

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 1

 FAILURE RECOVERY MANAGEMENT FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the failure recovery management framelet. This framelet
defines an architecture to handle failure recovery tasks.
The framelet enhances reusability because it decouples
the task of managing the failure recovery function from
the task of carrying out the failure recovery actions.

Written By: A. Pasetti

Date: 30 April 2002

Issue: 2.2

Reference: SWE/99/AOCS/011

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 2

TABLE OF CONTENTS

1 REFERENCES.. 4
2 ACRONYMS.. 5
3 INTRODUCTION... 6

3.1 Context ... 6
3.2 Applicability to Java Version .. 6
3.3 Notation ... 7

4 FRAMELET CONSTRUCTS.. 8
5 FAILURE RECOVERY ACTIONS.. 10

5.1 Types of Recovery Action.. 12
5.2 System Reset Recovery Action.. 12
5.3 System Reboot Recovery Action... 13
5.4 Object Reset Recovery Action ... 13
5.5 Reconfiguration Recovery Action .. 14
5.6 Mode Change Recovery Action.. 15
5.7 Null Recovery Action... 16
5.8 Failures during Recoveries.. 16
5.9 Recovery Actions with Memory... 16
5.10 Telemetry Interfaces ... 17
5.11 The Reset and Configurable Interfaces.. 18

6 FAILURE STRATEGIES... 20
6.1 Types of Failure Strategies .. 22
6.2 Telemetry Interfaces ... 23
6.3 The Reset and Configurable Interfaces.. 24

7 FAILURE RECOVERY EVENT... 25
7.1 The Telemetry Interface ... 25
7.2 The Reset and Configurable Interface ... 26

8 THE FAILURE RECOVERY DESIGN PATTERN.. 27
8.1 Instantiation of Failure Recovery Pattern ... 28
8.2 The Failure Recovery Manager... 29
8.3 Failure Recovery Mode Manager ... 30
8.4 Recursion ... 32

9 FRAMELET HOT-SPOTS .. 33
9.1 Failure Recovery Mode Manager Plug-In... 33

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 3

9.2 Recovery Action Hot-Spot... 33
9.3 Recovery Strategy Hot-Spot .. 34

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 4

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 W. Pree, A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS
Framework Document ref. SWE/99/AOCS/004

RD3 W. Pree, A. Pasetti (2000), Operational Mode Management Framelet, AOCS Framework
Document ref. SWE/99/AOCS/009

RD4 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 5

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
OBDH On-Board Data Handling system (aka as OBDS)
NM Normal Mode
NTT Non-Time-Tagged
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 6

3 INTRODUCTION

This document describes the failure recovery management framelet for the AOCS framework.
The framelet is described at both the framelet concept level and at the framelet architectural
level.

This framelet defines an architecture to handle failure recovery tasks.

The framelet enhances reusability because it decouples the task of managing the failure recovery
function from the task of implementing failure recovery algorithms.

3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD2 and in particular with the sections dealing with failure
recovery management and with the overall FDIR approach.

The architecture proposed here follows the concept outlined in RD2.

In comparing the present document with RD2, readers should bear in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce an
architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level – in particular its design
patterns – is language-independent and is equally applicable to both the C++ and Java
versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following
address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific
points to note are:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 7

− Events in the Java framework are implemented using the Java event mechanism.

− The recovery event repository hot-spot (section 9.4) is not applicable to the Java
framework. Event repositories are event listeners and can be linked to the mode manager
through the associated addListener methods.

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

The class diagrams use UML notation generated with the reverse engineering tool of the
Together tool.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 8

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

FAILURE RECOVERY MANAGEMENT FRAMELET

Design Pattern

Failure Recovery Pattern: design pattern to separate the management of failure recovery from the
implementation of failure recovery strategies.

Framelet Interfaces and Base Abstract Classes

RecoveryAction : abstract base class for objects encapsulating recovery actions

RecoveryStrategy: abstract base class for objects encapsulating failure handling strategies

FailureRecoveryModeManager : interface for the operational mode manager for the failure
detection manager.

Framelet Core Components

FailureRecoveryManager : failure recovery manager component (including mode manager)

Framelet Components

SystemReset : recovery action component encapsulating a system reset

SystemReboot : recovery action component encapsulating a system reboot

ObjectReset : recovery action component encapsulating a reset on a specific object

Reconfiguration : recovery action component encapsulating a reconfiguration action

ModeChange : recovery action component encapsulating a mode change action

NullRecoveryAction : null recovery action

SystemResetOnTooManyFailures : failure recovery strategy to command a system reset if too
many failures are found in the failure recovery repository

LocalRecoveryActions : failure recovery strategy to perform the recovery actions associated to
each failure found in the failure recovery repository

FollowerFailureRecoveryModeManager : failure recovery mode manager based on based on
follower mechanism

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 9

The components listed above are those envisaged for the prototype version of the AOCS
framework. Later versions may offer a richer set of default implementations of the framelet
interfaces. In particular, more recovery action and recovery strategy components might be
provided.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 10

5 FAILURE RECOVERY ACTIONS

In general, the AOCS software can react to a specific failure event by performing one or more
failure recovery actions. A failure recovery action therefore represents a local response to a
failure. The response is said to be local because it is based on a single failure report. A global
response would take account of sets of failure reports.

Failure recovery actions are encapsulated in objects derived from class RecoveryAction:

0..1

0..1

RecoveryAction

+RecoveryAction()

+doRecovery():void

+resetConfiguration():void

+reset():void

+writeToTelemetry(stream:TelemetryStream *):vo

+getTelemetryImageLength():int

+setNextRecoveryAction(r:RecoveryAction *):voi

+getNextRecoveryAction():RecoveryAction *

+enable():void

+disable():void

+isEnabled():bool

RootObjec

Resettabl

Configurabl

Telemeterabl

AocsObject

The public methods specific to this class (ie. not inherited from base classes) are described in
the table:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 11

doRecovery()

Implement the recovery actions encapsulated by the component.

enable(), disable(), isEnabled()

Recovery actions can be enabled or disabled. These operations allow the enable
status of the recovery action to be changed and to be queried. Execution of
operation doRecovery on a disabled recovery action is equivalent to a no-op.

getNextRecoveryAction(), setNextRecoveryAction()

Recovery actions can be chained (see below). These are the getter and setter
methods for the next recovery actions in the link chain.

Recovery actions can be linked in a linear chain as shown in the picture:

����������	
���

����������	
������

����������	
����

����������	
������

����������	
����

����������	
������ ����

The implementation of doRecovery provided by the base class RecoveryAction is as
follows:

if (nextRecoveryAction != NULL)
nextRecoveryAction->doRecovery();

A typical implementation of doRecovery in a subclass of RecoveryAction would be as
follows:

void doRecovery() {
. . . // perform class-specific recovery action
RecoveryAction::doRecovery();

}

This means that execution of a recovery action will lead to execution of all recovery actions
that are linked to it. Thus, a single recovery action can in fact represent any number of

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 12

recovery actions to be executed in sequence. In practice, this allows several recovery actions
to be associated to the same failure event.

5.1 Types of Recovery Action

Class RecoveryAction is the base class for all recovery actions. By itself, it does not define
any concrete action. Concrete recovery actions are defined by subclasses of
RecoveryAction. Typical failure recovery actions would include:

• Reset of the AOCS software
• Reboot of the AOCS software
• Reset of one or more AOCS objects
• Reconfiguration of one or more units
• Fall-back to a lower operational mode

To each type of recovery action there corresponds a concrete class derived from
RecoveryAction. More details are provided in the next sub-sections.

5.2 System Reset Recovery Action

This recovery action uses the services of the SystemReset object to perform a system reset of
the AOCS. The UML diagram of this recovery action is:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 13

The system reset is performed by using the systemReset service offered by the
SystemManager component. The recovery action retrieves the reference to the system
manager using one of the services offered by its parent class AocsObject.

5.3 System Reboot Recovery Action

This recovery action performs a system reboot. No default implementation is provided by the
framework since a system reboot requires interfacing to the low-level drivers of the operating
system

5.4 Object Reset Recovery Action

Objects that are derived from AocsObject implement the Resettable interface and can
thus be reset. Reset of a specific object can be a failure recovery action. The UML class
diagram of the corresponding class is:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 14

The object to be reset is passed as a parameter to the constructor.

If several objects have to be reset in response to the same failure event, their reset recovery
actions can be strung together in a chain.

5.5 Reconfiguration Recovery Action

Reconfigurations are typical responses to failures. The corresponding recovery action object is
shown in the figure:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 15

The recovery action holds a reference to an object of type Reconfigurable, namely to an
object that can be reconfigured. The implementation of doRecovery calls the reconfigure
method on it and causes the reconfiguration to be performed.

The object to be reconfigured is passed as a parameter to the constructor.

If several objects need to be reconfigured, this effect can be achieved by stringing together
several reconfiguration actions.

5.6 Mode Change Recovery Action

Operational mode changes – including fall-backs to safe and survival modes – are another
common response to failure events. Mode changes are handled by the following class:

Mode changes are performed by acting on mode managers. The mode manager to be acted
upon and the target operational mode are passed as parameters to the constructor.

Chaining of recovery actions is again possible to perform several mode changes on several
objects.

Note that in the AOCS framework, operational mode is a property of individual objects rather
than of the AOCS as a whole. If it is desired to effect a mode change throughout the AOCS,
the AOCS mission mode can be changed by acting on the AOCS mission manager object.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 16

5.7 Null Recovery Action

The failure reporting mechanism requires that to each failure a recovery action be associated.
Failure events that have been created without a recovery action will give rise to a failure
when they are processed by the failure recovery manager.

Sometimes, however, it is not possible for the AOCS developer to associate a specific recovery
action to certain failures. In order to cater for such contingencies, a null failure recovery action is
predefined. This is a recovery action whose implementation of method doRecovery does
nothing and simply hands over to the next recovery action in the chain (if one exists).

Null recovery actions are obtained as instance of class NullRecoveryAction.

5.8 Failures during Recoveries

Method doRecovery may call on other methods offered by other classes to implement its
recovery action. These methods may in turn encounter failure situations that will cause the
generation of failure events. Thus, the execution of recovery from a failure may itself give rise
to the generation of a failure event. The latter may have its own recovery action associated to
it. This situation can arise because the present version of the AOCS framework foresees a
single level of failure detection and recovery and requires some care on the part of the
application developed in the association of recovery actions to failures. See RD2 for a more
detailed discussion of an alternative approach.

5.9 Recovery Actions with Memory

Recovery actions can be endowed with “memory”. Consider for instance the case of a Kalman
Filter to which a recovery action is associated that is triggered when the filter diverges. The
nominal recovery for a filter divergence may be a filer reset. However, the recovery action
object may be made to remember the last time it was called and, if it finds that it is called too
frequently, it can decide that there is a fundamental control failure and may react by
commanding a mode fall-back.

Recovery actions with memory can be derived by extending through inheritance the basic
components provided by the framework. As a simple example, consider the case of the
recovery action for the Kalman filter divergence. An outline implementation could be:

class ObjectResetWithCheck : public ObjectReset {

AocsTime timeOfLastReset;
AocsTime threshold;

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 17

public :

. . .

void doRecovery() {
if ((current time – timeOfLastReset)>threshold)

ObjectReste::doRecovery();
else
{ . . . // failures were too close together, take

. . . // some more drastic recovery action
}

timeOfLastReset=current time;
}

. . .
}

Thus, the implementation of the doRecovery uses the implementation in the base class
under nominal condition but introduces some special action in case two successive failures
occur at too close an interval.

5.10 Telemetry Interfaces

Failure recovery actions may in principle implement complex algorithms. The objects that
represent them are therefore derived from AocsObject to make it possible to reset them and
write their state to telemetry.

The data sent to the telemetry stream by an object of the base class RecoveryAction in each
telemetry mode are summarized in the table:

TM Format TM Data

Short none

Normal enabled status

Long Normal TM + instance ID of nextRecoveryAction

Debug same as Long TM

Class SystemReset does not add any class-specific telemetry data.

Class ObjectReset adds the following class-specific telemetry data:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 18

TM Format TM Data

Short none

Normal none

Long instance ID of object to be reset

Debug same as Long TM

Class Reconfigurable adds the following class-specific telemetry data:

TM Format TM Data

Short none

Normal none

Long instance ID of object to be reconfigured

Debug same as Long TM

Class ModeChange adds the following class-specific telemetry data:

TM Format TM Data

Short none

Normal none

Long instance ID of mode manager and target mode

Debug same as Long TM

In all cases, calls to telemetry methods are propagated along a chain of linked recovery
actions.

5.11 The Reset and Configurable Interfaces

Recovery actions inherit from AocsObject the Resettable and Configurable interfaces
and must therefore implement the corresponding method.

A call to method reset on a recovery action causes its enable status to be set to Enabled.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 19

A call to method resetConfiguration unloads the next recovery action in the chain of
linked recovery actions.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 20

6 FAILURE STRATEGIES

A failure strategy is a set of coordinated responses to the failure events in the failure event
repository.

Failure strategies are encapsulated in objects instantiated from subclasses of the base class
FailureStrategy:

0..1

RecoveryStrategy

+RecoveryStrategy()

+doRecovery():void

+resetConfiguration():void

+isConfigured():bool

+resetStaticConfiguration():void

+reset():void

+writeToTelemetry(stream:TelemetryStream *):void

+getTelemetryImageLength():int

+setNextRecoveryStrategy(r:RecoveryStrategy *):void

+getNextRecoveryStrategy():RecoveryStrategy *

+setRecoveryEventRepository(r:RecoveryEventRepository *)

+getRecoveryEventRepository():RecoveryEventRepository *

+enable():void

+disable():void

+isEnabled():bool

RootObject

Resettabl

Configurabl

Telemeterabl

AocsObject

The public methods specific to this class (ie. not inherited from base classes) are described in
the table:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 21

doRecovery()

Implement the recovery strategy encapsulated by the component.

enable(), disable(), isEnabled()

Recovery strategies can be enabled or disabled. These operations allow the enable
status of the recovery strategy to be changed and to be queried. Execution of
operation doRecovery on a disabled recovery strategy is equivalent to a no-op.

getNextRecoveryAction(), setNextRecoveryAction()

Recovery strategies can be chained (see below). These are the getter and setter
methods for the next recovery actions in the link chain.

getRecoveryEventRepository(), setRecoveryEventRepository ()

Recovery strategies can generate recovery events. These are the getter and setter
methods for the recovery event repository.

Recovery strategies can be linked in a linear chain as shown in the picture:

The implementation of doRecovery provided by the base class RecoveryAction is as
follows:

if (nextRecoveryAction != NULL)
nextRecoveryAction->doRecovery();

A recovery strategy may or may not hand over to the next recovery strategy in the chain
depending on some internally-determined condition. Thus, for instance, recovery strategy
SystemResetOnTooManyFailures (see section 6.1 below) first checks the number of

���������	��	����

����������	

�	����
 ����������	

�	����

���������	��	�����

����������	

�	����
 ����

���������	��	�����

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 22

failure events in the event repository. If this above a certain threshold, it commands a system
reset and then returns. If, however, the number of failure events is below the threshold, then
the failure strategy hands over to the next failure strategy in the chain.

A typical implementation of doRecovery in a subclass of RecoveryStrategy
implementing a hand-over to the next recovery strategy in the chain is as follows:

void doRecovery() {
. . . //perform class-specific recovery strategy
if appropriate

RecoveryAction::doRecovery(); //hand-over to next strategy in chain
}

Thus, a recovery strategy has the option either to hand over to the next strategy in the chain
or to interrupt the recovery process.Note that this means that the order in which recovery
strategies are linked together is significant.

6.1 Types of Failure Strategies

FailureStrategy is the base class for all recovery strategies. By itself, it does not define
any concrete action. Concrete recovery actions are defined by subclasses of
RecoveryAction. Typical failure recovery strategies would include:

• Sequence of local recovery actions

This strategy retrieves from the event repository the failure events generated since the last
call to doRecovery and performs the recovery actions associated to each event.

• System reset on too many failures

This strategy checks the number of failure events in the repository generated since the last
call to doRecovery and if it finds that it exceeds a predefined threshold, it commands a
system reset. The system reset is performed as a service request to object SystemReset.

• System reset on configuration error

This strategy checks the number of configuration events in the repository generated since
the last call to doRecovery and if it finds that any configuration errors have occurred, it
commands a system reset. The system reset is performed as a service request to object
SystemReset.

The class diagram for these concrete recovery strategies is shown below:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 23

0..1

SystemResetOnConfigurationErr

AocsObject

RecoveryStrategy

LocalRecoveryActions

SystemResetOnTooManyFailures

When objects instantiated from class LocalRecoveryActions find a failure event without
its associated recovery action, they generate a failure event. Getter and setter methods for the
associated recovery action are offered by the class.

6.2 Telemetry Interfaces

Failure recovery strategies may in principle implement complex algorithms. The objects that
represent them are therefore derived from AocsObject to make it possible to reset them and
write their state to telemetry.

The data sent to the telemetry stream by an object of the base class RecoveryStrategy in
each telemetry mode are summarized in the table:

TM Format TM Data

Short none

Normal enabled status

Long Normal TM + instance ID of nextRecoveryStrategy

Debug same as Long TM

Class LocalRecoveryActions adds the following class-specific telemetry data:

TM Format TM Data

Short none

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 24

Normal none

Long instance ID of recovery action

Debug Long TM + failure event counter

Class SystemResetOnTooManyFailures adds the following class-specific telemetry data:

TM Format TM Data

Short none

Normal none

Long Threshold for the number of failure events triggering a system reset

Debug Long TM + failure event counter

In all cases, calls to telemetry methods are propagated along a chain of linked recovery
strategies.

6.3 The Reset and Configurable Interfaces

Recovery strategies inherit from AocsObject the Resettable and Configurable
interfaces and must therefore implement the corresponding method.

A call to method reset on a recovery strategy causes its enable status to be set to Enabled.

The recovery strategies defined in section 6.1 act on the number of failure events generates
since the last time doRecovery was called. They therefore need to keep track of the failure
events counter across activations of doRecovery (variable lastEventCounter). Calls to
their methods reset causes this variable to be set to the current value of the failure event
counter.

A call to method resetConfiguration on class RecoveryStrategy unloads the next
recovery strategy in the chain of linked recovery strategies.

A call to method resetConfiguration on class SystemResetOnTooManyFailures
causes the failure event threshold to be reset to zero.

A call to method resetConfiguration on class LocalRecoveryActions causes the
recovery action associated to this class to be unloaded.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 25

7 FAILURE RECOVERY EVENT

The execution of a failure recovery action or of a failure strategy strategy triggers the creation
of an event of type RecoveryEvent. The class diagram for its class is:

AocsObje

AocsEvent

RecoveryEvent

+RecoveryEvent()

+initialize(creator:AocsObject *,evtType:EventType,recoveryAction:RecoveryAction *,

+getRecoveryStrategy():RecoveryStrategy *

+getRecoveryAction():RecoveryAction *

+resetConfiguration():void

+isConfigured():bool

+writeToTelemetry(stream:TelemetryStream *):void

+getTelemetryImageLength():int

Thus, recovery events add the following attributes to those defined by the base class
AocsEvent:

• recoveryStrategy: pointer to recovery strategy object.
• recoveryAction: pointer to recovery action object

The creation of the recovery events is the responsibilities of the recovery strategies. Neither
the recovery actions nor the recovery manager create any recovery events.

7.1 The Telemetry Interface

Recovery events are telemetry objects because they (indirectly, through AocsEvent) inherit
from AocsData the telemeterable interface.

The data sent to the telemetry stream by a recovery event in each telemetry mode are
summarized in the table:

TM Format TM Data

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 26

Short none

Normal none

Long instance identifier of recovery strategy and recovery action

Debug same as long TM

7.2 The Reset and Configurable Interface

Recovery event objects inherit from AocsObject the Resettable and Configurable
interfaces and must therefore implement the corresponding method.

Recovery events have no dynamic state associated to them and therefore they do not define a
class-specific reset method.

Recovery events define a class-specific resetConfiguration method that resets all event
attributes to zero. Method isConfigured returns true if the reference to the recovery
strategy is non-NULL.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 27

8 THE FAILURE RECOVERY DESIGN PATTERN

This design pattern is introduced to address the problem of separating the management of
failure recovery from the implementation of failure recovery actions and strategies. The
design pattern is illustrated in the figure:

The failure recovery manager is essentially based on the chain of responsibility design pattern
from RD1 but it can also be seen as an instance of the manager meta-pattern of RD2 where the
list of functionality implementers only contains one element.

In the classical version of the chain of responsibility pattern, the client’s request (in this case,
the request to perform a recovery) is passed along the chain of handlers (the recovery
strategies) until one is found who is able to handle it. Each request is intended to be handled
by only one handler. In the application of the pattern to failure recovery, however, a recovery
strategy when it receives a recovery requests performs the following actions:

u it handles the recovery request, and
u it checks whether the recovery request should be passed on to the next recovery strategy

or whether recovery processing should terminate.

The recovery strategies are therefore executed in sequence but every recovery strategy has the
chance to interrupt the chain. This incidentally means that the order in which the recovery
strategies are linked in the list is important.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 28

It would have been possible to implement failure recovery using a more straightforward
version of the manager meta-pattern where the recovery strategies are arranged in a list and
the recovery manager, when it is activated, goes through the list and executes each strategy in
sequence. This architecture, however, would have made it more awkward to give each a
recovery strategy the option to interrupt the recovery process.

8.1 Instantiation of Failure Recovery Pattern

The failure recovery pattern is instantiated as follows for the framework:

u the failure recovery manager is an active object and its activate method is the run
method declared by interface Runnable.

u Recovery events are created for each recovery strategy and recovery action that is
executed.

u In most cases, the recovery strategy to be executed depends on operational conditions.
This is taken into account by making the failure recovery manager mode-dependent (see
section 8.3). The failure recovery mode manager then manages a single strategy
corresponding to the recovery strategy to be supplied to the recovery manager.

The resulting class diagram is:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 29

The mode manager is characterized by a dedicated abstract interface as discussed in section
8.3.

8.2 The Failure Recovery Manager

The failure recovery manager is the active component that is responsible for processing the
events in the failure event repository and responding to them with appropriate failure
recovery strategies.

The failure recovery manager only sees recovery strategies. Failure recovery actions are,
where required, managed and implemented by the recovery strategies.

The failure recovery manager is instantiated from class FailureRecoveryManager shown
in the next figure:

The failure recovery manager is derived from AocsObject and implements interface
Runnable to signify that it is an active object.

The failure recovery manager sees the recovery strategy base class but, behind it, there may
be a string of concrete failure recovery strategies.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 30

As discussed in section 8.3, the failure recovery manager obtains the failure recovery strategy
appropriate to current operating conditions from a failure recovery mode manager.

The public methods specific to this class (ie. not inherited from base classes) are described in
the table:

setFailureRecoveryModeManager, getFailureRecoveryModeManager

Setter and getter methods for the failure recovery mode manager.

The basic implementation of method run (the entry point for the task associated to the failure
recovery manager) is very simple and is outlined in the pseudo-code below:

void FailureRecoveryManager::run(AocsTime deadline)
{

// Load the recovery strategy
RecoveryStrategy* recStr = modeManager->getRecoveryStrategy();

// Implement the recovery strategy
recStr->doRecovery();

}

Thus, the recovery manager gets the recovery strategy from its mode manager and then
executes it. Obviously, the failure recovery strategy may actually consist of a string of linked
recovery strategies.

8.3 Failure Recovery Mode Manager

The type of failure recovery strategy may depend on operational conditions. This dependency
is modelled by endowing the failure recovery manager with operational mode.

The mode manager is constructed in accordance with the mode management pattern
prescribed in RD3 as an interface and a concrete class.

The failure detection mode manager must be able to supply to the failure recovery manager
the failure recovery strategy. It is accordingly characterized by the following interface:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 31

The semantics of the operations defined by this interface are summarized in the following
table:

getRecoveryStrategy()

This method is called by the failure recovery manager to retrieve the currently valid
recovery strategy.

loadRecoveryStrategy (int i, RecoveryStrategy* recStr)

This method is used to configure the failure recovery mode manager. It associates
the recovery strategy recStr to operational mode i.

Concrete failure recovery mode managers are defined by the mechanism that they use to
decide which particular recovery strategy should be returned at any given point in time.

The prototype framework provides a default failure detection mode manager that is based on
the follower mode manager. This default failure detection mode manager is instantiated from
the following class FollowerFailureRecoveryModeManager:

FailureRecoveryModeManage

ModeManage
PropertyMonit

FollowerModeManager

FollowerFailureRecoveryModeManager
-oldRecoveryStrategy:RecoveryStrategy *
+FollowerFailureRecoveryModeManager(numberOfModes:int,maxNumberOfMonitors:int,masterModeManager:Mod
+loadRecoveryStrategy(mode:int,r:RecoveryStrategy *):void
+getRecoveryStrategy():RecoveryStrategy *

Thus, the default failure recovery mode manager uses the services offered by the generic
follower mode manager component exported by the operational mode framelet.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 32

8.4 Recursion

Use of the chain of responsibility design pattern introduces the possibility of recursion. A call
to method RecoveryStrategy::doRecovery can be recursive if several recovery
strategies are linked together. The maximum depth of the recursion is given by the maximum
number of recovery strategies that are linked together.

Recursion can also arise because of the way recovery actions are linked together. A call to
method RecoveryAction::doRecovery can be recursive if several recovery strategies are
linked together. The maximum depth of the recursion is given by the maximum number of
recovery actions that are linked together.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 33

9 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD4.

9.1 Failure Recovery Mode Manager Plug-In

Name: Failure Recovery Mode Manager Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in FailureRecoveryManager class (method
setFailureRecoveryModeManager)

Pre-defined Options: FollowerFailureRecoveryModeManager component exported by this
framelet.

Related Hot-Spots: none

Description

Failure recovery managers need a mode manager to supply them with a recovery strategy. This
hot-spot allows the failure recovery mode manager to be loaded in the failure recovery manager.

9.2 Recovery Action Hot-Spot

Name: Recovery Action Hot-Spot

Visibility Level: framework -level

Adaptation Time: compile-time

Adaptation Method: overriding of method doRecovery in class RecoveryAction

Pre-defined Options: recovery action components exported by this framelet

Related Hot-Spots: none

Description

Responses to individual failure events are encapsulated in instance of subclasses of

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 34

RecoveryAction with each subclass representing one type of response. Derivation of new
subclasses usually requires on method doRecovery to be overridden.

9.3 Recovery Strategy Hot-Spot

Name: Recovery Strategy Hot-Spot

Visibility Level: framework -level

Adaptation Time: compile-time

Adaptation Method: overriding of method doRecovery in class RecoveryStrategy

Pre-defined Options: recovery strategy components exported by this framelet

Related Hot-Spots: none

Description

Responses to the set of failure events in the failure event repository are encapsulated in instance of
subclasses of RecoveryStrategy with each subclass representing one type of response.
Derivation of new subclasses usually requires on method doRecovery to be overridden.

9.4 Recovery Event Repository Plug-In

Name: Recovery Event Repository Plug-In

Visibility Level: framelet-level

Adaptation Time: run-time

Adaptation Method: plug-in component in RecoveryStrategy class (method
setRecoveryEventRepository)

Pre-defined Options: RecoveryEventRepository component exported by inter-component
communication framelet.

Related Hot-Spots: none

Description

Recovery strategy objects log execution of their strategies as events stored in the recovery event

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet
30 April 2002
Issue 2.2
Page 35

repository. This hot-spot allows the recovery event repository component to be loaded. Note that
this component is loaded as a static reference.

