range of 
application is therefore rather restricted but they can be implemented in a very efficient 
manner using the decorator pattern from RD1. 

The Control Channels of section 16 are instead based on the composite pattern of RD1 and are 
more general as they cover the most general case of multi-input-multi-output processing 
stages linked in any arbitrary manner. As would be expected, their generality is paid for with 
greater complexity of use and of implementation. 

Finally, section 17 offers a third option for the implementation of sequential processing 
chains. Its approach sees a processing chain as a sentence in a simple formal language. 

In the AOCS framework, the control channel concept has been adopted and the other two 
concepts will not be considered further. 
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15 DATA CONVERTERS 

Data converters are a type of sequential data processing chain (see section 14). They are suitable to 
represent processing chains with the following characteristics: 

• the processing chain is linear (as opposed to tree-like) 
• it is possible to identify a well-defined first or last processing stage 

As an example, consider again the treatment of the read-out data from a sun sensor. The raw 
data from the sensor have to go through the following conversions: 

• conversion from raw data to engineering units; 
• correction for sensor misalignments; 
• bias correction; 
• transformation from sensor to satellite reference frame 

This conversion chain can be implemented as a data converter because it is clearly linear and 
it has a well-defined first stage in the conversion from raw data to engineering unit. The latter 
must always be made and must always be the first conversion stage. The other conversion 
stages by contrast need not always be present (eg. sometimes no bias correction is performed) 
and their order is not fixed (eg. bias correction can be done either before or after 
misalignment correction).  

15.1 Implementation 

A data converter represents a sequence of conversion stages. The data at each stage are 
assumed to be of the same AocsData type. Thus, the operation performed at each stage can 
be conceptualized as: 

output = convert(input);

where both output and input are of type AocsData. 

The data converter is implemented using the decorator pattern from RD1.  

As prescribed in RD1, decorators and decorated objects must share an interface that in the 
case of AOCS data conversion is naturally defined as follows: 

class DataConverter {
AocsData* convert(AocsData* data)=0;

}
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Decorator objects are derived from the following class: 

class DataDecorator: public DataConverter {
DataConverter* component;

void setComponent(DataConverter* component) {
this->component = component;

}

AocsData convert(AocsData* data) {
return component->convert(data);

}
}

To each processing stage after the first one in a sequential data processing chain there 
corresponds one decorator. Passing a datum through the sequential processing chain is then 
equivalent to subjecting the output of the first processing stage it to successive decorations.  

The implementation of the AOCS data converter is described in detail through an example in 
the next subsection. The terminology is the same as in RD1.  

15.2 AOCS Data Conversion Example 

This example considers the case of a sun sensor whose raw data must be converted to 
engineering units, corrected for bias, and finally transformed to satellite reference frame.  The 
UML diagram for the example is at the end of this subsection. 

First, a concrete component must be defined. This component represents the first stage of the 
conversion chain. In the case of the example it is an instance of the following class: 

class SunSensorDataConverter: public DataConverter {

AocsData* convert(AocsData* rawData) {
. . . // convert the sun sensor raw data rawData to eng. units
. . . // and return the converted value

}
}

Objects of this class perform the basic conversion of sun sensor data from raw data to 
engineering unit data. Decorators are then required to perform conversions to remove bias 
and to transform the sensor output to the satellite reference frame. The decorator for the bias 
removal will be an instance of the following class: 
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class BiasDecorator: public DataDecorator {

AocsData* convert(AocsData* data) {
data = DataDecorator::convert(data)
. . . // remove bias from ‘data’ and return the result

}
}

The class for the decorator responsible for the coordinate transformation is defined in a 
similar manner: 

class CoordinateDecorator: public DataDecorator {

AocsData* convert(AocsData* data) {
data = DataDecorator::convert(data)
. . . // tranform ‘data’ to the satellite reference frame
. . . // and return the result

}
}

The implementation of the decorator is now as follows: 

SunSensorDataConverter aSunSensorDataConverter;
CoordinateDecorator aCoordinateDecorator;
BiasDecorator aBiasDecorator;

aBiasDecorator.setComponent(&aSunSensorDataConverter);
aCoordinateDecorator.setComponent(&aBiasDecorator);

. . .

aCoordinateDecorator.convert(data);

The first three statements create the sun sensor data converter and its two decorators. The two 
statements in the middle set up the links between the three objects. The statement at the 
bottom will cause the three conversions (from raw to engineering data, bias removal, 
coordinate transformation) to be performed in sequence. Note that 
aCoordinateDecorator is itself a DataConverter object can therefore be used wherever 
AOCS data converters are used.   
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15.3 Alternative Implementation 

As already mentioned, data converters are suitable to represent sequential processing chains 
that are linear and that have a well-defined first or last stage. 

If the conversion chain is not linear, then the control channel pattern described in section 16 
should be considered. 

The need for a well-defined ‘first stage’ in the data conversion chain arises from the 
requirement to have (using the terminology from RD1) a ‘concreteComponent’ class. In the 
example of the sun sensor processing chain, for instance, the converter from raw to 
engineering format fulfills this role because this conversion must always take place and must 
always be the first conversion stage. 

The implementation proposed here could be easily modified for the case where the 
‘concreteComponent’ is the last stage in the conversion chain.  

15.4 Reusability and Extensibility Issues 

The architecture proposed here for data conversion furthers software reusability because it 
provides a standard interface for components that must perform conversions on AOCS data. 
The containing component can therefore be made independent of the particular conversion 
that it implements.  

Ease of extensibility is also promoted because changing the converter objects or adding new 
conversion stages can be done transparently to the code that uses the output data from the 
converter itself. In the sun sensor example of section 15.2, for instance, it would be possible to 
eliminate the bias correction stage or to add a misalignment correction stage without having 
to modify the component that manages the conversion process. Only the code where the 
converter objects are instantiated at initialization time would be affected. 
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16 CONTROL CHANNELS  

Control channels are the most general type of sequential processing chains. They can represent 
any sequential multi-input-multi-output processing chain and allow concatenation and 
nesting of individual processing blocks. 

A sequential processing chain is made up of inter-connected processing blocks. More 
specifically, the term control channel block (or simply  block) will be used to designate a 
processing block that cannot be further decomposed into lower level processing blocks. 

Blocks can be concatenated in chains as shown in the figure: 
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Arrows represent data flow. User input is fed to block 1. User output is taken from block 4. 

Blocks chains can be nested within higher-level blocks called superblocks. Superblocks and 
blocks can be freely mixed in processing chains as in the example in the figure in the next 
page. 

The control chain is enclosed in a superblock (superblock 3) with one input and two outputs. 
The superblocks contains both two superblocks (superblocks 1 and 2) and one simple block. 

Note that the terminology of blocks and superblocks is the same as in Xmath. Blocks and 
superblocks as defined here map to the homonymous concepts in Xmath. 
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16.1 Data Propagation through Control Channels 

In general, a control channel implements a transfer function of the following kind: 
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uxfx

=
=∆+  

where the usual notation is adopted with u representing the input vector, y the output vector 
and x the state vector.  

The fundamental operation to be performed on a control channel is the propagation of its 
output signal from time t to time (t+∆t). A propagate(t) operation is defined on control channel 
objects that causes their outputs to be propagated up to time t. 

The time t to which the output values are propagated is called the validity time of the outputs.  

In order to compute y(t), the control channel needs to know u(t). Thus, if control channels are 
arranged in a sequential chain, a propagation request must be passed to upstream blocks. 

For example, consider again the control channel chain of the first figure in the previous 
section. Suppose propagate(t) is called on block 4. Before this operation can be performed 
on this block, it is necessary to update the inputs to the block and this is done by calling the 
same operation propagate(t) on blocks 2 and 3. Thus, propagate requests percolate 
backward along the processing chain. 
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Eventually, they will reach a control channel that takes its inputs from an object that is not 
itself a control channel. Such external signals will be assumed to be fed to a control channel 
using a zero-order hold. This means that their value will be assumed to be constant across 
propagation instants. 

To illustrate the zero-order hold concept, consider for instance the situation in the figure: 
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Suppose that both input and output have the same validity time t. Suppose now that 
operation propagate(t+∆t) is called on the control channel. The control channel will 
responds by updating its output to y(t+∆t) and it will do so by assuming that the input 
remains constant and equal to u(t) throughout the propagation interval. 

If a first-order hold were used, then the value of the input signal would be computed by 
linear extrapolation from its last two known values. Higher order holding systems are also 
possible. Zero-order holding is, however, by far the most commonly used type of holding 
mechanism in satellite control systems and is the only one for which the AOCS framework 
makes provisions. 

The propagate method represents one of the framework hot-spot (the control block hot-spot) 
because each AOCS application must provide its own definition of the transfer functions it 
needs. 

16.2 Signal Loops 

The mechanism outlined in the previous section cannot cope with signal loops.  

Consider the situation shown in the figure: 
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When the super block receives a propagate request, it will route it to block 1. Before 
executing the propagate action, block 1 will try to update its inputs. It will do so by issuing 
a propagate request to block 2. This will in turn try to update its inputs and will do so by 
issuing a propagate request to block 1. An endless loop will result. 

The example shows that signal loops in the control channel connections, either at block or 
super block level, will result in an endless loop.  

The propagation mechanism could be modified to handle loops (at the cost of some overhead) 
but this is judged unnecessary as signal loops should not arise in an on-board control system. 

Note that there is no loop detection mechanism. Responsibility for detecting loops rests with 
the developer who makes the control channel connections. 

16.3 The Control Channel Design Pattern 

This design pattern is introduced to model the control channel concept and in particular the 
distinction between blocks and super blocks. The control channel design pattern is obtained 
by instantiating the composite pattern and it is shown in the following UML diagram: 
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1..*

AbstractControlChannel

+propagate(t:AocsTime):v

ControlChannelBlock

+blockManagementOperation():vo

+propagate(t:AocsTime):void

ControlChannelSuperBlock

+superBlockManagementOperation():voi

ConcreteControlChannelBloc

+propagate(t:AocsTime):v

 

AbstractControlChannel is a pure interface that exposes the methods that are common to 
all control channels, regardless of whether they are blocks or superblocks. Control channels 
are always seen by their clients as instances of this class. Since both blocks and superblocks 
are derived from AbstractControlChannel, they can be treated in a uniform manner as 
instances of abstract control channels. The fundamental operation exposed by 
AbstractControlChannel is propagate(t) that propagates the input signals to the output 
up to time t as discussed in a previous section. This method gives rise to the control channel 
hot-spot through which application developers must define the transfer function to be 
implemented by the control channels they use. 

Abstract control channels can be implemented either as control blocks or as control super 
blocks. ControlChannelBlock is an abstract class that acts as base class for all concrete 
control blocks. It provides concrete implementations of methods and data structure to 
manage block operations. This class for instance provides data structures to buffer the input 
and output signals and operations to reset them. Such data structures and operations are 
common to all control channel blocks. This class is abstract because it does not provide any 
implementation for method propagate.  The implementation of this method defines the 
concrete transfer function that is implemented by the control channel. Concrete control blocks 
specialize ControlChannelBlock by providing concrete algorithms for the propagation of 
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the input signals through the control block. The AOCS Framework provides as default 
components concrete implementations of this class that implement common transfer 
functions such as PD blocks, PID controllers, integrators, etc. 

Super blocks are represented by instances of class ControlChannelSuperBlock which is 
derived from AbstractControlChannel. This class defines a default component that 
manages a set of interconnected lower-level blocks. The lower-level blocks are seen as 
instances of AbstractControlChannel since they can be either control channel blocks or 
control channel super blocks. 

Since both blocks and superblocks are derived from AbstractControlChannel, they can 
be treated in a uniform manner as instances of control channels.  

16.4 Recursion 

Calls to method propagate() can be recursive since when they are called on a given 
component A, they have to be propagated backward to all control channels directly or 
indirectly linked to A’s inputs. The maximum depth of the recursion is given by the 
maximum length of a chain of connected control blocks. 

16.5 Input and Output Linking 

Control channels return their outputs as data items (see section 13.6), namely they return 
objects of type DataItemRead that encapsulate a reference to the output itself. 

Control channel inputs can be linked either to external variables or to the outputs of other 
control channels. Input linking is also done through data items. Thus, when the input of a 
control channel needs to be linked to a particular external variable, it is passed the 
DataItemRead object that encapsulates the desired variable. If instead it needs to be linked 
to the output of another control channel, it is passed the data item returned by the source 
control channel to encapsulate its output.  

16.6 Interface to Xmath Autocode 

Xmath is a widely used simulation and modeling package for dynamic systems. Xmath can 
be used to set up and simulate the kind of transfer functions that are commonly used in 
control systems.  

Xmath includes an autocode tool that can generate the code implementing the transfer 
function simulated by an Xmath model. The AOCS framework offers a hook where such code 
can be plugged in. This allows embedding of Xmath models into framework control channels. 
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16.7 Reusability and Extensibility Issues 

The architecture proposed here for control channels furthers software reusability because it 
provides a standard interface for components that must perform sequential processing on 
AOCS data. The containing component can therefore be made independent of the particular 
processing that it implements. 
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17 A FORMAL LANGUAGE TO EXPRESS THE AOCS DATA FLOW  

The data flow part of the AOCS software essentially transforms sensor outputs into actuator 
commands passing through data conditioning, data filtering, application of control 
algorithms, and other processing stages. 

Section 14 introduced the concept of sequential data processing chain to represent the data flow 
subsystem of the AOCS. The following two sections, sections 15 and 16, proposed two 
implementation for the sequential data processing concept: data converters and control 
channels.  

Both the control channel and the data converter concept model a data flow system as made 
up of interconnected and nested blocks. All blocks are treated as homogeneous since they are 
derived from the same base class (AbstractControlChannel in the case of control 
channels and DataDecorator in the case of data converters). There is therefore no syntactic 
restriction to how blocks can be linked to each other or nested within each other. 

An interesting alternative is to view a particular data flow system as a sentence in a simple 
formal language. In the AOCS context, the basic elements of the language can be types of 
blocks like: 

• real AOCS sensor 
• fictitious AOCS sensor 
• real AOCS actuator 
• fictitious AOCS actuator 
• controller 
• filter 
• state estimator 

These blocks are the ‘words’ of the ‘sentence’. They can be strung together according to a 
small set of formal rules. Examples of rules (expressed in informal language) could be: 

• a sensor must be followed either by a fictitious sensor or by: a filter, or a state estimator, or 
a controller; 

• a controller can only be followed by: a filter, or an actuator, or a fictitious actuator; 
• a fictitious actuator can only be followed by another fictitious actuator or by a real 

actuator. 

These and other similar rules could be easily formalized to create a grammar specifying how 
data flow blocks can be linked together. The interpreter pattern of RD1 could then be used to 
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‘evaluate’ ‘sentences’ of the grammar. In the present context, a ‘sentence’ would be data flow 
diagram for the AOCS and the process of ‘evaluation’ would refer to the processing of data 
that are input at one end of the data flow diagram (the ‘sensor end’) and result in outputs 
being produced at the other end of the data flow diagram (the ‘actuator end’). 

Such an approach is very attractive for its generality and ease of extension. It would result in 
components being made available to designers that can only be linked together in manners 
that are semantically meaningful.  

From an implementation point of view, this approach would probably not be any more 
complex than the approaches proposed in the previous two sections. Perhaps its only 
conceptual drawback is that the it blurs the distinction between AOCS units and unit-like 
objects (the fictitious units in the terminology adopted here) on the one hand, and other types 
of data flow blocks (controllers, filters, etc). Units are different because they can issue 
instructions and need to be triggered. It may therefore not be appropriate to treat them like 
controller or state estimator blocks which are instead pure input-output devices.  

Because of its potential complexity, the option of treating the data flow part of the AOCS 
software as a formal language was not further considered in the AOCS prototype framework 
but may be taken up again in future versions of the framework. 
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18 AOCS UNITS MANAGEMENT 

The AOCS units are the equipment that is external to the AOCS computer but is part of the 
AOCS subsystem. They are represented within the AOCS software by proxy objects that 
encapsulate the interactions with the hardware. The AOCS framework proposes a generic 
interface that must be implemented by all unit proxies. This interface acts as an adapter (in 
the sense of the adapter design pattern of RD1) between the AOCS software and each AOCS 
unit. 

AOCS units can potentially be very different ranging from very simple sun presence detector 
to very complex devices like GPS receivers or autonomous star trackers. Providing a standard 
interface that covers the entire range of AOCS equipment is probably impossible. In 
accordance with the principle laid down in section 3.3, the concept proposed here for unit 
management is targeted at units of the kind in use at present. The assumed unit model is 
described in the next subsection. 

Adapting the AOCS framework to more “intelligent” units will require developing a concept 
for active units. It is envisaged that the solution lies in designing objects that can encapsulate 
a data exchange (similar in concept to the objects that encapsulate telecommands, see section 
26). 

18.1 Abstract Unit Model 

The AOCS framework assumes that units are passive, namely incapable of initiating data 
exchanges with the AOCS computer. All data transactions with a unit occur in response to a 
command from the AOCS computer. 

Data transactions between AOCS computer and AOCS units fall under two categories: 

• Functional Transactions 

This type of transaction is cyclical and relates to the primary function for which a unit was 
designed. Thus, for instance, a thruster unit periodically receives firing profiles, a gyro 
periodically supplies rate information, a reaction wheel periodically receives torque 
requests. 

• Housekeeping Transactions 

This type of transaction may be occasional and it consists of commands sent by the AOCS 
computer to the unit (eg. to change its operational mode, to switch the unit on or off, etc) 
and of housekeeping data sent by the unit to the AOCS computer (eg. temperature 
readings, results of self-tests) 
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The unit status is defined by: 

• Power status  

Units can either be “power on” or “powered off” 

• Operational Mode 

Units may be in one of several operational modes 

• Health Status 

Units can either be “healthy” or “unhealthy” 

Finally, units may be able to perform a self-test. The result of a self-test is an integer code. 

18.2 Unit Data Formats 

Data in the AOCS units can exist at two levels of abstraction: 

• the raw data level representing the data as they are transmitted on the physical 
communication link between the unit and the AOCS computer; 

• the AOCS data level representing the data as they are used by clients of the AOCS unit 
objects in the AOCS software. Such data are expressed in engineering units and, if they 
depend on reference frame, are expressed in the spacecraft reference frame. 

The raw data level is mission-specific and cannot be defined here. This data level, however, is 
internal to the AOCS unit objects. All exchanges between the AOCS unit objects and other 
AOCS software objects take place at the AOCS data level. It is the responsibility of the AOCS 
unit object to perform conversions between raw and AOCS data levels. 

18.3 Data Exchange Model  

The model for the exchange of data between hardware and AOCS unit objects is illustrated in 
the figure in the next page. The figure assumes the case of a unit that can both receive and 
send data (this could for instance be the case of a reaction wheel that receives torque requests 
and sends wheel velocity measurements). Most units will only work in receive or send mode.  

As shown in the figure, the AOCS unit object maintains hardware buffers where incoming or 
outgoing data are deposited at raw data format. The transfer between these buffers and the 
hardware interface is done by low level mechanisms. 

In a typical example. The hardware interface could be a MACS bus controller. Data reception 
triggers an interrupt whose servicing routine deposits the incoming data word in the 
hardware input buffer where it remains available for further processing by the AOCS unit. 
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Data to be sent to the unit must instead be written to an I/O address. In that case, the 
hardware output buffer serves as the source for the data written to the I/O port by a 
dedicated routine. 
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Only single hardware buffers are shown in the figure. In reality, the buffers may be made up 
of several memory locations holding related data. The hardware output buffer for a thruster, 
for instance, will consist of at least two locations holding the firing duration and firing delay 
data. 

The AOCS unit object maintains links to data pool locations where the incoming and 
outgoing data are stored as variables at AOCS data level. The location where incoming data 
are stored is called destination data buffer and the location from which outgoing data are 
retrieved is called source data buffer. The destination and source data buffers are sets of data 
items in the data pools. 

In the case of a sun sensor, for instance, the destination data buffer is made up of two (or, 
depending on the representation, three) data items representing the sun vector as measured 
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by the sun sensor but expressed in engineering units and referred to the spacecraft coordinate 
frame.  

The translation between raw and AOCS data level, and hence the transfers between hardware 
and destination/source buffers, is done by operations refreshIn and refreshOut. 
Operation refreshIn refreshes the content of the destination data buffer updating it with 
the latest data received from the unit. Operation refreshOut refreshes the hardware output 
buffer ensuring that it contains the most up-to-date datum to be sent to the unit. 

Operations refreshIn and refreshOut simply update the content of certain buffers. They 
do not initiate data transfers. Dedicated operations, dataAcquire and dataSend, are 
provided for this purpose. Thus, for instance, a data acquisition cycle would proceed as 
follows: 

• Initiate the bus transaction to acquire the data from the physical unit 

• Check that the acquisition process is finished 

• Call refreshIn to convert the data from raw to AOCS data and to transfer them to a 
data pool.  

At the end of this three-step process, the newly acquired data are located in a data pool in 
AOCS format and referred to the satellite reference frame. From the data pool, they are 
accessible to all other objects in the AOCS software. 

18.4 Unit Error Handling 

Errors arising while interacting with the hardware interface to physical units are reported as 
events that are stored in the appropriate event repository. 

18.5 AOCS Unit Objects 

AOCS unit management is based on the adapter pattern of RD1. The framework introduces an 
abstract base class – AocsUnit – that defines a generic interface for exchanges with concrete 
units. This class in turns implements two interfaces: AocsUnitFunctional and 
AocsUnitHousekeeping. The two interfaces represent two conceptually different types of 
access to the unit.  

Interface AocsUnitHousekeeping represents the commanding interface of the AOCS unit. 
Through it, it is possible to perform operations like resetting the unit, checking its health 
status, getting its bus address and performing other housekeeping services.  
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An AOCS unit is seen by the rest of the AOCS software as a server offering certain services 
(eg. a gyro is an object that can be queried for rate information). Interface 
AocsUnitFunctional models this high-level functional interface.  

The two interface AocsUnitFunctional and AocsUnitHousekeeping could in principle 
be merged together. They are kept separate to allow the definition of fictitious unit, namely 
objects that, though not true AOCS units, mimic their functional behaviour. Obviously, both 
AocsUnitHousekeeping and AocsUnitFunctional only capture behaviour that is 
common to all AOCS units. 

Concrete AOCS unit classes are derived from AocsUnit through class inheritance. The 
overall class diagram for AOCS units is: 

0..1AocsUnitHardware

RootObject

Resettabl

Configurabl

Telemeterabl

AocsObject
AocsUnitFunctionalAocsUnitHousekeeping

ConcreteHardwareInterfac ConcreteUni

AocsObject

AocsUnit

 

Concrete unit objects delegate low level operations to objects of class AocsUnitHardware. 
AocsUnitHardware objects encapsulate the direct exchanges with the hardware. They are 
normally not visible outside the framelet. Several AOCS units may share access to the same 
AOCS unit hardware object. Like most non-trivial objects in the AOCS software, unit objects 
are ultimately derived from class AocsObject. 
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The definition of unit-specific functionalities by subclassing AocsUnit represents a 
framework hot-spot (AOCS Unit Hot-Spot) as does the definition of the hardware interface 
with the units by implementing interface AocsUnitHardware (AOCS Hardware Unit Hot-Spot). 

18.6 The AocsUnitHousekeeping Interface 

The AocsUnitHousekeeping interface is defined as follows: 

AocsUnitHousekeeping

+initialize():void

+isInitialized():bool

+selfTest():void

+isSelfTestFinished():bool

+getSelfTestResults():int

+resetUnit():void

+resetTransaction():void

+acquireHousekeepingData():void

+isHousekeepingTransactionFinished():bool

+refreshHousekeepingIn():void

+setHousekeepingInConverter(c:AbstractControlChannel *):void

+setHousekeepingInLink(d:DataItemWrite,i:int):void

+setHousekeepingInLink(d:AocsData *):void

+getHousekeepingInLink(i:int):DataItemWrite

+synchronizeHousekeeping():void

+isSynchronizeHousekeepingFinished():bool

+switchOn():void

+switchOff():void

+isSwitchOn():bool

+setMode(newMode:int):void

+isUnitHealthy():bool

+getHealthProperty():Property

+addHealthMonitor(monitor:PropertyMonitor *,changeObject:ChangeObject *)

+removeHealthMonitor(monitor:PropertyMonitor *):void

+setHwFailureRecoveryAction(r:RecoveryAction *):void

+getHwFailureRecoveryAction():RecoveryAction *

 

AOCS units have an address (the address of the unit on the subsystem bus or equivalent) and 
a health status that can be retrieved by calling methods getAddress and isHealthy. The 
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health status is a bound property that can be subjected to monitoring through change 
notification (see section 12.2).  

Units can be reset by calling method resetUnit (note that this is different from the generic 
reset method that applies to all AOCS objects: the latter resets the software object, the former 
issues commands to reset an external unit). 

Units can be powered up and down by calling methods switchOn and switchOff. Their 
power status can be checked through method isSwitchedOn. 

Units can have different operational modes. Method setMode allows the operational mode to 
be changed. 

Units often have to perform some kind of initialization procedure after being switched on. 
This is done by calling method initialize. The initialization procedure may involve bus 
transactions that take some time. The method is non-blocking and the completion status of 
the initialization procedure can be checked by calling method isInitialized. 

Some units can perform self-tests. A self-test is initiated by calling method selfTest. This is 
a non-blocking call and the self-test result is obtained (at an unspecified later time) with 
method getSelfTestResult.  

Housekeeping data are acquired by calling acquireHousekeepingData. A call to this 
method initiates the process for the acquisition of housekeeping data from the unit. This 
method is non-blocking and the completion status of the acquisition can be checked by 
calling isHousekeepingAcquisitionFinished. 

Housekeeping data are acquired at raw data level and placed in a hardware buffer internal to 
the AOCS unit. Their conversion to AOCS data level and transfer to a data pool is done by 
calling refreshHousekeepingOut. The conversion, and any other processing on the raw 
data (eg. bias correction), is done by a control channel object that can be set with method 
setConverter. The link to the data pool locations is through data item that are set with 
method setHousekeepingInLink.  

Thus, the housekeeping part of an AOCS unit can be configured (dynamically, if desired) by 
setting the control channel that encapsulate the type of processing performed on the raw data 
acquired from the physical unit and by linking it to the data pool locations where the 
acquired data are to be deposited after processing. 

18.7 The AocsUnitFunctional Interface 

The AocsUnitFunctional interface is defined as follows: 
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AocsUnitFunctional

+acquireFunctionalData():void

+sendFunctionalData():void

+isAcquireTransactionFinished():bool

+isSendTransactionFinished():bool

+refreshFunctionalIn():void

+refreshFunctionalOut():void

+synchronizeFunctional():void

+isSynchronizeFunctionalFinished():bool

+setFunctionalInConverter(c:AbstractControlChannel

+setFunctionalOutConverter(c:AbstractControlChannel

+setFunctionalInLink(d:DataItemWrite,i:int):void

+setFunctionalInLink(d:AocsData *):void

+setFunctionalOutLink(d:DataItemWrite,i:int):void

+setFunctionalOutLink(d:AocsData *):void

+getFunctionalInLink(i:int):DataItemWrite

+getFunctionalOutLink(i:int):DataItemWrite

 

The interface exposes methods to acquire and send data, to process these data, and to link to 
the data pool locations where incoming data are to be deposited and outgoing data are to be 
retrieved. The processing is done by control channel objects that can be set as part of the 
configuration of the AOCS unit object. The discussion of the previous section applies, mutatis 
mutandis, equally well to these methods. 

Typical operations that would be performed on incoming or outgoing data include: 

• conversion between raw data and engineering units; 
• correction for sensor misalignments; 
• bias correction; 
• transformation between sensor and satellite reference frame 

The use of control channels to encapsulate such operations means that the type and sequence 
of operations can be easily changed. 

18.8 Acquiring and Sending Atomic Data 

It should be noted that the two interfaces defined above make provisions for only one set of 
data to be acquired from or sent to the unit because there is only one acquireData and 
sendData operation without arguments. Thus, a call to acquireFunctionalData is 
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translated into a set of instructions to acquire all the functional data required from the unit in 
one acquisition cycle.  

Consider for instance the case of a sun sensor. Such a unit will normally provide two data 
words in each acquisition cycle representing the two components of the sun vector as seen by 
the sensor. The two data words are normally acquired in two distinct instruction cycles. The 
interface proposed here would not allow the acquisition of only one sun vector component: a 
call to acquireFunctionalData on the sun sensor object will cause both data words to be 
acquired and to be placed in the data pool locations to which the object is linked. 

This may seem like a lack of flexibility. In reality, AOCS units in current use are invariably 
designed to supply or require only one type of attitude information. This information may 
physically be constituted of several data words but conceptually, it represents a coherent 
whole and users of the AOCS unit are unlikely to ever need only a subset of this information. 
The proposed interface, on the other hand, has the advantage of simplifying the management 
of the unit and is suitable for fictitious units (see section 19) thus allowing uniform treatment 
of a large array of components. 

18.9 Unit Triggers 

AocsUnit objects are passive objects. Data and command exchanges with external units need 
to be started by some external active object. One solution to this problem is to leave the task 
of initiating data exchanges to the objects that need the sensor data. Thus for instance, an 
attitude controller that uses sun sensor data will be responsible for triggering the sun sensor 
acquisition. This solution may often be acceptable but will sometimes incur the following 
problems: 

• Data exchanges may take time and this may force the data consumer unit to poll the 
device after initiating an exchange; 

• Data exchanges may have to be done at specific points in the AOCS cycle (typically, 
sensors are sampled at the beginning of the cycle and actuators are commanded towards 
the end of the cycle) and these times do not necessarily fall within the activation window 
of the object that consumes or produces the unit data. 

An alternative solution is to use dedicated objects to control data exchanges with AOCS units. 
Such objects will be called UnitTriggers. 

A UnitTrigger is an active object. Its function is simply to initiate transactions with units 
that need to be activated at the same time. In a typical configuration, two UnitTrigger 
objects can be used. The first one is scheduled very early in the AOCS cycle and is responsible 
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for triggering data acquisitions from sensors. The second one is scheduled towards the end of 
the AOCS control cycle and is responsible for triggering transmissions of data to the 
actuators. 

UnitTrigger objects may be endowed with operational mode (see section 21) if the sequence 
and type of units they have to be trigger vary in different mission phases.   

18.10 Reusability and Extensibility Issues 

The architecture proposed here furthers software reusability because it provides a standard 
interface for AOCS units that decouples the managers and users of unit data from the units 
themselves. Components can be written in terms of the generic AocsUnitFunctional and 
AocsUnitHousekeeping interfaces and can be coupled at run-time with specific units.  

Ease of extensibility is provided by the option of subclassing AocsUnit to implement specific 
types of units. 
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19 FICTITIOUS AOCS UNITS 

AOCS units were defined in the previous section as objects that implement two interfaces: 
AocsUnitHousekeeping and AocsUnitFunctional. The former interface is used for 
issuing housekeeping commands to the unit while the latter is used for data exchanges with 
the unit. If the AOCS unit is seen as a server offering certain services, this latter interface 
captures the behaviour of AOCS units that is visible to the unit’s clients. Clients of the unit 
would normally regard an AOCS unit object as an instance of AocsUnitFunctional rather 
than as an instance of AocsUnitHousekeeping.  

AOCS unit objects act as proxies for physical units that exist outside the AOCS computer. 
Very often, however, a situation arises where a unit-like behaviour is exhibited by objects that 
do not directly represent any external physical equipment. Consider for instance the 
acquisition of angular rate information from a gyro package. The physical units are gyros that 
are sometimes individually addressable and to which there correspond AOCS unit proxies in 
the AOCS software. The users of rate information (eg. the attitude controllers) will normally 
interact with a higher-level object that combines the read-out from individual gyros to 
produce a 3-vector representing the estimated spacecraft angular velocity. From their point of 
view, this high-level object is a kind of unit on which the same operations can be performed 
as are normally performed on AOCS unit proper. This type of objects will be called fictitious 
AOCS units. 

Another example of fictitious AOCS unit could be an object that combines measurements 
from a gyro package and from a star sensor and perform filtering on them to produce high 
accuracy attitude estimates. Users of the attitude estimate would like to see this object as a 
proxy for some high-accuracy attitude sensor. 

The unit reconfiguration managers of section 20 provide still another instance of fictitious 
units. In this case, the reconfiguration managers takes care of reconfiguring the units it 
manages according to their health status while at the same time offering to clients of the units 
the same functional interface that the units themselves would offer. 

In order to handle all these situations, the framework proposes the fictitious unit design 
pattern described in the following sub-section. 

19.1 The Fictitious Unit Design Pattern 

This design pattern is introduced to address the problem of combining components that 
process unit data without impacting the final users of the unit data. 
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The design pattern is based on the concept of fictitious AOCS unit that is defined as an object 
that implements the AocsUnitFunctional interface. By implementing this interface, an 
object offers to its clients the same functional interface as an AOCS unit. 

The fictitious unit pattern is illustrated by the following UML diagram: 

1

1..* 1AocsUnitFunctional

UnitDataProcessor

UnitDataClient

 

The UnitDataProcessor is a concrete class that performs some kind of processing on the 
unit data. It is a fictitious AOCS unit because it implements interface AocsUnitFunctional. 
The unit data processor obtains the unit data from components that it sees as instances of type 
AocsUnitFunctional. These components may either true AOCS units or fictitious AOCS 
units. Interaction through the AocsUnitFunctional interface shields the unit data 
processor from having to know whether it is interacting with a real or a fictitious unit. 
UnitDataClient is the final user of the unit data. It too sees its source of unit data as an 
instance of type AocsUnitFunctional with the same advantages. 

The fictitious data unit concept allows data processors to be easily combined without 
disrupting client’s operation. An example of a combination of unit data processing elements 
is shown in the figure using informal notation: 
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The controller is the final user of the sensor data. Its operation is independent of how many 
filters and other processing elements are interposed between itself and the actual sensors. 

The fictitious unit design pattern can also be seen as an instance of the composite pattern of 
RD1. 

The implementation of interface AocsUnitFunctional to encapsulate the (application-
specific) processing of unit data is one of the framework hot-spot (fictitious unit hot-spot). 

19.2 Recursion 

The fictitious unit design pattern introduces recursion (as does its close relative the composite 
pattern). Calls to AocsUnitFunctional methods may be recursive and the maximum depth 
of recursion is given by the maximum number of elements that are linked together in a 
fictitious unit chain. 

19.3 Reusability and Extensibility Issues  

The abstraction defined in this section makes it possible to decouple the design of the AOCS 
software from the characteristics of the AOCS units. This is important because the AOCS 
units and their interfaces are often defined late in an AOCS project. 

At an early stage, the software designer can tailor the AOCS software to the characteristics of 
some convenient fictitious units. At a later stage, when the real units are defined, the fictitious 
unit will act as a transparent bridge between them and the rest of the AOCS software. 

Furthermore, the fictitious unit concept makes it possible to treat components that process 
unit inputs and outputs as if they were themselves units thus simplifying the software design. 
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20 RECONFIGURATION MANAGEMENT 

If the same functionality can be implemented in two or more independent ways, then the 
functionality is said to be redundant.  

A redundant functionality can be reconfigured.  

Reconfiguration means switching between different independent implementations of the 
same functionality.  

Reconfiguration usually occurs in response to detection of an error: if one implementation of 
a functionality is found to be faulty, reconfiguration makes the functionality available again 
by switching from a faulty to a (hopefully) correct implementation. 

20.1 Reconfiguration Group 

Functionalities in the AOCS software are implemented as services (method calls) provided by 
objects. The functionality with respect to which reconfiguration takes place is called the 
reconfigurable functionality. The reconfigurable functionality must be represented by an 
interface. 

A reconfiguration group is a set of objects that together offer a redundant functionality. A 
reconfiguration group can be the object of a reconfiguration.  

A redundant object is an object belonging to a reconfiguration group. 

The order of the reconfiguration group is the number of independent, functionally equivalent, 
configurations offered by the group. 

Configurations in a reconfiguration group may be ranked according to the performance level 
with which they implement the group’s functionality. 

A configuration in a reconfiguration group is marked either “healthy” or “unhealthy”. When a 
reconfiguration takes place, the configuration the group is configuring away from is marked 
as “unhealthy”.  

An example of a redundant group is the objects representing two aligned sun sensors (prime 
and redundant sun sensor). In this case, the functionality is the provision of sun position 
information. A reconfiguration means switching from one to the other sun sensor. The order 
of this reconfiguration group is 2. If the two sun sensors have identical characteristics, then 
the two configurations have the same ranking, otherwise the configuration including the 
most accurate sun sensor has the higher ranking. 
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Another example of a redundant group is a set of four non-aligned gyros3.  The functionality 
offered by this group is the provision of 3-axis rate information. A reconfiguration means to 
switch from one set of three gyros to a different set of three gyros. The order of this 
reconfiguration group is four (there are four sub-sets of three gyros in a set of four gyros). The 
ranking of the four configurations depends on the characteristics of the gyros and on their 
geometric disposition.  

Still another example of reconfiguration group is represented by a set of the following units: a 
fine sun sensor, a 3-axis gyro package, and an autonomous star tracker. The functionality 
offered by this group is the provision of high-accuracy attitude information. High accuracy 
attitude information can be provided either by combining fine sun sensor and gyro data or 
directly by an autonomous star tracker. Hence, this group has a reconfiguration order of 2 (in 
one configuration the FSS and GYR are used, and in the other configuration the AST is used). 
The ranking of the two configurations depends on the relative accuracy of the sensors and on 
the quality of the data filtering used in the FSS/GYR configuration. 

20.2 The Reconfiguration Management Design Pattern 

This design pattern is introduced to address the problem of separating the management of a 
reconfiguration group from the provision of the reconfigurable functionality. This pattern is 
illustrated by the following class diagram: 

11..*

Reconfigurable

+reconfigure():v

ReconfigurationCli

operation() {

... // by delegation to Redunda

}

RedundantObject

+operation():

ReconfigurationManage

+operation():void

+reconfigure():void

ReconfigurableFunctionali

+operation():void

FunctionalityCli

 

                                                      
3 It is recalled that any three non-aligned gyros can provide full 3-axis rate information. 
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The redundant objects are instantiated from class ReconfigurableObject. The 
reconfigurable functionality they offer is encapsulated in the abstract interface 
ReconfigurableFunctionality. The reconfigurations are managed by  Reconfiguration 
Manager. This component is characterized by interface Reconfigurable whose key method 
is reconfigure. A call to reconfigure triggers a reconfiguration: the reconfiguration 
manager chooses the highest-ranking configuration among the alternative configurations that 
are still marked “healthy”. The configuration that is abandoned is automatically marked 
“unhealthy”. Components that are responsible for performing reconfiguration (class 
ReconfigurationClient in the diagram) thus see the reconfiguration as an instance of 
type Reconfigurable. 

The reconfiguration manager also implements interface ReconfigurableFunctionality 
which makes it “look like” a redundant object. The reconfiguration manager implements the 
methods declared by ReconfigurableFunctionality through delegation to the 
redundant objects in the reconfiguration group. The reconfiguration manager must be able to 
act as the sole functional interface between the reconfiguration group and the users of the 
reconfigurable functionality. Components that use the reconfiguration functionality (class 
FunctionalityClient in the diagram) thus see the reconfiguration manager as an instance 
of type ReconfigurableFunctionality. 

The implementation of method reconfigure in interface Reconfigurable is one of the 
framework hot-spot (reconfigurable hot-spot) as it is here that AOCS applications define their 
application-specific reconfiguration logic. 

As a concrete example, consider again the gyro reconfiguration group example described in 
the previous sub-section.  The gyros – as AOCS units – would be characterized by interface 
AocsFunctional (see section 18) which then becomes the reconfigurable functionality. A 
typical user of this functionality could be an attitude controller that needs 3-axis rate 
information. A typical component responsible for performing reconfiguration could be a 
failure recovery component that would trigger a reconfiguration in response to the detection 
of a gyro failure.  
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The architecture for this example is shown in the figure using an informal notation: 
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The lightly shaded boxes represent objects. The darker boxes are abstract interfaces. The 
dashed arrows are implementation links (thus, gyro 1 is an object that implements interface 
AocsUnitFunctional). The solid arrows represent association links. 

The figure shows that reconfiguration manager has two faces: it has an 
AocsUnitFunctional face that it exposes towards the attitude controller (to which it 
supplies the rate estimate obtained from merging the rate measurements from the three active 
gyros) and it has a Reconfigurable face that it exposes towards the failure recovery 
manager (to which it supplies a method to reconfigure the set of four gyros to exclude faulty 
units).  

This example illustrates a very common case in which a reconfiguration manager handles 
reconfiguration across real units. In that case, the reconfigurable interface is 
AocsUnitFunctional and the reconfiguration manager thus becomes a fictitious unit.  
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20.3 Intersection of Configuration Groups 

In a simple implementation, configurations groups are disjoint: if an object belongs to one 
configuration group, it cannot belong to any other.  

Disjunction of configuration groups makes their management simple and efficient but may 
not always be optimal. Consider a mission scenario where there are two redundant fine sun 
sensors (FSS) and only one coarse sun sensor (CSS). The FSS’s are intended for a high 
accuracy mode whereas the CSS is intended for a low-accuracy attitude acquisition mode. 
Since an FSS can also serve as a CSS (possibly with a smaller field of view), it is conceivable 
that one of the two FSS’s should serve as redundant sensor for the CSS. Two reconfiguration 
groups can be defined, one providing low-accuracy sun information and the other providing 
high-accuracy sun information. Pictorially, they can be represented as follows: 

FSS 2

  CSS

FSS reconfiguration
          manager

CSS reconfiguration
          manager

High Accuracy
Sun Information

Low Accuracy
Sun Information

 

 

In this case FSS2 is shared across two reconfiguration groups. Clearly, reconfiguration 
information should somehow be passed from one group to the next. Suppose for instance that 
the FSS reconfiguration manager reconfigures from FSS_2 to FSS_1. This probably means that 
FSS_2 is faulty and hence the CSS reconfiguration manager should be informed of the fact to 
exclude it from its reconfigurations. 

A simple way to organize this exchange of information would be to endow the FSS with a 
boolean property called configuredOut. When one of the configuration managers attached 
to an FSS performs a reconfiguration that excludes the FSS, then the excluded FSS has its 
configuredOut property set to true. ConfiguredOut is a bound property and other 
configuration managers can register to be notified of any changes in its value. In the case of 
the figure, the CSS, when notified that one FSS has been excluded, could either lower the 
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ranking the configuration that includes it, or it could mark the configurations that include it 
as “unhealthy”. 

The general mechanism therefore is for objects that straddle configuration groups to carry an 
observable property configuredOut. This property is set to true when the object is 
excluded from a configuration. All configuration groups that include the object register their 
interest in the property and are notified when it changes. Appropriate action in response to a 
notification that one object has been excluded from a configuration could be: 

• lowering the ranking of configurations including that object; 
• marking configurations including that object as “unhealthy”. 

20.4 Nesting of Reconfiguration Groups 

Reconfiguration groups can be nested within each other. Consider again the last example 
described at the end of section 20.1. Its structure is shown in the figure in the next page. 

In this case, the objects reconfigured by the attitude reconfiguration manager are themselves 
reconfiguration managers. The reconfiguration order of the attitude reconfiguration manager 
is determined by the reconfiguration orders of the FSS, GYR and STR reconfiguration orders. 

FSS 2

FSS reconfiguration
          manager

STR 2

STR reconfiguration
          manager

STR 1

STR 2

STR 1

STR 2

STR 1

GYR reconfiguration
          manager

Attitude
reconfiguration

manager

Attitude
Estimate
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20.5 Direct Access to Redundant Objects 

Is direct access to redundant objects required? For instance, in the case of four gyros arranged 
as in the figure in section 0, is direct access to the gyro objects ever required or should access 
to the gyros always be through the reconfiguration manager? 

Two types of access to redundant objects can be envisaged: functional access and 
housekeeping access. Redundant objects provide services, functional access is the access by a 
client that needs these services. In the case of a gyro, for instance, a functional access is an 
access to obtain rate estimates. Housekeeping access is aimed at performing housekeeping 
operations on the object (initialization, mode changes, self-test, etc.). 

Functional access is exclusively through the reconfiguration manager. For this reason, the 
reconfiguration manager is made to implement the reconfigurable interface.  

Housekeeping access should preferably be done through the reconfiguration interface but can 
occur directly when needed. The reconfiguration manager may have to be kept informed of 
housekeeping operations performed on its redundant objects. In this case, the monitoring 
mechanism described in section 12.2 is used. Thus, for instance, if housekeeping access to a 
gyro is allowed to change the gyro’s health status, then this health status is treated as a 
property with which the gyro reconfiguration manager can register. 

20.6 Preservation of Configuration Data 

A reconfiguration is usually the result of a detected or suspected fault in an object that, 
through the reconfiguration, is excluded from the normal flow of AOCS data. 
Reconfiguration information should therefore be preserved across software and hardware 
resets in order to allow safe autonomous re-initialization of the AOCS software. 

The storage of configuration information data follows the memento design pattern of RD1.  

Configuration information is stored in an object of type ConfigurationState. This object 
encapsulate the configuration of a reconfiguration group. In particular, it stores the following 
information: 

• Configurations that have been marked “unhealthy”  
• Units that have been marked “unhealthy” 
• The current configuration 

Responsibility for preserving configuration information in the event of a software or 
hardware reset lies with the system manager (see section 9.2 and in particular subsection 9.4).  
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20.7 Reusability and Extensibility Issues  

The architecture proposed in this section furthers reusability because it decouples the task of 
managing unit reconfigurations from the task of processing of unit data. Users of unit data 
always see the same interface to represent a group of reconfigurable units, regardless of 
which particular unit is selected. The management of the reconfiguration in turn is 
independent of who uses unit data and how they are used. 
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21 OPERATIONAL MODE MANAGEMENT 

Current AOCS systems are based on the concept of operational mode. The operational mode 
is an attribute of the AOCS software as a whole. Its purpose is to adapt the software’s 
behaviour to various sets of external conditions. 

As one moves to a component-based approach, the basic design choice is between: 

! keeping a single operational mode for the whole AOCS system; 
! making operational mode a property of individual components. 

The first approach requires a “mode manager” object which is responsible for ensuring that 
each object behaves in a manner that is consistent with the current mode. This object would 
act as a centralized coordinator of object behaviour. As such, it would require a rather 
detailed understanding of how each object is constructed and of what its internal state is. This 
approach would weaken data encapsulation and is therefore rejected. 

The selected approach makes operational mode a property of each component. Components 
now become responsible for updating their own operational mode in response to changes in 
the environment around them.  

A component keeps track of changes in its environment by monitoring properties of other 
objects. An object monitors the property of another object by explicitly registering interest in 
that property and by asking to be notified when the property changes in a certain manner 
(see section 12.2).  

Note that a monitored property could also be the operational mode of another component. 
Hence, the traditional architecture with an AOCS-wide operational mode could be 
implemented by having each component implement the same set of modes and by having 
components change their own mode to follow changes initiated by a “mode manager” object.  

As an example of the decentralized mode concept proposed here, consider the attitude 
controller object. The controller object is responsible for implementing the attitude control 
law. A controller object could have two modes: low accuracy control, and high accuracy 
control. The switch between the two modes could be done, for instance, on the basis of the 
size of the attitude error. The controller object would then register its interest in the attitude 
error and would ask to be notified when this error crosses a certain threshold. The 
notification that the attitude error has crossed the selected threshold would trigger a mode 
change. 
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21.1 The Mode Management Design Pattern 

This design pattern is introduced to address the problem of endowing components with 
mode-dependent behaviour. The pattern separates the implementation of the mode-
dependent behaviour from the implementation of the logic required to decide mode switches.  

A mode-dependent component is a component that needs to select a particular implementation 
of one or more strategies depending on operational conditions. The figure illustrates the case 
of a component with two strategies: 

1..* 1..*

1 1

Strategy 2 TypeStrategy 1 Type

ModeManager

+getStrategy_1():Strategy_1_Type

+getStrategy_2():Strategy_2_Type

ModeDependentComponent

Use strategy getter methods to reco

appropriate strategy implementers a

any given time

 

The two strategies are characterized by classes Strategy_1_Type and Strategy_2_Type. 
These could be concrete classes (with different implementations being represented by 
different instances), or base abstract classes or abstract interfaces (with different 
implementations being represented by different subclasses). 

The mode manager encapsulates the logic to decide which implementation of each strategy is 
appropriate at any given time. When the mode dependent component needs a strategy 
implementation, it uses the strategy getter methods offered by the mode manager to obtain 
one. From the point of view of the mode dependent component, the strategy implementations 
are always seen as instances of type Strategy_1_Type and Strategy_2_Type. 

As an example consider again an attitude controller component. This component is 
responsible for implementing the attitude control algorithm and could have two modes: low 
accuracy control, and high accuracy control. In low accuracy mode, attitude information is 
provided by a low-accuracy sensor, for instance a coarse sun sensor (CSS), and is processed 
by a low-accuracy algorithm, for instance a PID. In high-accuracy mode instead, a high 
accuracy sensor, for instance a fine sun sensor (FSS), and a high accuracy control algorithm, 
for instance a PID with Kalman filtering, are used. In this case, the controller component (the 
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mode-dependent component) has two strategies (the sensor and the control algorithm) and 
each strategy has two implementations (the CSS and the FSS for the sensor strategy and the 
PID and PID+KF for the control algorithm strategy). Thus, a skeleton code for an 
AttitudeController component could be as follows: 

class AttitudeController {

AttitudeSensor* sensor;
AttitudeControlAlgorithm* controlAlgorithm;
AttitudeControllerModeManager modeManager;

. . .

void computeControlTorque() {

// Retrieve strategy implementations
sensor = modeManager->getAttitudeSensor();
controlAlgorithm = modeManager->getControlAlgorithm ();

// Use strategies to compute control torque
sensor->acquireData();
controlAlgorithm->processSensorData();

}
}

The mode manager of this example will maintain two versions of the attitude control 
algorithms and two versions of the attitude sensor and will supply the appropriate one to the 
attitude controller algorithm based on operational conditions. The controller component can 
thus concentrate on computing the control torques without having to keep track of changes in 
operational conditions. 

This design pattern gives rise to two framework hot-spots. The mode manager hot-spot is used 
by applications to define the application-dependent mode switching logic. The mode 
implementer hot-spot is used by applications to load the application-specific strategy 
implementations. 

21.2 Mode Change Action 

Often, a mode switch by a component must be accompanied by some special actions related 
to the exit from the old mode and/or the entry into the new one.  
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Consider for instance an attitude controller component (see section 28) that manages several 
control algorithms corresponding to different operational mode. When a new mode is 
entered, its associated control algorithm should be reset to remove the memory of previous 
activations. 

In another example, consider a unit trigger (see section 18.9). To each of its mode a certain set 
of units is associated. When the unit trigger leaves a mode, it might have to switch off units 
that are no longer needed in the new mode and, conversely, when it enters the new mode it 
should turn on and initialize the newly needed units. 

Actions that are associated to a mode transition are called mode change actions. The AOCS 
framework offers two mechanisms for their implementations. The most straightforward 
approach is simply to hard-code the mode change actions into the concrete mode managers. 
Thus, for instance, in the case of the attitude controller example, when the mode manager 
finds that it has to perform a change mode, then it executes any actions that are associated to 
the mode change. 

A second, more systematic approach, is to encapsulate the mode change actions into objects 
that implement the following interface: 

class ModeChangeAction {
void doModeEntryAction(int oldMode)=0;
void doModeExitAction(int newMode)=0;

}

A mode change action object is then associated to mode manager and the mode manager calls 
method doModeExitAction when a mode is exited and method doModeEntryAction 
when a mode is entered. 

Mode change action objects take the mode as their argument. In an alternative 
implementation, a mode change action object is associated to each mode managed by a mode 
manager and, when it leaves a mode, the mode manager calls doModeExitAction on the 
associated mode change action object and, when it enters a mode, it calls its 
doModeEntryAction method. 

Mode change actions are a framework hot-spot (the mode change action hot-spot) since it is 
through them that applications define the actions to be taken upon mode transitions. 
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21.3 Coordination of Operational Mode Changes 

The operational mode is a property of (some) components. In order to ensure consistency of 
behaviour at the system level, it is necessary to ensure that changes in the operational mode 
of individual objects are coordinated. For instance, it is clearly dangerous if the attitude 
controller is operating in a mode that assumes that high accuracy sensors are powered up and 
supplying attitude information while the FDIR object assumes that only basic sensors are 
switched on. 

In order to guarantee coordination, an object’s operational mode is designated as bound 
property (see section 12.2). This gives other objects the chance to register their interest in 
changes in its operational mode. 

21.4 AOCS Mission Manager 

Components are responsible for managing their own operational mode. They decide on mode 
changes based on their observation of the external environment. Part of this information can 
come from monitoring the state of other AOCS objects but part must come from outside the 
AOCS.  

The ground station could, for instance, provide information about changes in orbital 
conditions, or the beginning of delta-V manoeuvres. Similarly, the OBDH could send 
commands to force the AOCS into survival mode. 

An object – the AOCS Mission Manager – is provided to supply this information to the rest of 
the AOCS software. This object has an operational mode. Its operational mode plays a special 
role and is therefore given a special name: mission mode. The mission mode would normally 
be set by telecommands originating either in the OBDH or at the ground station.  

In principle, all components endowed with operational mode should register their interest in 
the mission mode property. 

21.5 Operational Mode Control 

In current AOCS systems, the ground can either force the AOCS to go into a specified mode 
or it can inhibit certain autonomous mode transitions from taking place. It is unclear whether 
it still makes sense to implement such a control over mode management with the proposed, 
more distributed, mode concept.  

In principle, it is of course possible to have telecommands to control the mode of individual 
objects but because changes in the mode of one single object reverberate throughout the 
AOCS through the environment observation mechanism, it may be unsafe to do so.  



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
Framework Concept Level Description 
30 April 2002 
Issue 3.3 
Page 116 
 
  

 

University of Konstanz - A. Pasetti 

If fine control over mode changes is required, it is safer to introduce methods that inhibit 
certain mode transitions at the object level. Such methods would normally be called by 
telecommands. Inhibition of mode changes is safer than forcing mode changes because it 
always leaves the AOCS in a consistent state. 

Fallbacks to safe “survival” modes could be realized through the mission manager. If the 
mission manager is endowed with a survival mode, its transition into this mode would alert 
all AOCS objects of the need to go to a correspondingly safe mode.  

21.6 Reusability and Extensibility Issues 

The concept proposed here achieves the objectives of reusability and ease of extension 
because it separates the implementation of the mode-specific algorithms from the mode 
switching logic. It then becomes possible to construct components whose mode-specific 
behaviour is delegated to other plug-in components. Such components can be reused across 
missions without any changes. Functionality extensions occurs through object composition. 
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22 MANOEUVRE MANAGEMENT 

A manoeuvre is a sequence of actions that must be performed by the AOCS at specified times 
to achieve a specified goal. Examples of manoeuvres include: 

• A sequence of small torque impulses imparted to the spacecraft to cause the speed of the 
reaction wheels to change in a desired manner (wheel momentum unloading). 

• A slew to change the direction of pointing of the spacecraft payload. 
• A sequence of thruster firings to change the spacecraft orbit in open-loop mode. 

Manoeuvres are highly mission-dependent. The architecture proposed here is simply 
intended to provide a standard, re-usable, interface through which manoeuvres can be 
controlled. Specific manoeuvres will obviously have to be defined on an ad hoc basis. 

Manoeuvres are encapsulated in manoeuvre objects. 

The software component in charge of executing manoeuvres is the manoeuvre manager. 

22.1 Manoeuvre Objects 

In order to allow uniform and mission-independent treatment of manoeuvres, it is necessary 
to encapsulate them in objects derived from a common base class or implementing the same 
abstract interface.  

The following abstract base class is defined for manoeuvre objects: 

Manoeuvre

+canStart():bool

+canContinue():bool

+doContinue():void

+isFinished():bool

Manoeuvre actions must be performed over a well-defined time interval which may be 
defined by the manoeuvre itself. Method canStart returns true when the manoeuvre is ready 
to start. 

Manoeuvres are executed in several steps. Method doContinue is called by the manoeuvre 
manager to advance the execution of the manoeuvre. When a manoeuvre object receives this 
command, it check the current time or it verifies current operational conditions and it 
performs any actions that are due for execution.  
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Manoeuvre objects must be able to check whether the conditions for their own continued 
execution are appropriate. For instance, a manoeuvre to perform  a slew should periodically 
check that the spacecraft is indeed following the slew profile. If the deviation from the slew 
profile exceeds some pre-specified threshold, then an error is likely to have occurred and the 
manoeuvre should be aborted. In another example, consider the manoeuvre to perform an 
open-loop delta-V. This manoeuvre should only be performed if the spacecraft is in Orbit 
Correction Mode. If this is not the case, the manoeuvre should be aborted. 

Method canContinue can be called to verify if the conditions for the continued execution of 
the manoeuvre hold. 

Method isFinished returns true when the manoeuvre has terminated. 

Since manoeuvres are application-specific, the implementation of the abstract class 
Manoeuvre represents one of the framework hot-spots (the manoeuvre hot-spot). 

22.2 The Manoeuvre Design Pattern 

This design pattern is introduced to address the problem of separating the management of 
manoeuvres from their implementation. The design pattern is based on the manager meta-
pattern of section 5.4 and is illustrated in the following class diagram: 

1 1..*

manoeuvreList

Manoeuvre

ConcreteManoeuvre

ManoeuvreManager

+activate():void

+addManoeuvre(newManoeuvre:Manoeuvre *)

void activate() {

for (each item in manoeuvre

if (item->canStart())

if (item->canContinue(

item->doContinue();

if (item->isFinished())

... // remove item from

}

}

 

The manoeuvre manager holds a list of manoeuvre objects that are seen through their base 
class Manoeuvre. Presence of this abstract class separates the management of manoeuvres 
from their implementation. 
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At each activation, the manoeuvre manager goes through the list of pending manoeuvres, 
checks which ones are due for execution and which ones are already executing and are in a 
condition to continue execution and on all these it calls method doContinue to advance the 
manoeuvre execution. Finally, the manoeuvre manager checks whether manoeuvres have 
terminated their execution and, if they have, remove them from the list of pending 
manoeuvres.  

Note that, in principle, clients can only add manoeuvres to the manoeuvre manager list. 
Removal from the list is done autonomously and internally to the manoeuvre manager when 
a manoeuvre has terminated its execution. 

The manoeuvre pattern is instantiated as follows in the AOCS framework:  

u The manoeuvre manager is implemented as an active object (see section 8) and its 
activate method is the run method declared by interface Runnable.  

u The manoeuvre manager is given responsibility for creating events that record the 
beginning and end of a manoeuvre and other manoeuvre-related occurrences. 

u The manoeuvre base class is implemented with some additional functionalities such as 
manoeuvre abort or manoeuvre hold. 

u The execution status of manoeuvres is implemented as a bound property. 

22.3 Manoeuvre Initiation 

In a typical implementation, the AOCS software will internally store a number of manoeuvre 
objects to perform often recurring manoeuvre such as wheel unloading, slews, delta-V, etc. 
When conditions warrant it or when the ground commands it, one of these pre-defined 
manoeuvre objects can be loaded into the manoeuvre manager (by calling its method 
addManoeuvre). This will cause the manoeuvre to be executed. 

Thus, for instance, when the ground decides to perform a delta-V manoeuvre, and assuming 
that the manoeuvre object is already available on board, it can uplink a telecommand that 
performs the following method call: 

manoeuvreManager.addManoeuvre(deltaVManoeuvre);

In another example, if the failure detection mechanism has detected an over-speed condition 
in one of the reaction wheel, it will report the fact as an event. This event will then be 
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processed by the failure recovery manager that could respond by loading the reaction wheel 
manoeuvre into the manoeuvre manager. 

Obviously, new manoeuvre objects can also be uplinked by telecommand. 

22.4 Profiles 

A very common kind of manoeuvre consists in driving a controller to follow a pre-defined 
profile. This will typically result in the spacecraft performing slews but profiles can also be 
used to perform wheel unloading (in which case it is the wheel speed that is controlled in 
closed loop to follow a pre-defined profile).  

Given the frequency and importance of this type of manoeuvre, it might be advisable to 
define a dedicated class for them that extends the base class Manoeuvre. This however is not 
done in the framework prototype. 

22.5 Alternative Implementation 

There is an obvious similarity between manoeuvres as defined here and telecommands as 
defined in section 26. Both categories of objects encapsulate actions that must be performed 
on the AOCS software. Perhaps the main difference is that telecommands are intended to be 
performed in one shot whereas the execution of manoeuvres extends over time. This is not an 
essential difference though because telecommands could be seen as special cases of 
manoeuvres with a punctual execution. Future versions of the AOCS framework might 
therefore consider merging the two concepts of telecommand and manoeuvre.  

22.6 Reusability and Extensibility Issues 

The concept proposed here achieves the objectives of reusability because it completely 
decouples the task of managing manoeuvres from the task of carrying them out. In this way, the 
manoeuvre manager becomes mission-independent and reusable across missions without 
changes.  

Manoeuvre are encapsulated in objects and can therefore be changed with only local 
repercussions thus promoting ease of extensibility. 

 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
Framework Concept Level Description 
30 April 2002 
Issue 3.3 
Page 121 
 
  

 

University of Konstanz - A. Pasetti 

23 OVERALL FDIR APPROACH 

The next two sections deal with two framelets that taken together cover the failure detection 
and failure recovery functionality. The present section describes the overall approach to FDIR 
in the AOCS framework. Failure detection and failure recovery are discussed first and failure 
isolation is discussed in the last sub-section. 

It should be stressed that FIDR algorithms are very mission-specific and cannot therefore be 
part of the AOCS framework. Hence, the main issue in designing the framework is not the 
identification and implementation of generic FIDR algorithm but it is rather the definition of 
an architecture that will support the implementation of such algorithms. 

23.1 Failures and Configuration Errors 

The AOCS framework recognizes two major categories of software faults: failures and 
configuration errors.  

The term configuration error is used to designate any fault that is detected by a component 
while it is being configured. Configuration errors would typically occur during application 
initialization when the application components are configured but they could also occur as a 
result of a telecommand or some other action attempting to reconfigure a component 
dynamically. 

The term failure is used to designate any fault that is detected during the normal operation of 
a component and that affects its ability to perform its allotted task. Failures would normally 
occur only during normal operations. 

Both failures and configuration errors are recorded through the creation of dedicated events 
(the failure events and the configuration error events).  

The rest of this section deals with failures only. 

23.2 Separation of Functions 

The AOCS framework regards failure detection and failure recovery as separate 
functionalities allocated to distinct components.  The failure detection component performs 
failure checks and, when it detects a failure, it creates an event that describes it and stores it in 
an event repository. 

The failure recovery component inspects the failure event repository to check whether any 
failures have been identified and then uses the information stored in the failure events to 
decide on the appropriate recovery action. 
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The alternative approach would have been to perform failure recovery as soon as a failure is 
detected. The advantage of this approach is promptness of response and the potentially 
greater amount of information about the failure that is available at the point where the failure 
is detected.  

The first advantage however is minimal –  provided that the failure recovery component is 
scheduled with the same frequency as the failure detection component. The second 
advantage is offset by the possibility that a separate failure recovery manager has to inspect 
all failures detected in a certain control cycle to perform global recovery actions that take 
account of the interrelationships of different individual failures. 

23.3 Encapsulation of Functionalities 

One of the basic principles at the heart of the AOCS framework is the separation of the 
management of a functionality from the implementation of the functionality itself. It is this 
separation that makes it possible to define mission-independent components. 

In the case of failure detection, the failure test can either be encapsulated in a monitoring check 
object (see section 24.3) or in the very object that must be subjected to the failure test. In the 
latter case, this is done by having the object implement an interface that specifies that the 
object must be able to perform a consistency check upon itself (see section 24.1). 

In the case of failure recovery, recovery actions – namely sets of related actions that address a 
specific failure – are encapsulated in dedicated objects. The framework specifies that to each 
failure detection check there must correspond one or more recovery actions that can be 
invoked to recover from that failure. Thus, whenever the application designer incorporates a 
component that performs a failure check into an application, he must also specify the 
corrective action to be associated to the detection of that failure. 

As an example, consider for instance, a failure check that verifies whether a Kalman Filter 
diverges. An obvious recovery action that might associated to this failure could be to reset the 
filter or to change its parameters to remove the divergence.  

23.4 Autonomous Detection of Failures 

The failure detection component implements systematic failure checks but not all failures are 
detected by it. Consider, for instance, the case of an AOCS unit object that tries to access the 
AOCS bus to send an instruction to an external unit and finds that a bus error is returned. 
This object has detected an error. It must respond to the detection by creating an event and 
storing it in the event repository for failure detection events.  
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In general, all objects that encounter a failure during their normal operation can respond by 
creating the corresponding failure event and storing it in the failure event repository. 

23.5 Failure Detection Levels 

The current architecture of the AOCS framework foresees a single level of failure detection. 
This means that regardless of where they are found, failures are always treated in the same 
manner: they give rise to events that are stored in the same failure event repository.  

This in particular means that failures encountered by the failure recovery manager while 
processing the failure event repository are also stored in the failure event repository itself. 
Thus, the failure recovery manager may end up processing failures that it has itself generated 
as a result of the implementing its failure recovery strategy.  

Clearly, this situation could potentially give rise to the same failure events being generated 
cyclically. Note, however, that whether or not this situation arises depends on which recovery 
actions are associated to which failures. Since recovery actions are plug-in components that 
the application developer can load when it configures the framework, their judicious choice 
can avoid the problem from arising. This is the approach taken at present. 

An alternative approach recognizes two levels of failure detections and recovery. To each 
level, is associated a distinct failure event repository. The framework normally runs in level 1. 
Failures detected at this level are stored in FailureEventRepository_1. When the failure 
recovery manager runs, the framework switches to level 2 and failure events are sent to 
FailureEventRepository_2. Thus, the danger of circularity is removed because while the 
failure recovery manager processes FailureEventRepository_1, any failures that are 
encountered are sent to FailureEventRepository_2. 

The drawback of this alternative approach is that failures sent to 
FailureEventRepository_2 remain unprocessed. One could envisage a level 2 recovery 
manager that is responsible for FailureEventRepository_2 but, if circularity is again to 
be avoided, this would require a third level of failure detection. In short, if circularity is to be 
avoided by design, then it is inevitable that there will be some failure events that cannot be 
processed within the framework. 

23.6 Failure Isolation 

Failure isolation is not supported by the prototype version of the AOCS framework because 
no generic failure isolation mechanism could be identified. One candidate mechanism that 
was considered but eventually discarded was based on the concept of failure tracing. 
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When a consistency or monitoring check fails on an object, the cause of the failure may lie 
either internally to the object itself or may be the result of a failure propagation from some 
other object. In general, a component has one or more source components (ie the components 
from which its data originate) and one or more sink components (ie the component where its 
data are forwarded). One way to support failure isolation is therefore to endow components 
with knowledge about who their sources and sinks are.  

Consider for instance the figure below that illustrates the conceptual data flow4 for a 
controller that uses star tracker and gyro outputs filtered by a state estimator to implement a 
3-axis controller: 

 
     X Controller    X Actuator 
 
 STR 
 
       Oscillation Rejection 
     State Estimator  Y Controller            Filter  Y Actuator 
 
 
 GYR   
 
     Z Controller    Z Actuator 
 
 
 

If, for instance, a consistency check reveals a failure in the Xactuator object, then it is useful 
for the failure isolation manager to be able to check whether the data source objects for this 
object also fail their consistency check. This might indicate that the source of the failure is not 
in the Xactuator object but in some other object upstream. Similarly, if a consistency check 
fails on object StateEstimator, it may be useful to check downstream objects. If all 
downstream objects also fail consistency check then this strengthens the hypothesis that the 
StateEstimator (or one of its data sources) are the origins of the failure. 

In order to support this type of analysis, an interface of the following kind could be imposed 
on all framework components: 

interface DataFlowObject {
DataFlowObjectList getDataSource();
DataFlowObjectList getDataSink();

                                                      
4 This is only a conceptual data flow because, as explained in section 13, the actual data are not transmitted 
directly from one object to another but are exchanged through shareable data areas (data pools). 
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}

Objects implementing this interface are part of a data flow path. Methods getDataSource 
and getDataSink return the list of data source and data sinks for the object and therefore 
allow tracing the data path both upstream and downstream. 

As already mentioned, it was eventually decided not to support this mechanism because the 
information it would provide would not be useful in current AOCS systems (see section 3.3). 
It remains however an interesting option for future framework upgrades.  

 

 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
Framework Concept Level Description 
30 April 2002 
Issue 3.3 
Page 126 
 
  

 

University of Konstanz - A. Pasetti 

24 FAILURE DETECTION MANAGEMENT 

The objective of the failure detection functionality is to perform failure detection tests on 
individual components. A failure is declared when a failure detection test fails. 

The failure detection functionality is implemented by a failure detection manager that is based 
on the manager meta-pattern (see section 5.4).  

The general principle adopted in the framework is that the knowledge required to perform 
the failure detection test should be confined to the tested component. The task of the failure 
detection manager is simply to ask for the test to be performed, to record the results and to 
pass them on to other interested components. The actual test is performed by the tested 
component. 

Two types of failure detection tests are foreseen: consistency checks and monitoring of 
property values.  

24.1 Consistency Checks  

A consistency check test verifies that the internal state of the object is consistent. For instance, 
a consistency check on a quaternion object verifies that the squared sum of the quaternion 
components is equal to 1 (within a certain tolerance band). In another example, a consistency 
check on a sensor object verifies that the sensor’s outputs are in the range of physically 
possible values. 

Objects that can perform a consistency check upon themselves implement the following 
interface: 

ConsistencyCheckable

+doConsistencyCheck():bool

+getRecoveryAction():RecoveryAction *

+setRecoveryAction(r:RecoveryAction *):void

A call to doConsistencyCheck causes the consistency check to be executed. When the 
consistency check succeeds (ie. when no errors are found), the method returns true. If the 
consistency check finds an inconsistency in the object’s state, it returns false and the failure 
is then reported as an event. The event contains all the information that the object can make 
available to assist the identification of the cause of the failure. This event is stored in the 
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failure event repository from where it can be retrieved by other framework components 
(typically, the failure recovery manager, see section 25). 

As explained in section 23.3, to each failure check must be associated a recovery action. Hence 
the ConsistencyCheckable interface provided setter and getter methods to allow the 
recovery action object to be defined and retrieved.  

The consistency check mechanism described above can obviously implement single sensor 
consistency checks but it can also be made to implement the multi sensor consistency checks. 
Suppose for instance that it is desired to check the mutual consistency of the sun sensor and 
star tracker. This can be done by creating an object that contains references to both the sun 
sensor and the star tracker objects. The doConsistencyCheck method of this new object 
will be responsible for performing the multi-sensor consistency check. 

24.2 Consistency Check Management 

The failure detection manager internally maintains a list of objects that must be subjected to a 
consistency check at every activation. Its core can be represented by code like:  

ObjectList* consistencyCheckableList;

for (all objects in ‘consistencyCheckableList’) do {
if ( !Object.doConsistencyCheck() )

. . . // a failure has been detected, form a failure event

. . . // and store it in its event repository
}

Thus, at each activation, the detection manager cycles through the objects in its list and calls 
doConsistencyCheck on each of them. 

The doConsistency method is one of the framework hot-spots (the consistency checkable hot-
spot) because it is the point where applications define their application-specific consistency 
checks. 

24.3 Property Monitoring 

The concept of property monitoring was introduced in section 12. The monitored property is 
encapsulated in an object of type Property. The type of monitoring is encapsulated in an 
object of type ChangeObject. 

The failure detection framelet defines an additional object, the monitoring check, that 
encapsulates a failure detection check based on property monitoring. A monitoring check 
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object packages in a single object the property to be checked, the change type and the 
recovery action to be performed in case the change is found to have occurred. 

A monitoring check object is an object that is derived from the following base class: 

RootObject

Resettabl

Configurabl

Telemeterabl

AocsObject

AocsObject

MonitoringCheck

+MonitoringCheck(monitoredProperty:Property,changeObject:ChangeObject *,recoveryAction

+getPropertyValue():Real

+getProperty():Property

+getChangeObject():ChangeObject *

+getRecoveryAction():RecoveryAction *

+writeToTelemetry(stream:TelemetryStream *):void

+getTelemetryImageLength():int

 

The implementation of the object monitoring part of failure detection is done by maintaining 
a list of monitoring check objects and passing each property value through the corresponding 
change object. When a change is detected, the fact is reported as an event stored in the failure 
event repository. The event also records the recovery action associated to the property and its 
change objects. 

The type of monitoring check is obviously application specific and therefore the instantiation 
of the MonitoringCheck class is one of the hot spots of the framework (the monitoring check 
hot-spot). 

24.4 The Failure Detection Design Pattern 

This design pattern is introduced to address the problem of separating the management of 
failure detection tests from their implementations. It is based on the manager meta-pattern of 
section 5.4. 

The pattern is illustrated in the following class diagram: 
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1

1

1..*

1..*FailureDetectionManager

+activate():void

activate() {

... // go through list of monitoring

... // and consistency check objects

... // perform failure detection test

}

ConsistencyCheckable

ConcreteComponent

+doConsistencyCheck():b

AocsObject

MonitoringCheck

 

The failure detection manager maintains lists of monitoring check objects and of consistency 
checkable objects. When it is activated, it goes through the list and performs the failure 
detection tests on each item in the lists.  

This pattern is instantiated as follows for the framework:  

u the failure detection manager is an active object (see section 8) and its activate method 
is the run method declared by interface Runnable.  

u If failures are found, they are reported as failure events stored in the failure event 
repository. 

u If a monitoring check fails, then a property change event as well as a failure event is 
created. 

u In most cases, the list of components to be subjected to consistency checks and the list of 
monitoring check objects depends on operational conditions. This is taken into account by 
making the failure detection manager mode-dependent (see section 21). The failure 
detection mode manager then manages two strategies corresponding to the list of 
consistency checkable objects and to the list of monitoring check objects. 

24.5 Alternative Implementation 

Part of failure detection is based on monitoring certain objects for specific types of change 
that might indicate that a failure has arisen. Object monitoring  can be done either directly or 
by change notification. The AOCS framework bases failure detection on direct monitoring 
mechanism, which seems more appropriate to this function. However, monitoring by change 
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notification would also have been possible. In that case, the failure detection manager would 
have a purely passive role: it would simply provide a PropertyChange method to be called 
by the monitored object when a change has been detected.  

24.6 Reusability and Extensibility Issues 

The concept proposed here achieves the objectives of reusability and ease of extension 
because it completely decouples the task of managing the failure detection function from the 
task of carrying out failure detection tests. In this way, the failure detection manager becomes 
reusable across missions. Failure detection tests are encapsulated in objects and can be 
changed with only local repercussions. Changing the objects that are subjected to failure 
detection testing can be done dynamically without any impact on the software architecture. 
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25 FAILURE RECOVERY MANAGEMENT 

The objective of the failure recovery function is to react to reports of failure detections to try 
to remove the cause of a failure. 

The failure recovery function is implemented by a failure recovery manager.  

Failure recovery is highly mission-dependent. The software architecture proposed here is 
merely intended to assist the implementation of specific failure recovery algorithms, it cannot 
itself be considered as a failure recovery algorithm. 

25.1 Failure Recovery Action 

In general, the AOCS software can react to a failure event by performing one or more failure 
recovery actions.  A failure recovery actions therefore represent a local response to a failure. The 
response is said to be local because it is based on a single failure report. A global response 
would take account of sets of failure reports. 

Failure recovery actions are encapsulated in objects derived from class RecoveryAction: 

0..1

RecoveryAction

+doRecovery():void

+setNextRecoveryAction(next:RecoveryAction

 

The key method is doRecovery that causes the recovery action to be performed. This is a 
critical method that can only be called by the failure recovery manager.  

The same failure event may give rise to several failure recovery actions. For this purpose, 
recovery actions can be chained together. Method setNextAction can be used to build up a 
chain of recovery actions. 

The implementation of method doRecovery encapsulates an application-specific response to 
failures. It therefore represents a framework hot-spot (recovery action hot-spot). 
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25.2 Types of Recovery Action  

Class RecoveryAction should be seen as an abstract class5. Concrete recovery actions are 
defined as subclasses of RecoveryAction.  Typical failure recovery actions would include: 

• Reset of the entire AOCS software 

This recovery action uses the services of the SystemReset object of section 9.2 offers a 
service to perform a complete software reset of the AOCS. 

• Reset of one or more AOCS objects 

All AOCS objects must implement a reset method. This allows the failure recovery 
manager to selectively reset some objects. 

• Reconfiguration of one or more units 

Reconfigurable units are gathered together in reconfiguration groups for which a 
reconfiguration manager object is responsible (see section 0). Reconfigurations are 
performed by calling the reconfigure method on the reconfiguration manager. 

• Fall-back to a lower operational mode 

In the AOCS framework, operational mode is a local property of each active object. 
Additionally, a mission manager is present to expose the AOCS mission mode. Mode fall-
backs can therefore be implemented either at local level (changing the mode of single 
object) or at AOCS level (changing the mode of the mission manager). 

As an example, consider the recovery action to reset an object together with a sample 
implementation of its doRecovery method: 

                                                      
5 The framework actually implements it as a concrete class because it uses RecoveryAction::doRecovery 
to forward doRecovery calls along the chain of linked recovery actions. 
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11

0..1

ObjectToBeReset
ObjectReset

+ObjectReset(objectToBeReset:AocsObjec

+doRecovery():void

doRecovery() {

objectToBeReset->reset();

}

AocsObject

RecoveryAction

 

 

The recovery action object maintains a reference to the object to be reset and when its 
doRecovery method is called, it resets it. 

Thus, recovery actions can be packaged as configurable components and the AOCS 
framework offers a number of pre-defined components to perform the most common types of 
recovery actions. 

25.3 Recovery Actions with Memory 

Recovery actions can be endowed with “memory”. Consider for instance the case of a Kalman 
Filter to which a recovery action is associated that is triggered when the filter diverges. The 
nominal recovery for a filter divergence may be a filter reset. However, the recovery action 
object may be made to remember the last time it was called and, if it finds that it is called too 
frequently, it can decide that there is a fundamental control failure and may react by 
commanding a mode fall-back. 

25.4 Failure Recovery Strategy 

A failure recovery strategy is a set of coordinated responses to the failure events in the failure 
event repository. Unlike recovery actions, that act on individual failure reports, recovery 
strategies can take into considerations several failure reports and can therefore offer a higher-
level response to failures. 

Failure strategies are encapsulated in objects of type RecoveryStrategy:  
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0..1

RecoveryStrategy

+doRecovery():void

+setNextRecoveryStrategy(next:RecoveryStrategy *

 

Method doRecovery inspects the event repository and implements the appropriate failure 
recovery response.  

Failure strategies can be chained together. This allows several failure strategies to be 
implemented in sequence. 

The implementation of method doRecovery encapsulates an application-specific response to 
failures. It therefore represents a framework hot-spot (recovery strategy hot-spot). 

25.5 Types of Failure Recovery Strategies 

RecoveryStrategy should be seen as an abstract class6. Concrete failure recovery strategies 
are implemented as instances of concrete subclasses of RecoveryStrategy.  

Typical failure recovery strategies include: 

• Sequence of local recovery actions 

This strategy retrieves failure events from the event repository in sequence and performs 
the recovery action associated to each event. Checks are in place to avoid calling the same 
recovery action more than once. 

• System reset on too many failures 

This strategy checks the number of failure events in the repository and if it finds that it 
exceeds a predefined threshold, it commands a system reset. 

These types of strategies are packaged in configurable components that are then provided as 
default framework components. 

                                                      
6 The framework actually implements it as a concrete class because it uses 
RecoveryStrategy::doRecovery to forward doRecovery calls along the chain of linked recovery 
strategies. 
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25.6 Failure Recovery Design Pattern  

This design pattern is introduced to address the problem of separating the management of 
failure recovery from the implementation of failure recovery actions and strategies. The 
design pattern is illustrated in the figure:  

 

0..1

1 1

recoveryStrategy

next

activate() {

recoveryStrategy->doRecov

}

FailureRecoveryManager

+activate():void

RecoveryStrategy

+doRecovery():void

+setNextRecoveryStrategy(next:RecoveryStrate

ConcreteRecoveryStrategy

+doRecovery():void

 

 

The failure recovery manager is essentially based on the chain of responsibility design pattern 
from RD1 but it can also be seen as an instance of the manager meta-pattern of section 5.4 
where the list of functionality implementers only contains one element. 

In the classical version of the chain of responsibility pattern, the client’s request (in this case, 
the request to perform a recovery) is passed along the chain of handlers (the recovery 
strategies) until one is found who is able to handle it. Each request is intended to be handled 
by only one handler. In the application of the pattern to failure recovery, however, a recovery 
strategy when it receives a recovery requests performs the following actions: 

u it handles the recovery request, and 
u it checks whether the recovery request should be passed on to the next recovery strategy 

or whether recovery processing should terminate. 

The recovery strategies are therefore executed in sequence but every recovery strategy has the 
chance to interrupt the chain. This incidentally means that the order in which the recovery 
strategies are linked in the list is important. 

It would have been possible to implement failure recovery using a more straightforward 
version of the manager meta-pattern where the recovery strategies are arranged in a list and 
the recovery manager, when it is activated, goes through the list and executes each strategy in 
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sequence. This architecture, however, would have made it more awkward to give each a 
recovery strategy the option to interrupt the recovery process. 

The failure recovery pattern is instantiated as follows for the framework:  

u the failure recovery manager is an active object (see section 8) and its activate method 
is the run method declared by interface Runnable.  

u Recovery events are created for each recovery strategy and recovery action that is 
executed. 

u In most cases, the recovery strategy to be executed depends on operational conditions. 
This is taken into account by making the failure recovery manager mode-dependent (see 
section 21). The failure recovery mode manager then manages a single strategy 
corresponding to the recovery strategy to be supplied to the recovery manager. 

25.7 Recursion 

Use of the chain of responsibility design pattern introduces the possibility of recursion. A call 
to method RecoveryStrategy::doRecovery can be recursive if several recovery 
strategies are linked together. The maximum depth of the recursion is given by the maximum 
number of recovery strategies that are linked together. 

Recursion can also arise because of the way recovery actions are linked together. A call to 
method RecoveryAction::doRecovery can be recursive if several recovery strategies are 
linked together. The maximum depth of the recursion is given by the maximum number of 
recovery actions that are linked together. 

25.8 Alternative Implementation 

As discussed in section 23.5, failure detection and recovery in the present version of the 
AOCS framework is done on a single level. From an implementation point of view, moving to 
the alternative approach that envisage two (or more) levels of failure detections and recovery 
would be straightforward. Multiple failure recovery manager can be simply created by 
instantiating multiple objects from class FailureRecoveryManager. Reporting of failures 
is delegated to a plug-in component7. Thus, the switch from one to a second level of failure 
reporting only requires the replacement of this plug-in component.  

                                                      
7 Object failureEvtRep in class AocsObject. 
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25.9 Reusability and Extensibility Issues 

The concept proposed here achieves the objectives of reusability and ease of extension 
because it completely decouples the task of managing the failure recovery function from the 
task of carrying out the failure recovery actions.  

Two orthogonal levels of failure handling are provided. Recovery actions provide localized 
failure handling capabilities. Failure handlers implement global failure recovery strategies. 
Failure handling strategies and failure recovery actions can be defined without affecting any 
part of the failure handling code. In this way, the failure recovery manager becomes fully 
reusable across missions. 

Both failure recovery actions and failure handling strategies can be dynamically updated thus 
providing operational flexibility.  
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26 TELECOMMAND MANAGEMENT 

Telecommands encode actions to be performed on or by the AOCS software. The execution of 
a telecommand causes the action to be performed. The telecommand manager is the software 
component in the AOCS computer that is responsible for executing the telecommands. 

The AOCS software is assumed to be built as a collection of objects that expose certain 
interfaces. The telecommands use these exposed interfaces to perform their assigned tasks. 

In practice, a telecommand is a component that exposes a method called execute which 
performs the actions associated with the telecommand itself. The execute method is called 
by the telecommand manager which in this way remains completely insulated from any 
knowledge of what the telecommand does and how it does it.  

Consider as an example the case of a telecommand that must switch on a sensor. The sensor is 
implemented as an instance of class AocsUnit. As discussed in section 18.6, this class 
exposes a a switchOn method. The telecommand’s execute method then simply calls 
switchOn on the sensor object. 

26.1 The Telecommand Management Design Pattern 

The telecommand management design pattern is introduced to address the problem of 
separating telecommand management from telecommand implementation. It is closely based 
on the command design pattern from RD1 as illustrated in the figure: 

 

1..*1

TelecommandList

Telecommand

ConcreteTelecommand

Telecommand

+execute():void

TelecommandManager

+activate():void

 

 

The telecommand manager maintains a list of pending telecommands and, when it is 
activated, it goes through the list and executes all telecommands in sequence. 
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The telecommand pattern can also be seen as an instance of the manager meta-pattern where 
telecommand execution is the pattern functionality, the telecommand manager is the 
functionality manager, and the Telecommand class decouples the functionality management 
from the functionality implementation. 

The telecommand management pattern is instantiated in the AOCS framework as follows: 

u The telecommand manager is implemented as an active object (see section 8) and its 
activate method is the run method it inherits from interface Runnable.  

u Telecommand events are created when telecommands are executed, when their execution 
fails, when they loaded in the telecommand manager, etc. 

u The Telecommand interface is replaced by a concrete class with overridable methods. 
This allows it to encapsulate some functions that are common to all telecommands. 

u The base class Telecommand is endowed with extra functions in addition to 
telecommand execution to disable and enable telecommands, to allow telecommands to 
check whether operational conditions are compatible with their execution, etc 

u A telecommand loader component is introduced to load telecommands into the 
telecommand manager (see section 26.4). 

The definition of concrete telecommands – through the subclassing of class Telecommand – 
is obviously application-specific and represents a framework hot-spot (the telecommand hot-
spot).  

26.2  The Telecommand Transaction Design Pattern 

In current systems, execution failure for a telecommand is reported in telemetry and it is then 
left to the ground to take whatever corrective action is appropriate.  

The AOCS framework introduces the telecommand transaction design pattern to address the 
problem of treating some telecommands or some sequences of telecommands as transactions 
where the term “transaction” is used in the same sense in which it is used in database systems 
to designates an atomic operation that can either succeed or fail and that, in case of failure, 
restores the initial state of the system. Thus, transactions are safe because even in case of 
failure they leave the AOCS software in a consistent state. 

Consider for instance a situation where the AOCS is in mode A and must make a transition to 
mode B. Suppose also that mode B requires units 1, 2 and 3 to be switched on. One would use 
the following sequence of telecommands to perform the desired transition: 
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• switch on unit 1; 
• switch on unit 2; 
• switch on unit 3; 
• switch to operational mode B.  

If, say, the second telecommand fails, two corrective actions should be performed: 

• abort the telecommand sequence, and 
• switch off unit 1. 

Note that simply aborting the telecommand sequence would leave the AOCS in an 
inconsistent state where unit 1 (which should be switched off in mode A) remains powered. 
Consistency in case of intermediate failures will be assured by treating the telecommand 
sequence as a transaction. 

The telecommand transaction design pattern calls for the introduction of a class 
TransactionTelecommand that extends calls Telecommand with an unExecute method 
that “undoes” the actions of the telecommand: 

1

previous

1

next

ConcreteTransactionTelecomman

Telecommand

+execute():void

ConcreteTelecommand

+execute():void

TelecommandTransaction

+unExecute():void

+setNext(next:TransactionTelecommand *):void

+setPrevious(previous:TransactionTelecommand
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Note that, as shown in the class diagram, telecommand transactions must be chained in a link 
to allow their manager to recursively undo all telecommands in the same transaction.  

The telecommand transaction pattern is instantiated in the AOCS framework as follows: 

u The interface TransactionTelecommand is replaced by a concrete class derived from 
class Telecommand  

u Class TransactionTelecommand provides default (and overridable) implementations 
of methods execute and unExecute that take care of checking the success or otherwise 
of a telecommand and, if necessary, undo its action by calling unExecute.  These 
implementations are such that the telecommand manager need not be aware of the 
distinction between telecommands and telecommand transactions. 

Note that concrete transaction telecommands must provide implementations for both 
execute and unExecute. In some cases, unexecution is either not possible or not desired. In 
this case, the telecommand transaction becomes merely a telecommand sequence, namely a 
sequence of telecommands that are executed as a single telecommand but for which there is 
no guarantee of system integrity in case of partial or complete failure. 

26.3 Recursion 

The telecommand transaction design pattern introduces the possibility of recursion since a 
call to method execute can now be recursive. The maximum depth of the recursion is given 
by the maximum number of telecommands that are chained into a single telecommand 
transaction. 

26.4 Telecommand Loading 

Telecommands are loaded dynamically into the AOCS computer memory. The loading 
mechanism is application-dependent. Two common mechanisms are: 

• the telecommand is loaded via DMA under the control of hardware that is external to the 
AOCS computer. The completion of a load operation is indicated by an interrupt to the 
AOCS software. 

• the telecommand words or bytes are loaded by the AOCS software via I/O commands. 
The arrival of a new word or byte is indicated by an interrupt to the software. 

A telecommand is an object made up of data and code. The link between the data and the 
code is provided by a virtual function table. Two types of telecommand loading are foreseen: 

• Data Load  
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The code for the telecommand is already present in the AOCS software and only the data 
part of the telecommand object is physically loaded into memory. 

• Full Load  

Both the code and the data for the telecommand object are loaded.  

The two telecommand load types are illustrated in the figure: 
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In a data load, only the yellow part of the figure is physically loaded onto the AOCS 
computer memory. In the full load case, both the yellow and red parts are loaded. The 
example in the figure assumes that the code for all methods required by the telecommand 
must be loaded. In practice, some methods will be able to rely on code already present in the 
AOCS computer (typically, this is because such methods are inherited without changes from 
a superclass of the concrete telecommand class that is already present in memory). 

Normally, an AOCS application will include some predefined telecommand classes 
implementing common telecommand actions. For such telecommands, only the data need to 
be loaded. Unusual or unforeseen telecommands need to be loaded in full. 

Since telecommand loading is application-specific, the framework cannot provide a generic 
telecommand loader component. Instead, it provides an abstract interface that has to be 
implemented by concrete telecommand loaders and that allows their integration with other 
framework components. This interface is called TelecommandLoader and the components 
implementing it are called telecommand loaders. 

The definition of concrete telecommand loaders – through the implementation of interface 
TelecommandLoader – is obviously application-specific and represents a framework hot-
spot (the telecommand loader hot-spot). 
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26.5 Reusability and Extensibility Issues  

The advantages of the concept proposed here are: 

• Very high expressiveness; 
• Complete de-coupling between telecommand structure and telecommand handler; 
• Ease of extensibility; 
• Complete re-usability of telecommand handling software across missions; 
• Very high re-usability of telecommands across missions. 

The disadvantage of this concept is: 

• Bigger telecommand size 

The greater size of telecommands comes from the fact that the telecommands are carrying 
code as well as data. However, the complexity of this code should not be exaggerated. Note 
also that the base classes from which telecommands are derived can be stored on board. The 
concrete telecommands only need to carry along the code that defines their differential 
behaviour with respect to the default implementation in the base class. In most cases, this 
delta code will reduce to a single method calls. 

The high degree of re-usability, of both individual telecommands and telecommand 
management software, is a consequence of the complete de-coupling between the content of 
telecommands and the logic required to execute them. Individual telecommands can be re-
used because they consist of calls to public methods – whose syntax presumably does not 
change from mission to mission. The telecommand manager being independent of 
telecommand content can also be re-used without changes. 

The independence of the telecommand handlers from the content of telecommands also 
means that new telecommands can be added without any impact on the telecommand 
management software thus achieving the objective of ease of extensibility. 

The expressiveness of the telecommands with this approach can be exploited to combine into 
a single telecommands actions that would otherwise result in several telecommands. 
Consider for instance the case where four units have to be switched on in sequence. With the 
traditional telecommand concept, this requires sending four telecommands one after the 
other. With the proposed telecommand concept, the commands can be naturally combined 
into a single telecommand. This results in a reduction of overhead that somewhat 
compensates for the higher overhead intrinsic to the active telecommand concept. 
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27 TELEMETRY MANAGEMENT 

Telemetry data are generated cyclically by the AOCS for transmission to the ground station. 
They represent (a subset of) the software state of the AOCS and are used on ground to 
reconstruct (a subset of) the software state of the AOCS. 

Telemetry data are transmitted in frames. A telemetry frame represents the set of data that are 
sent by the AOCS to the ground in one telemetry transmission cycle.  

The telemetry stream is the data sink to which telemetry data are written. It represents the 
channel through which telemetry data are forwarded to the ground station. 

The telemetry concept proposed by the AOCS framework assumes that the AOCS software is 
organized as a collection of objects with each object potentially capable of writing its own 
state to the telemetry stream. A telemetry manager component is responsible for managing 
the flow of telemetry data. 

27.1 The Telemetry Management Design Pattern 

This design pattern is introduced to address the problem of separating the management of 
telemetry data from the layout and content of the telemetry frames. It is based on the 
manager meta-pattern of section 5.4. 

The pattern is illustrated in the following class diagram: 

1 1 1..*

telemetryList

1
Telemeterable

+writeToTelemetry():v

AnyAocsClassactivate() {

for (all items in telemetr

item->writeToTelemetry(

... // send TM data to

}

TelemetryManager

+activate():voi

TelemetryStream

ConcreteTelemetryStream

 

 

The telemetry manager maintains a list of references to objects of type Telemeterable. 
Telemeterable objects are objects that are capable of writing their own internal state to the 
telemetry stream. 
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The telemetry manager additionally maintains a reference to the telemetry stream. The 
characteristics  of concrete telemetry streams vary widely across AOCS applications and 
therefore no generic telemetry stream component can be provided. The AOCS framework 
characterizes telemetry stream through the abstract interface TelemetryStream. 

The telemetry management pattern is instantiated in the AOCS framework as follows: 

u The telemetry manager is implemented as an active object (see section 8) and its 
activate method is the run method it inherits from interface Runnable.  

u Methods are added to the Telemeterable interface to control the format of the 
telemetry image generated by telemeterable components: it is assumed that telemeterable 
objects can generate four different telemetry images with different content and layout. 
Interface Telemeterable allows the telemetry manager (or other components) to select 
the format of the telemetry image of each telemeterable object. 

u The telemetry stream is passed as a reference to the writeToTelemetry method. 
Forwarding of telemetry data to the telemetry stream is thus done directly by 
telemeterable objects.  

u In order to ensure that all non-trivial AOCS objects can potentially have their state 
included in telemetry, interface Telemeterable is implemented by class AocsObject 
(see section 6.9) 

The definition of the layout and content of the telemetry image of telemetry object – through 
the implementation of interface Telemeterable – is obviously application-specific and 
represents a framework hot-spot (the telemetry hot-spot).  

The definition of concrete telemetry stream – through the implementation of interface 
TelemetryStream – is also application-specific and represents a further framework hot-
spot (the telemetry Stream hot-spot). 

27.2 Alternative Implementation 

The most straightforward way to implement the proposed telemetry concept is to treat 
telemetry reporting as a form of serialization (in the Java sense of the term, see RD6 for a 
description). Telemetry then becomes an output stream to which the state of objects marked 
for inclusion in telemetry are serialized. 

This approach presents the following advantages: 

• Simplicity of Implementation 
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As in Java, serialization can be handled either by default methods or by object-specific 
methods. If the default serializer is used, then serialization is effectively transparent to 
objects thus simplifying their development. 

• Strong Heritage 

Serialization is implemented in a number of languages and is therefore a well-understood 
process for which good architectural and implementation models exist. This would result 
in a robust and reliable implementation. 

• Symmetry between On-Ground and On-Board Telemetry Processing 

Serialization allows objects to be fully reconstructed on ground. This achieves the 
objective of symmetric treatment between on-board and on-ground telemetry. Telemetry 
becomes a means of “cloning” AOCS objects on ground with considerable advantages in 
terms of reliability and simplicity of ground control software.  

The drawbacks of this approach are: 

• Need for Language Support 

An efficient implementation of serialization requires dedicated language support. Firstly, 
the language must make a distinction between data members that are part of the persistent 
state of an object, and should therefore be serialized, and transient data members that can 
be ignored  during the serialization process.  

Secondly, meta-language support is required to let the serializer extract information about 
the number and type of the data members present in an object. 

• High Bandwidth Requirements 

Standard implementations of serialization tend to generate large amounts of data 
Serialization introduces overheads because it does not packetize data in the most efficient 
manner (eg a boolean variable will take one or more bytes rather than just one bit) and 
because it adds to the stream possibly redundant information about class names.  

This requires a higher capacity for the telemetry channel which in turn translates into 
higher requirements on the bandwidth of the telemetry downlink. 

The first drawback can be overcome depending on the language that is selected for the  AOCS 
software. In the case of C++, for instance, standard libraries exist that provide language 
support for serialization. The second drawback is more serious because bandwidth is usually 
severely limited on spacecraft. Hence, serialization was not considered further in the design 
of the framework prototype. It may be reconsidered in future upgrades of the framework.  
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27.3 Reusability and Extensibility Issues  

The concept proposed here achieves the objectives of reusability and ease of extension 
because it completely decouples the task of managing telemetry from the task of writing 
objects to telemetry. In this way, the telemetry manager becomes reusable across missions. 

Changing the information going to telemetry can be done through local changes that affect 
only the objects concerned.  Adding new objects for inclusion in telemetry instead can be 
done dynamically and does not have any impact at all on an existing system. 
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28 CONTROLLER MANAGEMENT 

Closed-loop controllers are widely used inside AOCS applications. They are primarily used to 
control the satellite attitude but can also be used to control the satellite orbit or the reaction 
wheel speeds. 

The controller model assumed by the framework is shown in the figure: 
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The figure shows a classical closed loop control system. The arrows represent signal flows 
and each arrow can represent several parallel flows. The boxes represent multi-input-multi-
output transfer functions. 

28.1 Controller Inputs 

The inputs to a controller are: 

• The reference signals that must be tracked by the controller 
• The measurements from a sensor 
• The feedforward compensation signals that are added to the control output and typically 

model known disturbances 

The sensor measurement inputs are mandatory. The reference signals and feedforward 
compensation inputs are optional. If they are absent, the controller assumes that they are 
equal to zero. 
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28.2 Controller Outputs 

A controller has three outputs:  

• The actuator commands that represent the commands for the actuator 
• The compensator outputs that represent the inputs to the compensator block 
• The control errors that are obtained as the difference between filtered measurements and 

reference signals 

The actuator command outputs are mandatory. The other two outputs are optional. 

28.3 Controller Transfer Function Blocks 

A controller includes four transfer function blocks: 

• The compensator which implements the control law 
• The measurement filter that filters the measurement signals 
• The feedforward filter that filters the feedforward signals 
• The reference signal filter that filters the reference signals 

Explicit specification of the compensator transfer function is mandatory. The other transfer 
function blocks need not be specified by the user in which case they are implicitly assumed to 
be equal to 1. 

The measurement filter block often represents an estimator. 

The transfer function blocks are implemented in the AOCS framework using the control 
channel concept of section 16. 

28.4 Controller Objects 

The framework encapsulates closed-loop controllers of the kind presented in the first part of 
this section in dedicated components called controller objects. Controller objects are 
implemented as instances of class Controller. The conceptual structure of this class is: 

0..1

1 1..*

transferFunctions

AocsObject

AbstractControlChanne

Controller

+linkOperations():void

+setTransferFunctionBlocks():void

+controllerManagementOperations():

 

This class exposes three categories of methods:  
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u methods to link the controller’s inputs and outputs to data pool locations;  
u methods to load the control channels representing the controller transfer functions; 
u methods to perform controller management operations such as setting the controller in 

open or closed loop, checking the controller’s stability, performing a control action, etc. 

The controller class additionally holds multiple references to class 
AbstractControlChannel representing the control channels that implement the controller 
transfer functions. 

The transfer functions to  be implemented by a controller are application specific and 
represent one of the framework hot-spots (the controller hot-spot). 

28.5 The Controller Design Pattern 

This design pattern is introduced to address the problem of separating the management of 
closed-loop controllers from their implementations. It is based on the manager meta-pattern 
of section 5.4. 

The pattern is illustrated in the following class diagram: 

1 1..*

controllerList

Controllable

+doControl():vo

+isStable():boo

ConcreteControll

void activate() {

for (all items in contr

{ if (item->isStable()

item-doControl();

else

... // error!

}

}

ControllerManager

+activate():voi

 

The abstract base class or interface Controllable represents a generic closed-loop control 
system of the kind discussed in the first part of this section. Its key method is doControl 
that directs the controller to acquire the sensor measurements, derive discrepancies with the 
current set-point, and compute and apply the commands for the actuators. Since closed-loop 
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controllers can become unstable, a second key method isStable which is provided to ask a 
controller to check its own stability.  

The controller manager component is responsible for maintaining a list of objects of type 
Controllable and for asking them to check their stability and, if the stability is confirmed, 
to perform their allotted control action. 

This pattern is instantiated as follows in the AOCS framework:  

u The controller manager is implemented as an active object (see section 8) and its 
activate method is the run method declared by interface Runnable.  

u The separation between the controller management and the controller implementation is 
achieved not through an abstract interface (Controllable in the previous diagram) but 
through a configurable concrete class (class Controller, see section 28.4). 

u In most cases, the control algorithms that are applied by each control loop depend on 
operational conditions. This is taken into account by making the controller manager 
mode-dependent (see section 21). The controller mode manager then manages a single 
strategy represented by the list of controller objects that have to managed by the 
controller manager. 
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29 DOMAIN ABSTRACTION DICTIONARY 

Domain abstractions capture the commonalities of the AOCS applications in the framework 
domain. They describe concepts and functional features that span application boundaries and 
are found in all domain applications and provide the vocabulary to describe the AOCS 
framework architecture. 

 

Abstract Control Channel Encapsulation of a generic multi-input-multi-output transfer function. 
See section 14 and RD23. 

AOCS Data Data that are produced or consumed on a periodic basis by AOCS 
components. See section 13 and RD21. 

AOCS Event An object that encapsulate a description of an asynchronous event. 
See section 13 and RD21. 

AOCS Object An object that is instantiated, directly or indirectly, from class 
AocsObject and that has access to the following basic services: time 
recovery, failure reporting, and configuration error reporting; and has 
the following properties: resettability, configurability, and 
telemeterability. See section 6.9 and RD20. 

Bound Property A property that is subject to monitoring through change notification. 
See section 12.2 and RD22. 

AOCS Unit Any device (normally a sensor or an actuator) that is external to the 
AOCS computer but internal to the AOCS subsystem. See section 18 
and RD24.  

Change Object Encapsulation of a specific time profile for a property value. See 
section 11 and RD22. 

Configurable Property of an object that can clear its internal configuration and that 
can check whether it is correctly configured. See section 9 and RD20. 

Configuration Error Any fault that is detected by a component while it is being configured. 
Configuration errors would typically occur during application 
initialization when the application components are configured. See 
section 23.1. 

Consistency Check Failure detection test where a component is asked to check its own 
internal consistency. See section 24.1 and RD28.  

Control Block An abstract control channel that cannot be further decomposed into 
lower level control blocks. See section 14 and RD23. 
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Control Channel Same as Abstract Control Channel above. 

Control Super Block Container for a chain of interconnected control channels. See section 
14 and RD23. 

Controller Encapsulation of a generic closed-loop controller. See section 28 and 
RD33. 

Cyclical Data Same as AOCS Data above. 

Data Pool Shared memory area where AOCS data are stored. See section 13.8 
and RD21. 

Event Repository Shared memory area where AOCS events are stored. See section 13 
and RD21. 

Failure Any fault that is detected during the normal operation of a component 
and that affects its ability to perform its allotted task. Failures would 
normally occur only during normal operations. See section 23.1. 

Fictitious AOCS Unit  Component that behaves to its client like a proxy for an external unit. 
See section 19 and RD24. 

Manoeuvre Sequence of actions to be performed by the AOCS at specified times 
to achieve a specified goal. See section 22 and RD27. 

Mode Change Action Actions to be performed when a mode-dependent component changes 
mode. See section 21.2 and RD26. 

Monitor A component that performs a monitoring action. Also called a 
monitoring component. See section 12 and RD22. 

Monitored Property A property that is subject to a monitoring action by a monitor. See 
section 12 and RD22. 

Monitoring Action Observation of a change over time in the value of a property. See 
section 12 and RD22. 

Monitoring Check Failure detection test where it is verified that a property does not 
undergo a pre-specified change. See section 24.3 and RD28.  

Operational Mode Attribute of a component whose behaviour depends on operational 
conditions. See section 21 and RD26. 

Property Attribute of an object that describes one aspect of its behaviour or of 
its internal state and that is accessible to external objects. See section 
10 and RD22. 

Property Object Object of class Property that encapsulates a property. See section 10 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
Framework Concept Level Description 
30 April 2002 
Issue 3.3 
Page 155 
 
  

 

University of Konstanz - A. Pasetti 

and RD22. 

Reconfiguration Switch between different independent implementation of the same 
functionality. See section 20 and RD25. 

Reconfiguration Group Set of objects that together offer a redundant functionality. See section 
20 and RD25. 

Recovery Action Set of actions to be taken in response to a single failure report. See 
section 25.1 and RD30.  

Recovery Strategy Set of actions to be taken in response to a set of failure reports 
(normally, to the failure events present in the failure event repository). 
See section 25.4 and RD30. 

Redundant Functionality Functionality for which two or more independent implementations are 
provided. See section 20 and RD25. 

Redundant Object Member of a reconfiguration group. See section 20 and RD25. 

Resettable Property of an object that can bring its internal state to some initial 
default value. See section 9 and RD20. 

Sequential Data Processing 
Chain 

Sequence of independent processing stages through which AOCS 
data are passed. See section 14 and RD23. 

State of an Object The attributes of an object that are updated as part of the object’s 
performing its allotted task as distinguished from those of its attributes 
that are normally set during the application initialization to configure it. 
See section 9. 

Strategy Encapsulation of a mode-dependent behaviour: to each operational 
mode there corresponds a strategy. See section 21 and RD26. 

System Management 
Functionality 

A function that is performed systematically on all AOCS objects 
present in the AOCS software at a given time. The system manager is 
the component responsible for performing system management 
functions. 

Telecommand Encapsulation of an action to be performed upon the AOCS software 
and uplinked from the ground station. See section 26 and RD32. 

Telecommand Loading Process whereby telecommands are loaded from an external interface 
ultimately communicating with the ground station into the AOCS 
application software. See section 26.4 and RD32. 

Telecommand Transaction A sequence of telecommands that are executed as a single 
transaction and whose actions, in case of partial or complete failure, 
can be reversed to leave the AOCS in the same state in which it was 
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before the transaction was started. See section 26.2 and RD32. 

Telemeterable Property of an object whose state can potentially be included in the 
telemetry stream. See section 27 and RD31. 

Telemetry Frame Set of telemetry data sent to the telemetry stream in one single 
telemetry cycle. See section 27 and RD31. 

Telemetry Stream Data sink to which telemetry data are written representing the channel 
through which telemetry data are sent to the ground. See section 27 
and RD31. 

Transaction Telecommand One of the telecommands making up a telecommand transaction. See 
section 26.2 and RD32. 
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30 FRAMEWORK DESIGN PATTERNS 

The table below lists the framework-level design patterns identified in this document. 

 

Control Channel Pattern 

This design pattern is introduced to model the control channel concept and to allow both blocks 
and super blocks in a sequential data processing chain to be treated in a uniform manner. See 
section 16.3 and RD23. 

Controller Pattern 

This design pattern is introduced to separate the management of closed-loop controllers from 
their implementation. It is based on the manager meta-pattern. See section 28 and RD33. 

Direct Property Monitoring Pattern 

Pattern to directly monitor an object’s property by accessing the property value or the property 
object through getter methods exposed by the property owner. Inspired by the JavaBeans 
architecture. See 12.1 and RD22. 

Failure Detection Pattern 

This design pattern is introduced to separate the management of failure detection tests from their 
implementation. It is based on the manager meta-pattern. See section 24 and RD28. 

Failure Recovery Pattern 

This design pattern is introduced to separate the management of failure recovery from the 
implementation of failure recovery actions. It is based on the manager meta-pattern and on the 
chain of responsibility pattern. This pattern introduces recursion. See section 25.6 and RD30. 

Fictitious Unit Pattern 

This design pattern is introduced to address the problem of combining components that process 
unit data without impacting the final users of the unit data. This pattern introduces recursion. See 
section 19 and RD24. 

Manoeuvre Pattern 

This design pattern is introduced to separate the management of manoeuvres from their 
implementation. See section 22 and RD27. 

Mode Management Pattern 
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This design pattern is introduced to endow components with mode-dependent behaviour while 
separating the implementation of the mode-dependent strategies from the implementation of the 
logic governing mode switches. See section 21 and RD26. 

Monitoring through Change Notification Pattern 

Pattern to monitor a property by registering with the property owner and asking it to notify the 
monitor when a change of a certain type (as encapsulated by a change object) has occurred. 
Inspired by the JavaBeans architecture. See 12.1 and RD22. 

Reconfiguration Management Pattern  

This design pattern is introduced to address the problem of separating the management of a 
reconfiguration group from the provision of the reconfigurable functionality. See section 20.2 and 
RD25. 

Shared Data Pattern  

This design pattern is introduced to address the problem of allowing components to share access 
to data objects that are generated synchronously . See section 13.7 and RD21. 

Shared Event Pattern  

This design pattern is introduced to address the problem of allowing components to share access 
to event objects that are generated asynchronously. See section 13.2 and RD21. 

System Management Pattern 

The system management design pattern is introduced to address the problem of systematically 
performing the same set of operations on a target set of objects. The system management design 
pattern is obtained by instantiating the manager meta-pattern. See section 9 and RD20. 

Telecommand Management Pattern 

This design pattern is introduced to address the problem of separating the management of 
telecommands from their implementation. This design pattern is obtained by instantiating the 
manager meta-pattern. See section 26.1 and RD32. 

Telecommand Transaction Pattern 

This design pattern is introduced to address the problem of treating some sequences of 
telecommands as transactions, namely as atomic operation that can either succeed or fail and 
that, in case of failure, restores the initial state of the system. See section 26.2 and RD32. 

Telemetry Management Pattern 

This design pattern is introduced to address the problem of making the management of telemetry 
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data independent of the layout and content of telemetry frames. See section 27 and RD33. 

 



 

University of Constance 
Dept. of Computer Science 

Software & Web Engineering Group 
Framework Concept Level Description 
30 April 2002 
Issue 3.3 
Page 160 
 
  

 

University of Konstanz - A. Pasetti 

31 FRAMEWORK HOT-SPOTS 

The table below lists the framework-level hot-spots identified in this document. Detailed 
description of the hot-spots can be found in the framelet-level documents. 

 

AOCS Unit Hot-Spot 

AOCS applications must subclass AocsUnit to encapsulate interactions with external units. See 
section 18.5 and RD24. 

AOCS Unit Hardware Hot-Spot 

AOCS applications must implement interface AocsUnitHardware to encapsulate the interaction 
with the low-level hardware that controls data exchanges with external units. See section 18.5 and 
RD24. 

Change Object Hot-Spot 

AOCS applications must implement interface ChangeObject to encapsulate the change profiles 
in which they are interested. See section 11 and RD22. 

Configurable Hot-Spot 

AOCS objects must provide an implementation of interface Configurable to destroy their 
internal configuration and to check that they have been configured. See section 9 and RD20. 

Consistency Checkable Hot-Spot 

AOCS objects must provide an implementation of interface ConsistencyCheckable to define 
their application-specific consistency checks. See section 24 and RD28. 

Control Block Hot-Spot 

AOCS applications must provide the definition of the propagation algorithms for the control 
channels they use. See section 16.1 and RD23. 

Controller Hot-Spot 

AOCS applications must provide the definition of the control algorithms for the closed-loop 
controllers. See section 28 and RD33. 
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Data Pool Subclass Hot-Spot 

AOCS applications must define the data pools where application data are stored. A data pool is 
created by deriving a class from DataPool. The derived class contains AOCS data objects that 
are logically related (eg. all AOCS data objects relative to attitude control, all AOCS data objects 
relative to orbit  control, etc.). See section 13.8 and RD21. 

Fictitious Unit Hot-Spot 

AOCS applications must implement interface AocsUnitFunctional to encapsulate the 
processing of unit data. See section 19 and RD24. 

Manoeuvre Hot-Spot 

AOCS applications must define the application-dependent manoeuvres by subclassing class 
Manoeuvre. See section 22 and RD27. 

Mode Change Action Hot-Spot 

AOCS applications must define the application-specific actions to be associated to mode changes 
in mode-dependent components. See section 21.2 and RD26. 

Mode Implementer Hot-Spot 

AOCS applications must define the application-dependent strategy implementations for mode-
dependent components. See section 21 and RD26. 

Mode Manager  Hot-Spot 

AOCS applications must define the application-dependent mode switching logic for mode-
dependent components. See section 21 and RD26. 

Monitoring Check Hot-Spot 

AOCS applications must define the properties that need to be monitored during failure detection 
tests and the type of change in their value that determines a failure. See section 24 and RD28. 

Property Change Hot-Spot 

AOCS applications must define the actions to be taken when a property subject to monitoring 
through change notification has undergone a change. See section 12.2 and RD22. 

Reconfigurable Hot-Spot 
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AOCS applications must define the reconfiguration logic for the reconfiguration groups in their 
application. See section 20.2 and RD25. 

Recovery Action Hot-Spot 

AOCS applications must define the recovery actions to be used in their applications. See section 
25.1 and RD30. 

Recovery Strategy Hot-Spot 

AOCS applications must define the recovery strategies to be used in their applications. See 
section 25.4 and RD30. 

Resettable Hot-Spot 

AOCS objects must provide an implementation of interface Resettable to reset their internal 
state. See section 9 and RD20. 

Telecommand Hot-Spot 

AOCS applications must provide their own application-specific telecommands by subclassing the 
base class Telecommand. See section 26 and RD32. 

Telecommand Loader Hot-Spot 

AOCS application must provide their own application-specific telecommand loader by 
implementing the abstract interface TelecommandLoader. See section 26.4 and RD32. 

Telemetry Hot-Spot 

AOCS applications must provide their own application-specific implementation of interface 
Telemeterable defining the content of the telemetry images of their components. See section 
27 and RD31. 

Telemetry Stream Hot-Spot 

AOCS application must provide an application-specific implementation of interface 
TelemetryStream defining their telemetry stream. See section 27 and RD31. 

 


