

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 1

 AOCS FRAMEWORK - TEST REPORT

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework was
tested by using it to generate the software for a prototype
AOCS. This document defines the test environment that
was used to test the AOCS prototype and the results of
the tests.

Written By: A. Pasetti

Date: 30 April 2002

Issue: 1.1

Reference: SWE/00/AOCS/001

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 2

TABLE OF CONTENTS

1 REFERENCES.. 3
2 ACRONYMS.. 5
3 INTRODUCTION... 6

3.1 Context ... 6
3.2 General Test Approach .. 6
3.3 Test Types .. 7

4 THE TEST HARNESS .. 8
4.1 Default Test Cases .. 10
4.2 Close Loop Simulation... 11

5 THE VS TEST ENVIRONMENT... 12
5.1 Test Harness Instantiation... 12
5.2 Running the AOCS Application... 12
5.3 MACS and Telemetry Data Save.. 13

6 THE ERC32 TEST ENVIRONMENT.. 15
6.1 The Initialization Task ... 15
6.2 The Quasi-Cyclical Task .. 16

7 FUNCTIONAL TESTS ... 17
7.1 Event Repository Checks... 17
7.2 Attitude Data Pool Checks .. 18
7.3 MACS Buffer Checks.. 19

8 TIMING TESTS ... 20
8.1 Full AOCS Prototype Timing Measurements... 20
8.2 Functionality Managers Timing Measurements .. 20

9 MEMORY TESTS .. 22
9.1 Basic Memory Requirement Measurements... 22
9.2 AOCS Prototype Memory Requirement Measurements .. 23
9.3 Heap Usage Measurement .. 23

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 3

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

RD3 Deleted

RD4 A. Pasetti (2000), Methodological Issues, AOCS Framework Document ref.
SWE/99/AOCS/018

RD5 A. Pasetti (2000), Inter-Component Communication Framelet AOCS Framework
Document ref. SWE/99/AOCS/005

RD6 A. Pasetti (2000), Object Monitoring Framelet, AOCS Framework Document ref.
SWE/99/AOCS/008

RD7 A. Pasetti (2000), Data Processing Framelet, AOCS Framework Document ref.
SWE/99/AOCS/006

RD8 A. Pasetti (2000), AOCS Unit Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/017

RD9 A. Pasetti (2000), Reconfiguration Management Framelet AOCS Framework Document
ref. SWE/99/AOCS/015

RD10 A. Pasetti (2000), Operational Mode Management Framelet AOCS Framework Document
ref. SWE/99/AOCS/009

RD11 T. Brown, A. Pasetti (2000), Manoeuvre Management Framelet, AOCS Framework
Document ref. SWE/99/AOCS/012

RD12 A. Pasetti (2000), Failure Detection Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/010

RD13 A. Pasetti (2000), System Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/021

RD14 A. Pasetti (2000), Failure Recovery Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/011

RD15 A. Pasetti (2000), Telemetry Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/003

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 4

RD16 A. Pasetti (2000), Telecommand Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/014

RD17 A. Pasetti, T. Brown (2000), Controller Management Framelet, AOCS Framework
Document ref. SWE/99/AOCS/016

RD18 A. Pasetti (2000), AOCS Prototype Definition, AOCS Framework Document ref.
SWE/99/AOCS/020

RD19 MACS Bus Handbook

RD20 A. Pasetti (2000), AOCS Prototype Definition, AOCS Framework Document ref.
SWE/99/AOCS/020

RD21 A. Pasetti (2000), Framework Instantiation, AOCS Framework Document ref.
SWE/00/AOCS/002

RD22 ERC32 Home Page, http://www.estec.esa.nl/wsmwww/erc32/freesoft.html

RD23 RTEMS Home Page, http://www.rtems.com/RTEMS/rtems.html

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 5

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
MIMO Multi-Input-Multi-Output
NM Normal Mode
NTT Non-Time-Tagged
OBDH On-Board Data Handling system (aka as OBDS)
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SISO Single-Input-Sinle-Output
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 6

3 INTRODUCTION

This document describes the test environment that was used to test the AOCS prototype
instantiated from the AOCS prototype framework. The AOCS prototype is a simplified AOCS
application which is implemented using the constructs offered by the AOCS prototype
framework. The AOCS prototype thus serves as a test bed for the AOCS prototype
framework.

3.1 Context

The context for the definition of the prototype framework is the architectural design of the
full framework. This is presented at system concept definition level in RD2 and at framelet
concept and at framelet architectural definition level in RD5 to RD17. The prototype
framework is defined in RD18. The AOCS prototype whose testing is described here is
presented in RD20.

3.2 General Test Approach

The AOCS prototype was tested first in a test environment developed and run under Visual
Studio and then on the ERC32 simulator. These test environments will be referred to as the
VS Test Environment and the ERC32 Test Environment.

The main constraint on the testing was the absence of a real-world simulator simulating the
satellite dynamics and the AOCS sensors and actuators. Testing was therefore done in open
loop: the test harness stimulates the sensors and sends telecommands to the AOCS and
intercepts the commands that the AOCS sends to the actuators and collects the telemetry.

A second constraint was the failure to simulate the hardware interfaces of the AOCS
computer (the MACS, telemetry and telecommand interfaces).

A third constraint was the lack of an interface to visualize the state of the AOCS under test
and to issue commands to the AOCS while the test is under way.

The second and third constraints were addressed by introducing an extra task in the AOCS
software called the Test Harness. The test harness runs as the last task in the AOCS software.
Its job is to perform the following actions:

− to prepare and load the stimuli for the MACS units for the next AOCS cycle

− to prepare and load the telecommands for the next AOCS cycle

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 7

− to collect the data sent to the MACS units in the previous cycle and store them in a
dedicated buffer

− to collect the telemetry data generated by the AOCS software in the last cycle and store
them in a dedicated buffer

At the end of a test, the MACS and telemetry data collected by the test harness are sent to a
file in the VS test environment and to the standard output device in the ERC32 test
environment (the ERC32 simulator has no file system but can send data to the console).

3.3 Test Types

Three types of tests were performed on the prototype AOCS:

− Timing Tests with the aim of measuring the overhead introduced by the framework and
the execution time of the prototype AOCS

− Memory Tests with the aim of measuring the memory overhead introduced by the
framework and the memory requirements of the prototype AOCS

− Functional Tests with the aim of demonstrating that the functionalities offered by the
AOCS framework are correctly implemented.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 8

4 THE TEST HARNESS

A test harness is encapsulated as an object ultimately derived from the base class
AocsTestHarness:

Runnable

AocsTestHarness

-out:FILE *

-tmBuffer:char *

-macsBuffer:unsigned short *

-tmCounter:int

-macsCounter:int

#fwFact:FrameworkFactories

#loadTelecommands():void

#loadMacs():void

#generateActuatorCommands():void

#saveTelemetry():void

#saveMacs():void

+AocsTestHarness(fwFact:FrameworkFactories,out:F

+run(deadline:AocsTime):void

+getTmBufferSize():int

+getNumberOfTmBuffers():int

+getTmBuffer():char *

+getTmCounter():int

+getNumberOfMacsWords():int

+getMacsBuffer():unsigned short *

+getNumberOfMacsBuffers():int

+getTmMacsCounter():int

Class AocsTestHarness implements interface Runnable to allow its instances to be treated
as active objects that can be scheduled alongside other AOCS tasks. Its method run (the entry
point for the scheduler) is structured as follows:

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 9

void AocsTestHarness::run(AocsTime t)
{

loadTelecommands();
loadMacs();
generateActuatorCommands();
saveTelemetry();
saveMacs();

}

Method loadTelecommands assembles the telecommands to be sent to the AOCS under test
and places them as telecommands packets in the telecommand buffer from where they are
picked up by the telecommand loader. This method therefore simulates the telecommand
interrupt servicing routine.

Method loadMacs assembles the stimuli for the MACS units representing the sensor read-
outs for the next cycle. The stimuli are assembled as 16-bit words with the same format with
which the data would be received from the MACS bus. They are loaded into the hardware
registers of the MACS units using method setFcHwInpBuff exposed by class AocsUnit.
Method loadMacs therefore simulates the MACS bus interrupt servicing routines that would
normally be responsible for recovering data received from the MACS bus.

Method generateActuatorCommands generates the commands for the actuators and loads
them in the attitude data pool in the locations corresponding to the spacecraft torque request.
Thus, this method overrides the torque requests generated internally to the AOCS software
by its attitude controllers.

Method saveTelemetry collects the telemetry generated by the AOCS under test in the last
cycle and stores it in a dedicated buffer (tmBuffer) where it remains available for inspection
at the end of the test.

Method saveMacs collects the outgoing MACS data generated by the AOCS under test in the
last cycle and stores them in a dedicated buffer (macsBuffer) where it remains available for
inspection at the end of the test. The MACS data are retrieved by accessing the outgoing
hardware buffers of the MACS unit objects in the AOCS software using method
getFcHwOutBuff exposed by class AocsUnit.

The base class AocsTestHarness provides implementations for methods saveTelemetry
and saveMacs. For the other three methods only trivial default implementations are
provided. Meaningful implementations are to be provided by subclasses.

The implementation of methods loadTelecommands and loadMacs define a test profile
because they define the stimulation of the AOCS software as a function of time. A subclass of

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 10

AocsTestHarness therefore defines a test case by providing implementations for these two
methods.

4.1 Default Test Cases

Two default test cases are provided as subclasses AocsTestHarness_1 and
AocsTestHarness_2. The first one was only used for initial confidence testing and is not
documented further. The test profile of AocsTestHarness_2 is instead describe below.

The physical spacecraft configuration simulated by test case AocsTestHarness_2 is:

u Nominal attitude with the z-axis sun pointing and x- and y-axis perpendicular to the sun
vector

u Constant angular rate w_x applied to the x-axis and no angular rate around either of the
other two axes.

The spacecraft physical configuration data are used to compute the inputs for the AOCS
sensors. For all sensors but FSS_B, these inputs are computed assuming perfect calibration.
For FSS_B, a scaling error of 10% is instead assumed.

The AocsTestHarness_2 lasts 10 AOCS cycles (10 seconds).

The test case AocsTestHarness_2 simulates the uplink of the following telecommands to
the AOCS:

TC Name Cycle Telecommand Description

TC1 3 Load an attitude slew manoeuvre with the following characteristics: slew
around x-axis with angular rate of –w_x starting immediately and extending
to the end of the test

TTC2 4 Transaction telecommand consisting of simple telecommands TC2.1 and
TC2.2

 TC2.1 Change the operational mode of the AOCS Mission Mode Manager to FSP

 TC2.2 Reconfigure the FSS

TC3 6 Reconfigure the FSS

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 11

The second column gives the AOCS cycle when the telecommands are uplinked. All the
telecommands carry a zero time tag which means that they are executed immediately.

Finally, this test harness simulates a gyro failure at the second cycle when the gyro A output
is changed from 0 to a value greater than the maximum permitted physical gyro output.

4.2 Close Loop Simulation

As explained in section 3.2, no closed loop tests were performed because no real-world
simulator for the AOCS was available. However, should such a real-world simulator become
available in the future, it could be easily integrated in an AocsTestHarness subclass. Its
implementation of loadMacs would then compute the stimuli for the MACS bus as a
function of the latest batch of MACS command generated by the AOCS software and
collected by subroutine saveMacs.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 12

5 THE VS TEST ENVIRONMENT

The VS test environment is used to verify the AOCS prototype from a functional point of
view only. Tests in this environment are intended as preparation for the tests in the ERC32
environment.

The main test program is in file AocsPrototype.cpp. This main program performs five
actions:

u It opens an output file where the test results will be sent
u It instantiates the framework
u It instantiates a test harness
u It runs the instantiated AOCS application
u It saves the MACS and telemetry data collected during the test run in a file

The instantiation process is described in RD21. The following three steps are described in the
following subsections.

5.1 Test Harness Instantiation

The test harness instantiation is performed as follows:

AocsTestHarness* aocsTestHarness =
new AocsTestHarness_2(fwFact, out);

Note that the test harness is treated throughout the test program as a pointer to the super
class TestHarness. Hence changing test harness only requires changing this single line of
code.

5.2 Running the AOCS Application

The framework instantiation results in nine Runnable components being created:

u the telemetry manager
u the telecommand manager
u the telecommand loader
u the failure detection manager
u the failure recovery manager
u the controller manager
u the manoeuvre manager

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 13

u the acquisition unit trigger
u the send unit trigger

Additionally, the test harness must also be treated as a Runnable object as explained in
section 3.2.

All the Runnable objects are loaded in array:

Runnable* aocsTasks[N_AOCS_TASKS];

A cyclical scheduler is then simulated by the following code:

for (int i=0; i<N_AOCS_CYCLES; i++)
for (int j=0; j<N_AOCS_TASKS; j++)

if (aocsTasks[j]!=NULL)
aocsTasks[j]->run(0);

The inner loop represents an AOCS cycle the outer loop controls the number of AOCS cycles
that are simulated by the test program.

5.3 MACS and Telemetry Data Save

At the end of each AOCS cycle, the test harness buffers up the MACS and telemetry data
generated during the cycle. Up to MACS_SAVE and TM_SAVE cycles of MACS and
telemetry data can be thus buffered.

Before exiting, the test program calls functions flushMacsBuffers and
flushTelemetryBuffers which copy the buffered MACS and telemetry data to an output
file. Only minimal formatting is done on the MACS and telemetry data.

Two types of telemetry data are printed to the output file: event repository telemetry images
and the attitude data pool telemetry image.

The print out of an event repository telemetry image has the following format:

Event repository name

Event repository instance identifier

Event repository telemetry format

Event repository counter

Event repository entries in sequence starting from the most recent one

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 14

The print out of the attitude data pool has the following format:

Data pool name

Data pool identifier

Data pool format

Data pool entries in the order in which they were loaded into the data pool. For the
attitude data pool this is: FssX FssY Gyr Sas1x Sas1y Sas2x Sas2y Sas3x Sas3y
RwSpd1 RwSpd2 RwSpd3 RwSpd4 TorqueX TorqueY TorqueZ RwAngMomX
RwAngMomY RwAngMomZ RwTor1 RwTor2 RwTor3 RwTor4 ThuOn1 -> ThuOn6
ThuDel1-> ThuDel6 AttEst1 AttEst2 AttEst3

The MACS words are printed in hex format as they would have appeared on the MACS bus.
They represent the wheel torques and the thruster commands (the delay and on times) as
they were sent to the SAP unit. The order in which they are printed is as follows:

Rw1Torque -> Rw4Torque, SapA1DelTime -> SapA6DelTime, SapA1OnTime ->
SapA6OnTime, SapB1DelTime - SapB6 DelTime, SapB1OnTime -> SapB6OnTime

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 15

6 THE ERC32 TEST ENVIRONMENT

The ERC32 test environment is based on the ERC32 simulator (see RD22) integrated with the
RTEMS operating system (see RD23).

The ERC32 version of the AOCS prototype application is instantiated and controlled by code
in file AocsPrototypeTestErc32.cpp. Except for this file, all the other application files
are the same as for the VS version of the AOCS prototype. Where necessary, and only very
rarely, compiler switches are used to make small and localized changes in the code within
these files.

The ERC32 AOCS prototype is organized as follows:

u One initialization task (entry point: Init) instantiates the framework and the test harness

u One quasi-cyclical task (entry point: AocsTask) runs all the Runnable components in
the application (including the test harness) and then suspends itself for 1 second.

Both the initialization and the quasi-cyclical task entry points are in file
AocsPrototypeTestErc32.cpp.

This file additionally configures the RTEMS operating systems through #define control
switches. These are taken from the standard RTEMS examples with the two following
changes:

u The initialization task stack size is set equal to 2*RTEMS_MINIMUM_STACK_SIZE or 5
kBytes. A value of 2.5 kBytes was also tried but was found to be insufficient.

u Usage of the floating point is enabled with the RTEMS_FLOATING_POINT control
switch.

Finally, since AocsPrototypeTestErc32.cpp

 is a C++ file and RTEMS expects to link into C modules, C-style linkage is specified for the
initialization and quasi-cyclical task entry points.

6.1 The Initialization Task

The initialization task in AocsPrototypeTestErc32.cpp performs the following actions:

u It instantiates the framework
u It instantiates a test harness
u It loads an array of Runnable components

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 16

u It creates and starts the quasi-cyclical task

The framework instantiation is done as described in RD21.

The test harness instantiation is done as for the VS environment (see section 5.1).

The array of Runnable components is called aocsTasks[]. Its purpose is to hold the
pointers to all the Runnable components in the AOCS application. It is used by the quasi-
cyclical task to activate the Runnable components in sequence as discussed in the next sub-
section.

The quasi-cyclical task creation is done using RTEMS services. As in the case of the
initialization task, the stack size is set at 2*RTEMS_MINIMUM_STACK_SIZE and the floating
point co-processor option is specified.

6.2 The Quasi-Cyclical Task

In each activation, this task goes through the list of items in the aocsTasks array and calls
their run method in sequence. In this sense, it simulates a non-preemptive scheduler.

After N_AOCS_CYCLE activations, the procedures to flush the MACS and telemetry buffers
are called. This is the same operation as described in section 5.3.

This task is said to be quasi-cyclical because at the end of each cycle, it suspends itself for 1
second and the duration of the suspension does not take its execution time into consideration.
A truly cyclical task would need to use the rtems_task_wake_when service1 or it should
arrange for a timer to kick it at the desired frequency.

1 But note that, according to the RTEMS user’s guide, the granularity of the rtems_task_wake_when service
is only 1 second.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 17

7 FUNCTIONAL TESTS

The functional test have the aim of demonstrating that the functionalities offered by the
AOCS framework are correctly implemented. A functional test is encapsulated by one test
harness object (see section 4). Only one functional test was performed corresponding to test
harness TestHarness_2 described in section 4.1.

The success of the test is verified by performing the checks listed in the next three
subsections. The list gives the parameters that needs to be checked in the test output file (see
section 5.3) and their expected value or behaviour.

In analyzing the test output, care should be given to the fact that there is a one cycle delay in
the reporting of data. This is due to the fact that the test harness task (that generates the
simulated inputs for the AOCS software and collects its outputs) is the last task to run in each
AOCS cycle.

Functional tests were performed both in the VS and the ERC32 environments. Their results in
the two environments should be the same.

7.1 Event Repository Checks

1. Since the MACS bus is not simulated, failures should be generated every time the AOCS
starts a MACS transaction. This can be verified by checking the event counter for the
failure event repository. It should increase by 25 in each AOCS cycle (except when there
are mode changes or unit switch over, see below). The event indicator in the failure event
buffer should be 146 (NO_BUS_TRANSMISSION)

2. No configuration events should be generated at any time during the test. This can be
verified by checking that the event counter of the configuration event repository remains
equal to 0.

3. The mode event repository should indicate that the telemetry mode manager changes
mode at every AOCS cycle. This can be checked by verifying that its event counter
increases by 1 in every cycle (unless other mode changes occur) and that the component
undergoing the mode change has an ID of 119.

4. In telemetry frame 7, the mode event repository should indicate that all mode managers
have undergone a mode change as a result of telecommand TC2.1 (see section 4.1). Note
that there are 6 mode managers in the AOCS prototype.

5. No events should be reported by the system manager.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 18

6. In telemetry frame 5, a gyro reconfiguration should occur as a result of the gyro output
error being detected by the failure detection manager and corrected by the failure
recovery manager. This can be verified by checking that the reconfiguration event
repository indicates a reconfiguration of reconfiguration manager with instance ID equal
to 232 (gyro reconfiguration manager).

7. In telemetry frame 5, an FSS reconfiguration should occur as a result of telecommand
TC2.2 (see section 4.1). This can be verified by checking that the reconfiguration event
repository indicates a reconfiguration of reconfiguration manager with instance ID equal
to 194 (FSS reconfiguration manager)

8. No reconfigurations should occur as a result of TC3 (see section 4.1) since the FSS, by the
time telecommand, is received has no more healthy configuration available.

9. In telemetry frame 7, four events should be generated in the telecommand event
repository corresponding to TC_LOADED and TC_SUCCESS for TC1 and TC2.

10. In telemetry frame 9, two events should be generated in the telecommand event
repository corresponding to TC_LOADED and TC_FAILURE for TC3. The TC fails
because the FSS had already reconfigured.

11. In telemetry frame 7, a “manoeuvre started” event should be generated in the manoeuvre
event repository. The manoeuvre was loaded by TC1 with a delayed time tag.

12. At least one recovery event should be generated for each failure event. Since the number
of failure events exceeds the capacity of the failure event repository at every cycle
(because of MACS failures), the number of recovery events generated in each cycle should
always be equal to the capacity of the failure event repository.

7.2 Attitude Data Pool Checks

13. The FSS_X and all the SAS outputs except SAS_1_Y output in the attitude data pool
should nominally be zero. In the first cycle, they should be equal to the unit bias
corrections (the test harness inputs only show through from the second cycle) and from
the seventh cycle, the FSS_X output should reflect the scaling error in FSS_B (FSS_B is
switched in by telecommand TC2.1).

14. The FSS_Y and the SAS_1_Y outputs in the attitude data pool should reflect the simulated
rotation of the spacecraft around the x-axis. Up to the sixth telemetry frame, they should
be identical. Afterwards, the FSS output should be 10% smaller reflecting the fact that
FSS_B has been switched in by telecommand TC2.1 and that it has a 10% scaling error.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 19

15. The gyro output in the attitude data pool should be 0 except in telemetry frame 4 where
the effect of the simulated gyro failure is reflected.

16. The torque requests in the attitude data pool should be equal to the torque generated by
the attitude controller with the FSS and GYR inputs.

17. The reaction wheel speed in the attitude data pool should be zero.

18. The reaction wheel angular momentum in the attitude data pool should be zero.

19. The reaction wheel torques in the attitude data pool should be zero up to telemetry frame
6 when the AOCS goes into FSP mode where wheels are used as actuator. Afterwards, the
torques on wheels RW1 to RW3 should be equal to the torque generated by the FSP
attitude controller with the FSS and GYR inputs.

20. In the first six frames, when the AOCS is in CSP mode and the thrusters are used as
actuator, the thruster on-times in the attitude data pool should be equal to the torque
generated by the CSP attitude controller with the FSS and GYR inputs. From frame 7
onward, the thruster on-time should remain frozen to a constant value.

21. The thruster delay times in the attitude data pool should always be equal to zero.

22. The attitude errors in the data pool should always be equal to zero.

23. The attitude set points should be zero up to telemetry frame 7 after which the x
component increases linearly (it is set by the manoeuvre loaded with TC1).

7.3 MACS Buffer Checks

24. The reaction wheel torque requests in the first four MACS buffers (ie. as long as the AOCS
is in CSP mode) should be zero. Afterwards, their value should be equal to the torque
generated by the FSP attitude controller with the FSS and GYR inputs.

25. The thruster delay times in the MACS buffers should be identically zero.

26. The thruster on-times in the first four MACS buffers (ie. as long as the AOCS is in CSP
mode) should reflect the torque generated by the CSP attitude controller with the FSS and
GYR inputs. Afterwards they should remain frozen to the value they had in the fourth
MACS buffer.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 20

8 TIMING TESTS

Memory test were performed with the aim of measuring the timing overhead introduced by
the framework and the timing requirements of the prototype AOCS. These tests were only
performed in the ERC32 environment.

Timing tests are performed by running program TimingTestErc32. This is a slightly
modified version of AocsPrototypeErc32 (see section 6). It differs from the latter in the
following respects:

u The test harness is not run
u In each cycle (ie. in each call of the quasi-cyclical task), the AOCS runnable components

are run 100 times and the number of RTEMS processor ticks at the beginning and at the
end of the 100 cycles are collected and sent to the output device.

The tick measurements are used as a proxy for the processor execution time. The
measurement is done over 100 cycle because of the poor granularity of the tick measure (one
tick is equal to 10 ms).

Two timing measurements were made, for the full AOCS prototype and for the functionality
managers only, as described in the next two sections.

All timing measurements were made with the ERC32 running at 14 MHz.

The compilation was performed with the debugging option disabled and with the –O3
optimization option. It should also be stressed that when the framework was implemented,
no special attention was given to ensuring timing efficiency and hence it is likely that a
review of the code might lead to some further optimizations.

8.1 Full AOCS Prototype Timing Measurements

The measurement procedure described above was applied to the fully instantiated AOCS
prototype. It was found that one AOCS cycle requires 4.8 ms of processor time.

8.2 Functionality Managers Timing Measurements

In order to evaluate the timing overhead introduced by the framework, the above timing
measurement procedure was repeated with an “empty” AOCS application instantiated from
the framework as follows. All functionality managers are created but they are left
unconfigured. Thus, for instance, the telemetry manager is created but its telemetry lists are
not loaded with any telemeterable objects. The empty AOCS applications can be obtained by
commenting out the following statements from procedure instantiateAocs (see RD21):

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 21

loadTelemetryLists(fwFact);
loadFailureDetectionLists(fwFact);
loadUnitTriggerLists(fwFact);
loadControllerLists(fwFact);

The empty AOCS application is thus an AOCS application where the functionality managers
are activated and run normally but do not have any clients upon which to operate. The empty
AOCS application represents the smallest and fastest executable application that can be
instantiated from the framework.

The timing test indicate that one cycle of the empty AOCS application requires 0.2 ms of
processor time. This is the timing overhead introduced by the framework machinery in an
AOCS application instantiated from it.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 22

9 MEMORY TESTS

Memory test were performed with the aim of measuring the memory overhead introduced by
the framework and the memory requirements of the prototype AOCS. These tests were only
performed in the ERC32 environment.

The compilation was performed with the debugging option disabled and with the –O3
optimization option. It should also be stressed that when the framework was implemented,
no special attention was given to ensuring memory efficiency and hence it is likely that a
review of the code might lead to some further optimizations.

9.1 Basic Memory Requirement Measurements

Memory requirements were measured in the following manner:

u The components of interest are linked into a single executable
u The executable is loaded into the ERC32 simulator (SIS command) and the code and data

memory requirements as reported by the SIS tool are recorded.

Different measurements were made corresponding to different sets of components of interest.

The make file for the memory test can be found in directory
AocsFrameworkHome/MemoryTest. The make file can build three executables:

u EmptyMemoryTest: this executable is built from a dummy main program. Its memory
requirements essentially correspond to the memory requirements of the C++ run-time
systems.

u MemoryTestFullFw: this executable links together all the components provided by the
framework including both the core and default components.

u MemoryTestOnlyFunctMan: this executable links together the framework functionality
managers and no other plug-in components. It therefore represents the core that has to be
included by any AOCS generated from the framework.

The memory requirements of these modules as reported by SIS are shown in the table below.

EmptyMemoryTest MemoryFullFw MemoryTestOnlyFunctMan

.text 30 Kbytes 165 Kbytes 74 Kbytes

.data 2 Kbytes 64 Kbytes 19 Kbytes

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 23

.bss 0 5 Kbytes 2 Kbytes

From the table, the following considerations can be evinced:

u The framework functionality managers, after subtraction of the “empty memory test”
requiremens, represent in a sense the “overhead” introduced by the framework and
require a total of: (74-30)+(19-2)+2=63 Kbytes

u The MemoryFullFw module links together a total of 112 components. Thus the “average”
memory requirement of a framework component is: ((165-30)+(64-2)+5)/122=1.7 Kbytes

9.2 AOCS Prototype Memory Requirement Measurements

The memory requirements of the AOCS prototype were measured as above by loading the
AOCS prototype executable in the SIS environment.

The memory requirements reported by the SIS environment for the
AocsPrototypeTestErc32 module are:

.text 260 Kbytes

.data 73 Kbytes

.bss 25 Kbytes

Note that the above figures include:

u the C++ run-time system
u the RTEMS system
u the instantiation code (object factories)
u the framework code proper.

The AOCS prototype tests were run with a stack of 5 Kbytes. A stack of 2.5 Kbytes was also
tried but was found to be insufficient. Note, however, that all objects were created on the
heap during the initialization phase. Thus stack usage can be expected to be low.

9.3 Heap Usage Measurement

The heap usage of the AOCS prototype application was measured by placing the following
code sections at the beginning and end of the instantiation code:

int* a = new int;
int startOfHeap = (int)a;
printString(out,"Start of Heap: ");
printInt(out,startOfHeap);

University of Constance
Department of Computer Science

Software & Web Engineering Group
Test Report
Issue 1.1
30 April 2002
Page 24

printString(out,"\n");

. . . // framework instantiation code

int* b = new int;
int endOfHeap = (int)b;
printString(out,"End of Heap: ");
printInt(out,endOfHeap);
printString(out,"\n");

The difference between the value of: startOfHeap and the value of: endOfHeap gives the
total heap usage of the AOCS application (recall that memory is only allocated during the
framework instantiation phase). This was found to be equal to: 59Kbytes.

