5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet
N Issue 2.2
30 April 2002
Page 1

TELEMETRY FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the telemetry framelet. This framelet proposes a solution
to the problem of handling telemetry. It defines a
telemetry manager component that is completely mission
independent and it defines an interface to be supported
by all objects that can potentially be sent to telemetry.

Written By: A. Pasetti
Date: 30 April 2002
Issue: 2.2

Reference: SWE/99/A0CS/003

5~ University of Constance Software & Web Engineering Group

EE o Department of Computer Science Telemetry Framelet
=N 0 Issue 2.2
30 April 2002
i Page 2
|

TABLE OF CONTENTS

1 REFERENGCES.. ..ottt bbbt b ettt ettt ettt ettt 4
ACRONYMS ...ttt bbbttt b etttk e b et ket et e et st e be bt e ene e 5

3 INTRODUCTION ...ttt b ettt bbbt b bbbt e s et b et ne e 6
3L CONEEXE ..t E bRt R h e bt e bt renns 6
3.2 Applicability t0 JaVA VEISIONcoiiiiiiieieeee e 6
TR B (o] - L1 [] o EO OSSP O TP PR P ST PRURPTPRRPRON 7

4 FRAMELET CONSTRUCTS. ..ottt ettt 8
5 THE TELEMETRY MANAGEMENT DESIGN PATTERNccccoiiiireee s 10
51 Instantiation of Telemetry Management Pattern...........cccoeieieinininenc s 10

6 TELEMETRY STREAMSottt ettt st 12
6.1 TeleMETIY FIAMIES ..ottt b e e 14
6.2 ErrOr HaNAIiNgoooiiii bbbt 14
6.3 BItANA BYTE WISoviiiie ettt 14
6.4 The DMA Telemetry Stream COMPONENTccciiiiiiieiiiseree e 15

7 TELEMETRY OBIECTS. ..ottt ettt bttt et 18
7.1 TheTel enet er abl € INTErface. ... 18
7.2 TelemMEtry FOIMALS.ccooiiiiiieeieieeee ettt b e 19
7.3 Telemetry Objects and AOCS ODJECTSccceiiririieiiisisise e 19
7.4 Telemetry Object IdentifiCatioNcoceiiiiiiiiiii e 19
7.5 Telemetering of Associated ODJECTS.........ccooeiiiiiiiiiiiere e 20

8 TELEMETRY MANAGER ..ottt bbbt s 21
8.1 Telemetry Manager Implementation ... 22
8.2 The Telemetry MOde MaNAJETccoiiiiiiiiiieieee st 23
8.3 Telemetry BandwWidth USAQEccooiiiiiiiiiieciceee e 25
8.4 TelemMetry INTEITACE.o 26
8.5 The Reset and Configurable INterfaces. ... 26

9 MEMORY SECTION COMPONENTS ...ttt 27
9.1 TelemMetry INTEITACE.o 28
9.2 The Reset and Configurable INterfaces. ... 28
10 TEST TELEMETRY STREAMooiiiiiiet et 29
11 FRAMELET HOT-SPOTS ...ttt bbb 30
11.1 Telemetry Mode Manager PIUG-TN ... 30

11.2 Telemetry Stream PlUG-TN.. ... 30

5~ University of Constance Software & Web Engineering Group
EESmE = I Department of Computer Science Telemetry Framelet
e Issue 2.2
30 April 2002
i Page 3
|
11.3 RecoVery ACtION PIUG-IN.......ccoiiiiiiiie et 31
114 Telemeterable HOt-SPOL........ccoi it 31
115 Telemeterable LiSt PIUG-TN ...c.oovoiiiiie e s 32
12 FRAMELET FUNCTIONALITIES.....co ittt 33
121 CONMVENTIONS. ...ttt bbbt bbbt bbb s st b e bbbt e n e 33

122 FUNCEIONAIITY LISt ...ttt 33

5~ University of Constance Software & Web Engineering Group

o Department of Computer Science Telemetry Framelet
=N Issue 2.2

30 April 2002

Page 4

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns — Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework — Concept Level Description, AOCS Framework
Document ref. SWE/99/A0CS/004

RD3 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

RD4 A. Pasetti (2000), Operational Mode Management Framelet, AOCS Framework Document
ref. SWE/99/A0CS/009

University of Constance
Department of Computer Science

Software & Web Engineering Group
Telemetry Framelet

Issue 2.2

30 April 2002

Page 5

2 ACRONYMS

AAD
AOCS
AST
CSS
ES
FDIR
FPM
FSS
GYR
KF
1AM
OBDH
NM
NTT
OCM
0]0)
PD

PI
PID
RRM
RTOS
RW
SAS
SBM
SPS
STR
SLM
SM
TC
THU
™
TT

Attitude Anomaly Detection

Attitude and Orbit Control Subsystem
Autonomous Star Tracker

Coarse Sun Sensor

Earth Sensor

Failure Detection, Isolation and Recovery
Fine Pointing Mode

Fine Sun Sensor

Gyroscope

Kalman Filter

Initial Acquisition Mode

On-Board Data Handling system (aka as OBDS)
Normal Mode

Non-Time-Tagged

Orbit Control Mode

Object-Oriented
Proportional-Derivative controller
Proportional-Integral controller
Proportional-Integral-Derivative controller
Rate Reaction Mode

Real-Time Operating System

Reaction Wheel

Sun Attitude Sensor

Stand-By Mode

Sun Presence Sensor

Star Tracker

Slewing Mode

Safe Mode

Telecommand

Thruster

Telemetry

Time-Tagged

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 6

3 INTRODUCTION

This document describes the telemetry framelet for the AOCS framework. The framelet is
described at both the framelet concept level and at the framelet architectural level.

This framelet proposes an architectural solution to the problem of managing telemetry data
flows in the AOCS software. It defines a re-usable component to act as a telemetry manager
and an interface to be supported by all objects that can potentially be sent to telemetry.

The framelet enhances reusability because it decouples the task of managing the telemetry
from the layout and format of the telemetry data.
3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD1 and in particular with the overview of telemetry

management.

RD2 described two options for telemetry management.

The baseline option was based on the implementation of t el enet er abl e interface by all
objects that can potentially be sent to telemetry. Implementation of the interface forces objects
to support a method, wri t eToTel enet ry, that defines how the objet’s state is to be printed
to the telemetry stream.

The alternative option regarded printing to telemetry as a form of serialization.
Here the baseline option is retained which is the only one to be presented in this document.

In comparing the present document with RD2, readers should kept in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce an
architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level — in particular its design
patterns — is language-independent and is equally applicable to both the C++ and Java

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 7

versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project”. The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following
address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific
points to note are:

— The DMA telemetry stream default component (see section 6.4) and the memory section
default component (see section 9) are not provided by the Java framework because of lack
of support in Java for direct access to memory.

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

The class diagrams use UML notation generated with the reverse engineering tool of the
Together tool (version 4.0).

5~ University of Constance Software & Web Engineering Group

o Department of Computer Science Telemetry Framelet
=N Issue 2.2

30 April 2002
Page 8

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

TELEMETRY MANAGEMENT FRAMELET

Abstract Interfaces and Abstract Base Classes

Tel emet r ySt r eam: abstract base class for telemetry streams
Tel enet er abl e :interface for objects that can write their own state to telemetry

Tel emet r yModeManager : interface for the operational mode manager for the failure detection
manager.

Core Components

Tel enet ryManager : component encapsulating a telemetry manager (including mode
management)

Default Components

DmaTel enetryStream : implementation of Tel enet rySt r eam interface representing a DMA-
based telemetry stream

CyclingTel eret r yMbdeManager : default mode manager for the telemetry manager component
implementing a cycling mode management mechanism.

MenorySecti on : component encapsulating a range of contiguous memory addresses that are to
be copied to the telemetry stream.

Test Tel enet rySt r eam : component simulating a telemetry stream (the telemetry data are sent to
a data file).

Design Patterns

Telemetry Management Pattern : design pattern to make an object a telemeterable object

The components listed above are those envisaged for the prototype version of the AOCS
framework. Later versions may offer a richer set of default implementations of the framelet
interfaces. In particular, interface Tel enmet er abl e should be implemented by all AOCS

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 9

objects. In the prototype framework, however, implementations are only provided for the
following objects:

» AOCS data (instances of class AocsDat a and its subclasses)
* AOCS events (instance of class AocsEvent and its subclasses)
» Event repositories (instances of class Event Reposi t ory its subclasses)

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 10

5 THE TELEMETRY MANAGEMENT DESIGN PATTERN

This design pattern is introduced to address the problem of separating the management of
telemetry data from the layout and content of the telemetry frames. It is based on the
manager meta-pattern of RD2.

The pattern is illustrated in the following class diagram:

Telemet anager Telemmeterahle
TelemetryStream| 1 j rytanag 1. 1.7
&
- +activated void telermetryList | +writeToTelermetng vold
I
I
ConcreteTelemetryStream : AnyhocsClass
I
|
void activated | |l\.

for (all items in telermetryList) do
iterm-=write ToTelemetry(
LAlush T stream

}

The telemetry manager maintains a list of references to objects of type Tel enet er abl e.
Telemeterable objects are objects that are capable of writing their own internal state to the
telemetry stream.

The telemetry manager additionally maintains a reference to the telemetry stream. The
characteristics of concrete telemetry streams vary widely across AOCS applications and
therefore no generic telemetry stream component can be provided. The AOCS framework
characterizes telemetry stream through the abstract interface Tel emet r ySt r eam

5.1 Instantiation of Telemetry Management Pattern

The telemetry management pattern is instantiated in the AOCS framework as follows:

The telemetry manager is implemented as an active object and its acti vat e method is
the r un method it inherits from interface Runnabl e.

_ Methods are added to the Tel enet er abl e interface to control the format of the
telemetry image generated by telemeterable components: it is assumed that telemeterable
objects can generate four different telemetry images with different content and layout.

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 11

Interface Tel enet er abl e allows the telemetry manager (or other components) to select
the format of the telemetry image of each telemeterable object.

The telemetry stream is passed as a reference to the witeToTel enetry method.
Forwarding of telemetry data to the telemetry stream is thus done directly by
telemeterable objects.

In order to ensure that all non-trivial AOCS objects can potentially have their state
included in telemetry, interface Tel enet er abl e is implemented by class Aocsbj ect .

The format and type of telemetry data may vary depending on operational conditions.
This dependency is modeled by using the operational mode design pattern of RD4 and
making the telemetry manager mode-dependent. The list of telemeterable objects then
becomes the strategy managed by the telemetry mode manager.

The resulting class diagram is:

Telarneaterabie

1.7

Runnable |:|‘:| AocsObject

TefemelryStream 0.1 TelemetryManager 0.1 Te.fe.lririletr],'.ﬂa'!'odel'L&!‘anaf,le:;I
=

o=

—_

telermetryList
ConcreteTelemetryfodeManager

ConcreteTelemetryStream ‘

As indicated by the figure, the telemetry manager now gets its list of telemeterable objects
from the a telemetry manager whom it sees through the abstract interface
Tel eret r yModeManager (see section 8.2).

Interface Tel enet er abl e is now implemented by the basic class AocsCbj ect which makes
all non-trivial objects in an AOCS application telemeterable by default.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Telemetry Framelet

Issue 2.2

30 April 2002

Page 12

6 TELEMETRY STREAMS

The term telemetry stream is used to designate the physical entity to which telemetry is
written. In most cases, this is a memory buffer where telemetry data are to be copied and
from which dedicated hardware will then transfer them in DMA mode to the system bus. In
other implementations, the telemetry stream could be an 170 port directly connected to the
system bus interface. The telemetry stream interface is independent of its physical
implementation but the discussions of implementation details will assume the former, buffer-
based, physical model.

From a software point of view, a telemetry stream is represented by an object that implements
the Tel enet r ySt r eaminterface:

Tel enetrySt ream

+write(d:
+write(d:
+write(d:
+write(d:
+write(d:
+write(d:
+write(d:
+write(d:
+write(d:
+write(d:
+write(d:
+write(d:

char *,n:int):void
doubl e) :void
float):void

int):void

unsi gned int):void
short):void

unsi gned short):void
unsi gned char):void
bool):void
int,n:int,mint):void
short,n:int,mint):voi

char,n:int, mint):void

+flushBuffer():void
+resetBuffer():void
+get Buf ferSi ze() :int
+set Buf fer Si ze(si ze:int):void

d

=]
—

The semantics of the operations defined by this interface are summarized in the following
table and further discussed in the following sub-sections:

wite(d)

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 13

Write the value of the argument d to the telemetry stream. Several versions of this
method are provided to cater to the following types for d: double, float, int, short, bool

wite(&d, n)

Write n bytes to the telemetry stream starting address &d. Not implemented in
framework prototype.

wite(d,n,m

Write a subset of the bits making up the argument d. The bits in the range [n,m] are
written. Several versions of this method are provided to cater to the following types
for d: int, short, char. Not implemented in framework prototype.

reset Buf f er

This operation signals to the telemetry stream the beginning of a new telemetry
frame. In case of a DMA-based telemetry interface, it causes the telemetry buffers to
be reset.

fl ushBuf f er

This operation signals to the telemetry stream the end of a frame. Depending on the
type of the telemetry interface, after this operation is performed, the telemetry stream
may initiate the physical transfer of the data to the system bus.

getBuffer Si ze, setBufferSize

Getter and setter methods for the telemetry buffer size. The telemetry buffer size is
the maximum number of bytes that can be transferred to the telemetry interface in a
single telemetry frame.

wri t eFr aneNunber

The telemetry stream keeps track of the frame number. This frame number will
generally be included in the telemetry frame (perhaps as header information). This
method causes the frame number to be written to the telemetry buffer.

writ eNunber O Byt es

Telemetry streams handle byte and bit write operations differently. The total number
of bytes and of bits in each telemetry frame should normally be written to the
telemetry frame itself (in order to permit decoding of the telemetry frame by the
ground). This method causes the number of bytes to be written to the telemetry
frame.

witeNunberOFBits

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 14

Telemetry streams handle byte and bit write operations differently. The total number
of bytes and of bits in each telemetry frame should normally be written to the
telemetry frame itself (in order to permit decoding of the telemetry frame by the
ground). This method causes the number of bits to be written to the telemetry frame.
Bit writes are not implemented in the framework prototype and therefore this method
is also not implemented.

The implementation of the above methods depends on the telemetry interface present in the
AOCS framework.

6.1 Telemetry Frames

A batch of data that are treated as a single telemetry packet by the telemetry interface is called
a telemetry frame.

From the point of view of the AOCS software, a telemetry frame begins when operation
reset Buf f er is performed on the current telemetry stream component and ends when
operation f | ushBuf f er is performed. All the data sent to the telemetry stream using its
wWr i t e operations in between are assumed to be part of the same telemetry frame.

6.2 Error Handling

Telemetry streams are not required to perform any error handling or error checking
operations. In particular, they do not check that the amount of data sent to the telemetry
stream using its wri t e operations is within the capacity of the telemetry channel or of the
telemetry buffer. This check should be done by the telemetry manager using the telemetry
size parameter that can be retrieved from the telemetry stream.

6.3 Bit and Byte Writes

Telemetry bandwidth is a scarce resource on most satellites. Hence, data should be written to
the telemetry stream in as compact a format as possible. For this reason, separate write
methods are offered that can write either bytes or individual bits. The implementation of the
telemetry stream can use this information to optimize the way the data are sent to the
telemetry interface. Consider for instance the case of a DMA-based telemetry interface. In that
case, the telemetry stream objects puts the telemetry data in a buffer and then the following
arrangement can be adopted to use all the available space:

5~ University of Constance Software & Web Engineering Group

o Department of Computer Science Telemetry Framelet
=N Issue 2.2

30 April 2002

Page 15

The telemetry buffer is partitioned into two sub-buffers of which one is reserved for byte
writes and the second is reserved for bit writes. It is in general not possible to know the size
of the bit- and byte-telemetry and it is therefore not possible to assign the partition size a
priori. One solution is to put byte writes at one end of the buffer and bit writes at the other
end as shown in the figure:

Telemetry Buffer
| [
| |
| |
Byte ! [Bit
Partition [T [Partition
| |
41 |4
L |
Next byte Next bit

6.4 The DMA Telemetry Stream Component

The framework prototype offers a default implementation of a DMA-based telemetry stream
encapsulated in class DmaTel enet rySt r eam

The telemetry interface model that underlies this component assumes that the telemetry data
are forwarded to the central on-board computer by a dedicated hardware device that collects
them in DMA mode from a pre-defined memory area in the AOCS computer. This pre-
defined memory area is called the DMA buffer. It is defined by its start address and by its
length.

No synchronization mechanism is assumed between the AOCS software and the hardware
telemetry interface. When the latter is triggered, it simply collects whatever happens to be in
the DMA buffer.

The class diagram for the DMA telemetry stream is:

S University of Constance Software & Web Engineering Group
EESmE = I Department of Computer Science Telemetry Framelet
=N Issue 2.2
30 April 2002
i Page 16
|
RootObject Telemmelry Stream
Resettable &

Confiqurable
Telemeterahle
AocsOhject

DmaTelemetryStream
-tmimagelenathiint [MTHWFORMATS]
-tmFrameCounterint
-dmaBuffer.char™®
-bufferSize:int
-nextByte:int
-nextBitint
-localResetCaonfiguration{void
FwriteFramemumberinintivoid
FwriteMumberOBytesincintvoid
FweriteMumberOBits(ncint) wvoid
+DmaTelemetryStream
+werite(d:floatyvoid
+write(d:doublelvoid
+werite(d:infyvoid
+write(d:unsigned infrvoid
+write(d: short)void
+write(d:unsigned short)void
+writeld:unsigned charvoid
+write(d:hoolyvoid
+write(d:char * niintivoid
+werite(d:int,nint, meintvoid
+write(d: short, niint meintvoid
+write(d:char neint, meintvoid
+flushBufferdvoid
+resetBufferdvoid
+wtiteTaTelemetry{stream: TelemetryStream *)void
+getTelemetrlmagelengthd:int
+resetConfigurationvaid
+isConfiguredd:boaol
+zetDmaBuffarStartdddress{schar *ivaid
+getDmaBuffarStatdddresschar*
+getBufferSized:int
+zetBufferSizedsizeintivaid

This class only adds a getter and setter method for the start address of the DMA buffer to the
basic operations defined by the Tel enet r ySt r eaminterface.

5~ University of Constance Software & Web Engineering Group
s Department of Computer Science Telemetry Framelet
=/ Issue 2.2
30 April 2002
Page 17

The component assumes a telemetry buffer structure as shown in the figure:

Telemetry Buffer

Byte Bit
Partiton —T—+—* +——— parition

Frame Number
Number of Bytes
Number of Bits

Next byte Next bit

The telemetry buffer is divided into a byte and bit partition for the reasons explained in the
previous sub-section. The first three bytes contain header information, namely:

* byte 1: frame counter
* byte 2 : number of bytes written in the current frame
* byte 3 : number of bits written in the current frame

Bit operations are however not implemented in the prototype version of this component.

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 18

7 TELEMETRY OBJECTS
A telemetry object is an object that can potentially be written to telemetry.

Writing an object to telemetry means writing a (subset of) its internal state to the telemetry
stream.

7.1 The Tel enet er abl e Interface

Telemetry objects implement the Tel enet er abl e interface:

Telemeterablie

+whiteToTelemeingstream. Telermetn:Stream * wvoid
+astlelemetnsFormat newrFormat TelemetnsFormat] wvioic
+getlelemetnFormali) TelemetnsFormat
+petlelemetnsmanel_enothi int

=l

The semantics of the operations defined by this interface are summarized in the following
table and further discussed in the following sub-sections:

writeToTel enetry(tnttream

A call to this method causes the object to write its own state to the telemetry stream
tntream The method implementation uses the operations defined by the
Tel enet r ySt r eaminterface to write the object’s state to the telemetry stream.

set Tel enet r yFor mat (newFor mat), get Tel enet ryFor nat ()

The type and amount of data written by an object to the telemetry stream when its
writeToTel enet ry method is called depend on the telemetry format of the object.
The telemetry format can be changed by calling method set Tel enet r yFor nat .
Method get Tel enet r yFor mat is the corresponding getter method.

get Tel enet ryl mageLengt h()

Return the length in bits of the telemetry image that would be written by the object in
response to a call to method wri t eToTel enetry.

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 19

The basic method is writ eToTel enet ry that causes the object to write itself to a telemetry
stream. This method insulates the telemetry manager from the structure of the telemetry data
of each particular object: it confines the information about which data are to be sent to
telemetry by each object to the object itself and thus allows the telemetry manager to be
written in a generic manner.

Method get | mageLengt h returns the length in bits of the object’s telemetry image. The
length is given in bits to take account of both byte and bit wr i t e operations (see section 6.3).

7.2 Telemetry Formats

The type of information that an object sends to telemetry is defined internally to the object
itself by the way it implements the writ eToTel enetry method. Some control over the
guantity of telemetry information is provided by the telemetry format.

Telemetry formats are represented by an enumeration type, Tel enetryFornat. The
following formats are foreseen: short, nornal, | ong, and debuggi ng. Not all objects
implement all formats. Thus the only thing that can be said with certainty about telemetry
formats is that: the short format does not produce more data than the nor mal format; that
the nor mal format does not produce more data than the | ong format; etc.

Note that the telemetry format is a property of each telemetry object, not of the telemetry
manager or of the telemetry frame. Hence, the same telemetry frame can include objects with
different telemetry formats.

7.3 Telemetry Objects and AOCS Objects

As described in the section on root objects of RD2, the tel eneterabl e interface is
implemented by AocsChbj ect. This means that all but the simplest objects in the AOCS
software inherit it and must implement the corresponding methods.

7.4 Telemetry Object Identification

As discussed in greater detail in the next section, the order in which objects are written to
telemetry is not fixed: the telemetry manager handles a list of t el enet er abl e objects and
asks them to write themselves to telemetry in the order in which they are found in the list.
The content of the list can — and normally will — be changed dynamically and therefore the
content of the telemetry stream cannot be fixed a priori.

A way must therefore be provided of identifying the images in the telemetry stream as
belonging to a particular object. This is done by stipulating that the first item that an object

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 20

writes to the telemetry stream must be its instance identifier followed by the telemetry format
for that object. The ground (or the entity interpreting the telemetry stream) can use the
instance identifier to determine the class of the object and hence the structure of the data that
follow the instance identifier in the telemetry stream.

7.5 Telemetering of Associated Objects

AOCS obijects are usually in relationships of associations to each other. If an object A is in a
relationship of “strong” association (ie. either aggregation or containment), then its
implementation of wi teToTel emet ry will also call the same method on the associated
objects.

Thus, for instance, a container object will implement witeToTel emetry to call
writeToTel enet ry on all the objects it contains.

University of Constance Software & Web Engineering Group
Department of Computer Science Telemetry Framelet

Issue 2.2

30 April 2002

Page 21

8 TELEMETRY MANAGER

The telemetry manager is an active component whose responsibility is the management of the

objects that must be written to telemetry.

Telemetry managers are instance of class Tel enet r yManager :

The telemetry manager is derived from AocsObj ect and implements interface Runnabl e to

Fesettable

RootOhject Runnahie

Confiqurable
Telemeterahble

]

TelemetnyManager

-tmimadelenagth:int [MTMFORMATS]
-tmListObjectListTemplate=Telemeterable=*
-tmStream: TelemetryStream *
-modemanagerTelemetryModeManager *
-tooManyTmData:Recoveryaction *

-localResetConfiguration(oid

+Telemetryianager

+runideadline:AocsTime)void
+resetConfiguration(void

+isConfigured:boaol

+wirite ToTelemetni(stream: TelemetryStream *void
+gefTelemetrylmagelenathd:int
+sefTelemetryModemanageritmm: TelemetrybodeManacer *void
+gefTelemetryModemanager:TelemetrilodeManager *
+gefTelemetryStream(: TelemetryStream *
+sefTelemetryStreamitims: TelemetryStream *rvoid
+setRecovervAction(rRecovervdction *rvoid
+getRecovervaction(:Recoveryaction *

signify that it is an active object.

As discussed in section 8.1, the telemetry manager obtains the telemetry list to be used in the

next frame from a telemetry mode manager.

The public methods specific to this class (ie. not inherited from base classes) are described in

the table:

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

= — Issue 2.2

30 April 2002

Page 22

set Tel enet r yModeManager, get Tel erret r yModeManager

Setter and getter methods for the telemetry mode manager.

set Tel enetryStream getTel emetryStream

Setter and getter methods for the telemetry stream where telemetry data are to be
written.

set Recover yActi on, getRecoveryAction

When it starts to write a telemetry frame to the telemetry stream, the telemetry
manager checks that the size of the telemetry frame is compatible with the capacity
of the telemetry stream. If this is not the case, a failure event is raised. These are the
setter and getter methods for the recovery action associated to this failure.

8.1 Telemetry Manager Implementation

The implementation of the telemetry manager follows the manager pattern of RD2.

The telemetry manager maintains a list of objects that have been marked for inclusion in
telemetry. When it is activated, it goes through the list and calls the wri t eToTel enetry
method of each object in the list. Additionally, the telemetry manager performs some
housekeeping operations of which the most important is to ensure that the size of the
telemetry image is compatible with the capacity of the telemetry stream.

A basic implementation for the telemetry manager is:

class Tel emetryManager : public AocsObject, public Runnable {

Tel enet rylLi st * tmLi st ;
Tel enet rySt r eant t St r eam
Tel enet r yModeManager * nodeManager ;

publi c:

void run(AocsTine t){

{

/1l Load the telenmetry list to be sent to the TMstreamin this frame
tmLi st = nodeManager - >get Tel enetrylLi st ();

/1l Initialize the counter of bytes sent to the TM stream
i nt tnDataSi ze=0;

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

= — Issue 2.2

30 April 2002

Page 23

/1l Reset the telemetry buffer
t nStream >reset Buffer();

/1 Get telenetry buffer size
int tnbtreantSi ze=8*t nStr eam >get Buff er Si ze();

// Send the TMIlist to the TM stream
Tel enet er abl e* t;
for (t=tmlist->first(); !tmlist->islLast(); t=tnList->next())

{
t nDat aSi ze+=t - >get Tel enetryl mageLengt h() ;

i f (tnDataSi ze>t nSt r eantsi ze)
{ . . . Il error! raise failure event
br eak;

}
t->witeToTel enetry(tnttrean;

}

/1 Flush the TM buffer
t nSt ream >f | ushBuffer();

/1 Setter method for the nobde manager

/1 Other methods (reset, etc.)

}

Note that the telemetry list is provided at each activation by a mode manager. The mode
manager will typically maintain a set of telemetry lists and will return the one which is
appropriate to the current activation. In most cases, the mode manager will simply iterate
over a small number of lists representing sub-frames in a telemetry frame.

The mode manager is more likely to be mission-dependent however the prototype framework
offers a default telemetry mode manager presented in the next subsection.
8.2 The Telemetry Mode Manager

The telemetry mode manager is a component that is capable of supplying the appropriate
telemetry list at any given point in time.

A telemetry mode manager is defined by the following abstract interface:

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

= — Issue 2.2

30 April 2002

Page 24

TelemetryModelfanager

+loadTelemetnyLisiimode:int imList Qbfectlistlamplate=Telarmeterabie= *) viold
+petlelemetnsLisi) ObjectlistTempiate=Telemeatarabig= *

The semantics of the operations defined by this interface are summarized in the following
table:

get Tel enmet ryLi st ()

This method is called by the telemetry manager to retrieve the currently valid
telemetry list.

| oadTel enetryList(int i, ObjectListTenplate<Tel eneterabl e>* t)

This method is used to configure the telemetry mode manager. It associates
telemetry list t to operational mode i.

Concrete telemetry mode managers are defined by the mechanism that they use to decide
which particular telemetry list should be returned by method get Tel enet ryLi st at any
given point in time.

The prototype framework provides a default telemetry mode manager that is based on the
cycling mode manager. It maintains a set of telemetry lists and cycles through it in a fixed
sequence. A call to method get Tel enet ryLi st returns the currently active telemetry list.
Successive calls to this method cause all the telemetry lists loaded in the telemetry mode
manager to be returned in a fixed sequence.

The default telemetry mode manager is instantiated from the following class
Cycl i ngTel enet r yModeManager :

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

N Issue 2.2

30 April 2002

Page 25

Modemanager

TelemetryModelanager CyclingModeManager
& &

CyclingTelemetryodeManager

+CyclingTelemetryModeManagerinumberOmiodes:int defaultModeint maxNumberOMtonitors:int
+loadTelemetryListimodeint tmList ObhjectListTemplate=Telemeterable= *)void
+yefTelemetryList): ObjectlistTemplate=Telemeterable=*

Thus, the default telemetry mode manager uses the services offered by the generic cycling
mode manager component exported by the operational mode framelet.

8.3 Telemetry Bandwidth Usage

The telemetry budget is often critical and telemetry bandwidth should therefore be used as
efficiently as possible. In this respect, it must be stressed that the proposed implementation
entails a certain amount of overhead due to the need for each object sent to telemetry to write
its instance identifier (see section 7.4) This is the price to be paid for having flexibility in
setting the telemetry format. The alternative is to give telemetry lists a fixed content.
Flexibility in deciding what is sent to telemetry is then reduced to switching across pre-
defined telemetry lists.

A guantitative assessment of the overhead implied by the need to write object’s identifiers to
telemetry must wait until a full implementation of the AOCS framework.

One way to minimize this overhead is to optimize the implementation of methods
writeToTel enet ry. This is not done in full in the prototype framework.

Another possibility is to compress the data in the telemetry buffer but data compression can
probably be done more efficiently at the level of the central satellite computer that gathers the
telemetry from all subsystems.

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 26

8.4 Telemetry Interface

The telemetry manager is itself a telemetry object because it inherits (indirectly, through
AocsCbj ect) thet el enet er abl e interface.

The data sent to the telemetry stream by a telemetry manager in each telemetry mode are
summarized in the table:

TM Format TM Data
Short none
Normal instance ID of current telemeterable list
Long same as normal TM
Debug long TM + instance ID of telemetry mode manager and telemetry stream

8.5 The Reset and Configurable Interfaces

The telemetry manager inherits from AocsCbj ect the Resettabl e and Confi gur abl e
interfaces and must therefore implement the corresponding method.

Telemetry managers have no internal state and therefore they do not provided a class-specific
implementation of method r eset .

A call to method r eset Confi gurati on unloads the following plug-in components: the
telemetry mode manager, the telemetry stream, the recovery action.

Method i sConfi gur ed returns true if both the telemetry mode manager and telemetry
stream have been loaded.

S University of Constance Software & Web Engineering Group
EESmE = I Department of Computer Science Telemetry Framelet
ENNS Issue 2.2
30 April 2002
i Page 27
|

9 MEMORY SECTION COMPONENTS

The telemetry concept proposed here relies on objects writing their own state to the telemetry
stream. However, for maximum flexibility, the option should exist of writing to telemetry a
selected section of the AOCS software memory space specified by a starting and end address.
For this purpose, the memory section components are offered.

A memory section object encapsulates a range of contiguous memory location. Memory
sections are Tel enet er abl e objects and their implementation of writeToTel enetry
copies the content of the memory range encapsulated by the memory object to the telemetry
stream.

Memory sections are instantiated from class Menor ySect i on whose interface is:

RootOhject
Resettable
Configurable
Telemeterable

AocsOhject
&

IZ':I MemorySection
-tmlmagelenathiint [MTMFORMATS]
-startAddress.char®

-endAddress:.char *

-sectionLenath:int

-lacalResetConfigurationdvoid

+hlemorySectian)
+defineMemorySection{statdddress.char * endAddress: char *vaid
+resetConfiguration{owaid

+isConfiguredd:boal

+wtiteTaTelemetr{stream: TelemetryStream *hvoid

telemetryimagelengthint

The public methods specific to this class (ie. not inherited from base classes) are described in
the table:

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 28

defi neMenorySecti on(start Address, endAddress)

This method can be used to dynamically define the range of memory locations
covered by the memory section.

9.1 Telemetry Interface

Memory sections obviously must be telemetry object since they exist precisely for the purpose
of copying a range of memory locations to the telemetry stream.

The data sent to the telemetry stream by a memory section in each telemetry mode are
summarized in the table:

TM Format TM Data
Short none
Normal copy of memory locations in the range [st ar t Addr ess, endAddr ess]
Long same as normal TM
Debug same as normal TM

9.2 The Reset and Configurable Interfaces

Memory sections inherit from Aocsbj ect the Reset t abl e and Confi gur abl e interfaces
and must therefore implement the corresponding method.

Memory sections have no internal state and therefore they do not provided a class-specific
implementation of method r eset .

A call to method r eset Confi gur ati on clears the start and end addresses of the memory
range (this equivalent to calling: def i neMenor ySecti on(0, 0)).

Method i sConf i gur ed returns true if the start and end address of the memory range are not
both zero.

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet
N Issue 2.2

30 April 2002

Page 29

10 TEST TELEMETRY STREAM

Telemetry data are written to telemetry streams. A telemetry stream is an object that
implements the Tel ermret r ySt r eam interface. In concrete applications, telemetry stream
objects must interact with the telemetry interface hardware of the AOCS computer. For
testing purposes, the AOCS framework offers a test component that implements the
Tel enet r ySt r eaminterface but sends the telemetry data to a text file.

The test telemetry stream component can be instantiated from class
Test Tel emret rySt ream Its output file is called Test Tel enetryStream txt and it is
created in the same directory in which the test program is run.

For testing purposes, the test telemetry stream can be plugged into the telemetry manager
thus causing all telemetry data to be written to the test output file.

S University of Constance Software & Web Engineering Group
EESmE = I Department of Computer Science Telemetry Framelet
ENNS Issue 2.2
30 April 2002
i Page 30
|

11 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD3.

11.1 Telemetry Mode Manager Plug-In

Name: Telemetry Mode Manager Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Tel emet r yManager class (method
set Tel emet r yModeManager)

Pre-defined Options: Cycl i ngTel enmet r yModeManager component exported by this framelet.

Related Hot-Spots: none

Description

Telemetry managers need a mode manager to supply them with the list of telemetry objects to be
sent to the telemetry stream. This hot-spot allows the telemetry mode manager to be loaded in the
telemetry manager.

11.2 Telemetry Stream Plug-In

Name: Telemetry Stream Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in comp. in Tel enet r yManager class (method set Tel enetrySt r eam

Pre-defined Options: DmaTl enet r ySt r eam component exported by this framelet.

Related Hot-Spots: none

Description

Telemetry managers send telemetry data to a telemetry stream. The telemetry stream is

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet

ENNS Issue 2.2

30 April 2002

Page 31

represented by a Tel emet ryStr eam object that can be dynamically loaded to the telemetry
manager. This hot-spot allows the telemetry stream to be loaded..

11.3 Recovery Action Plug-In

Name: Recovery Action Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Tel enet r yManager class (method set Recover yAct i on)

Pre-defined Options: no recovery action is defined by default

Related Hot-Spots: none

Description

When the telemetry manager finds that the current telemetry list has a size too large to fit in the
telemetry stream, it raises a failure event. This hot-spot allows the recovery action associated to
this failure event to be loaded.

11.4 Telemeterable Hot-Spot

Name: Telemeterable Hot-Spot

Visibility Level: framelet-level

Adaptation Time: compile-time

Adaptation Method: virtual method in Tel enet er abl e interface

Pre-defined Options: a default implementation of Tel enet er abl e interface is provided by class
AocsObiject.

Related Hot-Spots: none

Description

The implementation of interface Tel enet er abl e defines the type and format of data that a class
of objects can send to the telemetry stream. See section 7 for more information.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Telemetry Framelet

Issue 2.2

30 April 2002

Page 32

11.5 Telemeterable List Plug-In

Name: Telemeterable List Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in
set Tel emet er abl eLi st).

component in

Tel enet r yModeManager class (method

Pre-defined Options: none

Related Hot-Spots: none

Description

The telemetry mode manager maintains a list of telemeterable objects. This hot-spot defines the
point where a new list is loaded into a failure detection mode manager.

5~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet
N Issue 2.2
30 April 2002
Page 33

12 FRAMELET FUNCTIONALITIES

This section defines the functionalities offered by the framelets together with their mutual
relationships and their mappings to framelet architectural constructs. The definition follows
the guidelines of RD3.

12.1 Conventions

The functionality code defines the type of the functionality according to the following
convention:

* CF = can-functionality
* DF =do-functionality
* OF = offer-functionality

The following numbering conventions are used:

» if Fx is a functionality, then the functionalities that are obtained by expanding it are
numbered as Fx.n where nis 1, 2, 3, etc

» if CFx is a can-functionality, then the offer-functionality that implement it are numbered
OFx,nwherenis 1,2, 3, etc
12.2 Functionality List

The functionalities for the manoeuvre management framelet are shown in the table below.
Each entry covers one functionality giving its definition, its relationships to other
functionalities (if any) and its mappings to framelets architectural constructs (if any).

DF1 Any component can be made to send a subset of its internal state to the
telemetry stream.

is-implemented-by Telemeterable design pattern

DF2 The telemetry management framelet provides a generic and customizable
telemetry manager component.

expands-to DF2.1 to DF2.5

},AAAJ_I

University of Constance Software & Web Engineering Group
Department of Computer Science Telemetry Framelet

Issue 2.2

30 April 2002

Page 34

DF2.1

The telemetry manager is an active component.

is-implemented-by r un() method in TelemetryManager component

DF2.2

The telemetry manager provides reset and configuration services.

is-implemented-by TelemetryManager component
uses CF1 from the system management framelet (reset services)

uses CF2 from the system management framelet (configuration services)

DF2.3

The telemetry manager is a telemeterable component

is-implemented-by TelemetryManager component

uses CF3 from this framelet

DF2.4

The telemetry manager maintains a set of telemetry lists. A telemetry list is a
list of components whose state must be included in telemetry. At any given
time, only one telemetry list is active. When it is activated, the telemetry
manager directs the components in the currently active telemetry list to send
their state to the telemetry stream.

is-implemented-by TelemetryManager component

DF2.5

The telemetry manager checks that the size of the telemetry image
associated to the current telemetry list is compatible with the capacity of the
currently selected telemetry stream. If this is not the case, then a failure event
is generated.

is-implemented-by TelemetryManager component

uses DF1 from inter-component communication framelet (error reporting
mechanism)

CF3

Any component can be made telemeterable, namely it can become a
component whose state can be sent to telemetry.

matches the Telemeterable hot spot

~ University of Constance Software & Web Engineering Group
e Department of Computer Science Telemetry Framelet
=0 Issue 2.2
30 April 2002
i Page 35
|
CF4 The telemetry manager can be customized to send any combination of
component states to the telemetry stream.
expands-to CF4.1 and CF4.2
CF4.1 The telemetry manager can be customized to manage any number of
telemetry lists.
matches the Telemeterable List Hot-Spot
CF4.2 The telemetry manager can be customized to use any algorithm to select the
active telemetry
matches the Telemetry Mode Manager Plug-in Hot-Spot
uses DF1 from the operational mode management framelet (mode
management design pattern)
is-implemented-by OF4.1
OF4.1 The telemetry management framelet offers a telemetry mode manager
component implementing a cycling mode management mechanism to cycle
through a fixed number of telemetry lists.
matches the Telemetry Mode Manager Plug-In Hot-Spot
uses OF1 from the operational mode management framelet (the
CyclingModeManager)
is-implemented-by the CyclingTelemetryModeManager component
CF4 The telemetry manager component can be customized to send the telemetry
data to any telemetry stream.
matches the Telemetry Stream Plug-in Hot-Spot
is-implemented-by OF4.1
OF4.1 The telemetry management framelet offers a component encapsulating a

DMA-based telemetry stream. This telemetry stream assumes that telemetry
data are collected by a DMA mechanism from a pre-defined buffer.

University of Constance Software & Web Engineering Group
Department of Computer Science Telemetry Framelet

Issue 2.2

30 April 2002

Page 36

matches the Telemetry Stream Plug-in Hot-Spot

is-implemented-by the DmaTelemetryStream component

CF5

The telemetry manager can be customized to associate any recovery action to
the failure check of DF2.5.

matches the Recovery Action Plug-In Hot Spot

uses DF2 from the inter-component communication framelet (association of
recovery actions to failure events)

OF6

The telemetry management framelet offers a component to allow a range of
contiguous memory locations to be written to the telemetry stream.

matches the Telemeterable Hot-Spot

is-implemented-by the MemorySection component

