

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 1

INTER-COMPONENT COMMUNICATION FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the inter-component communication framelet. This
framelet proposes an architectural solution to the problem
of managing the data exchanges among framework
components and it defines a standard interface for the
data representing AOCS-specific quantities exchanged
among these components.

Written By: A. Pasetti

Date: 30 April 2002

Issue: 2.3

Reference: SWE/99/AOCS/005

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 2

TABLE OF CONTENTS

1 REFERENCES.. 4
2 ACRONYMS.. 5
3 INTRODUCTION... 6

3.1 Context ... 6
3.2 Applicability to Java Version .. 6
3.3 Notation ... 7

4 FRAMELET CONSTRUCTS.. 8
5 AOCS EVENTS ... 10

5.1 Event Categories ... 11
5.2 Event Subclasses ... 12
5.3 The Telemetry Interface ... 14
5.4 The Reset and Configurable Interface ... 14

6 EVENT REPOSITORIES .. 15
6.1 The Shared Event Design Pattern... 15
6.2 Instantiation of Shared Event Pattern.. 15
6.3 Repository Base Class .. 16
6.4 Event Creation... 17
6.5 Repository Subclasses .. 18
6.6 Use of Events... 18
6.7 “Lost” Repository Events .. 19
6.8 The ConsistencyCheckable Interface ... 20
6.9 The Telemetry Interface ... 20
6.10 The Reset and Configurable Interface ... 20

7 PRELIMINARY CONCEPT FOR AOCS DATA... 21
7.1 Objective... 21
7.2 Replacement of Concrete Type by a Base Type.. 21
7.3 Use of Handles .. 24
7.4 Assessment .. 26

8 THE DATA ITEM CONCEPT... 28
8.1 The DataItemRead Class .. 28
8.2 The DataItemWrite Class .. 29

9 BASELINE CONCEPT FOR AOCS DATA ... 32
9.1 Housekeeping Access to AOCS Data .. 32

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 3

9.2 Metrics Methods ... 35
9.3 AOCS Data Normalization.. 35
9.4 AOCS Data Time Tags ... 35
9.5 AOCS Data Properties ... 36
9.6 Recovery Actions for Illegal Accesses ... 36
9.7 Computational Access to AOCS Data ... 36
9.8 Concrete Data Types .. 37
9.9 The ConsistencyCheckable Interface ... 37
9.10 The Telemetry Interface ... 38
9.11 The Reset and Configurable Interface ... 38
9.12 Alternative Implementation.. 39

10 DATA POOLS ... 40
10.1 The Shared Data Design Pattern .. 40
10.2 Instantiation of Shared Data Pattern.. 40
10.3 The Telemetry Interface ... 43
10.4 The Reset and Configurable Interface ... 44
10.5 The ConsistencyCheckable Interface ... 44

11 FRAMELET HOT-SPOTS .. 45
11.1 Event Subclass Hot-Spot.. 45
11.2 AOCS Data Subclass Hot-Spot ... 45
11.3 AOCS Clock plug-In for Data Items Hot-Spot ... 46
11.4 Data Pool Subclass Hot-Spot... 46
11.5 Repository Size Hot Spot ... 47
11.6 Recovery Action plug-In for Event Repositories ... 47
11.7 Recovery Action plug-In for AOCS Data.. 48
11.8 Illegal Access Recovery Action Plug-In for AOCS Data... 48
11.9 Recovery Action plug-In for Data Pools ... 49

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 4

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document SWE/99/AOCS/004

RD3 A. Pasetti (2000), AOCS Framework – Failure Detection Framelet, AOCS Framework
Document SWE/99/AOCS/010

RD4 A. Pasetti (2000), AOCS Framework - Failure Recovery Framelet, AOCS Framework
Document SWE/99/AOCS/011

RD5 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 5

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
OBDH On-Board Data Handling system (aka as OBDS)
NM Normal Mode
NTT Non-Time-Tagged
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 6

3 INTRODUCTION

This document describes the inter-component framelet for the AOCS framework. The
framelet is described at both the framelet concept level and at the framelet architectural level.

This framelet proposes an architectural solution to the problem of managing the data
exchanges among framework components and it defines a standard interface for the data
representing AOCS-specific quantities exchanged among these components.

This framelet enhances reusability in three ways. Firstly, through the use of shareable data
areas for inter-component communications, it decouples the production of data and events
from their consumption. Secondly, by allowing uniform treatment of all data types, it makes
component interfaces independent of the type of data they process. Thirdly, with the data item
concept, it provides a way to link components together at run-time.

3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD2 and in particular with the overview of the inter-
component framelet.

In comparing the present document with RD2, readers should bear in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce an
architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level – in particular its design
patterns – is language-independent and is equally applicable to both the C++ and Java
versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 7

address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific
points to note are:

− Events in the Java framework are implemented using the Java event mechanism.

− Data items (section 8) are not used in the Java framework where their function is fulfilled
by data sinks and data sources.

− The Illegal Access Recovery Action Plug-In hot-spot (section 11.8) does not exist in the
Java framework since illegal accesses to data items inside AOCS Data are caught by the
Java run-time exception mechanism.

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

The class diagrams use UML notation generated with the reverse engineering tool of the
Together tool.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 8

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

INTER-COMPONENT COMMUNICATION FRAMELET

Design Patterns

Shared Data Pattern : pattern to exchange data among components using shared data areas

Shared Event Pattern : pattern to exchange events among components using shared data areas

Framelet Interfaces and Abstract Base Classes

AocsEvent : abstract base class for AOCS events

EventRepository : abstract base class for event repositories

AocsData : abstract base class for all AOCS data

DataPool : abstract base class for AOCS data pools

Framelet Core Components

TelecommandEvent : telecommand event
ModeEvent : mode change event
RecoveryEvent : failure recovery event
FailureEvent : failure event
ManoeuvreEvent : manoeuvre event
ChangeEvent : property change event
ConfigurationEvent : configuration error event
SystemEvent : system event
ReconfigurationEvent : reconfiguration event

TelecommandEventRepository : telecommand events repository
ModeEventRepository : mode change events repository
RecoveryEventRepository : failure recovery events repository
FailureEventRepository : failure events repository
ManoeuvreEventRepository : manoeuvre events repository
ChangeEventRepository : property change events repository
ConfigurationEventRepository : configuration error events repository
SystemEventRepository : system events repository

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 9

ReconfigurationEventRepository : reconfiguration events repository

Scalar : scalar data
TwoEulerAngles : set of two Euler angles
ThreeEulerAngles : set of three Euler angles
Nvector : set of n elements treated as an n-vector

AttitudeDataPool : data pool for attitude data

DataItemRead : component encapsulating a read-only access to a data item

DataItemWrite : component encapsulating a read/write access to a data item

The components listed above are those offered by the prototype version of the AOCS
framework. Later version may offer a richer set of default implementations of the framelet
interfaces. In particular, they might offer a richer set of AOCS data types.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 10

5 AOCS EVENTS

AOCS events represent asynchronous changes in the state of an object. Examples of
meaningful events in an AOCS system include:

• the execution of a telecommand
• the reconfiguration of a unit
• the commencement of a manoeuvre
• the detection of an error
• the execution of a failure recovery action

Events are encapsulated in objects that are derived from the base class AocsEvent. Class
AocsEvent presents the following interface:

Each AocsEvent has the following attributes:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 11

• timeStamp: read-only attribute representing the time when the event was created.
• creator: reference to the object that created the event
• eventType: a code identifying the event type.

The event type codes are represented as an enumeration type EventType.

Apart from methods inherited from base classes, the AocsEvent class provides getter
methods for the three above attributes. There is an additional method, initialize, that is
used to set the creator and event type of an event. The time tag is automatically set by the
event. Method initialize would typically be called only by the repository containing the
event (see section 6).

5.1 Event Categories

The following categories of events are recognized in the AOCS framework:

• Telecommand Events

Record reception of, and successful and unsuccessful execution of telecommands.

• Failure Events

Record the occurrence of a failure detected by the AOCS software during normal
operation (eg. failures detected by the failure detection manager).

• Failure Recovery Events

Record the execution of a failure recovery action.

• Manoeuvre Events

Record the loading of, beginning and termination of manoeuvres.

• Property Change Events

Record the occurrence of a property change.

• Mode Change Events

Record the occurrence of a change in the operational mode of a component.

• Reconfiguration Events

Record the occurrence of a reconfiguration.

• Configuration Error Events

Record the occurrence of an error during the configuration of a component.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 12

• System Events

Record the occurrence of a system management events.

5.2 Event Subclasses

Some of the event categories listed in the previous subsection need to store more information
than just their own type. An event signaling the execution of a telecommand, for instance,
will need to store an identifier of the telecommand. There are two solutions to this problem:

• Add additional fields to class AocsEvent.

This solution has the drawback of burdening all events with the extra fields thus resulting
in a waste of memory.

• Create subclasses of AocsEvent to cater for event categories with greater storage requirements.

This solution saves memory (only data that are actually used are stored in each event
object) and has the further advantage of making it easier to have event repositories
dedicated to each event class.

The second option was selected for the AOCS framework. The internal structure of the event
subclasses is defined in the corresponding framelets documents.

The event subclasses implemented by the framework are listed in the table:

Event Subclass Name Event Description

TelecommandEvent Describes telecommand-related events

FailureEvent Describes failures detected by the AOCS

RecoveryEvent Describes failure recovery actions

ManoeuvreEvent Describes manoeuvre-related events

ChangeEvent Describes changes in a property value

ReconfigurationEvent Describes a component reconfiguration

ModeEvent Describes a change in operational mode

ConfigurationEvent Describes an error in the configuration of an object

SystemEvent Records the occurrence of a system event.

The event subclasses are shown in the following UML diagram:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 13

As an example of an event subclass, consider the subclass for failure events:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 14

Failure events add to basic events a reference to a recovery action associated to the failure and
a reference to the object where the failure was detected (the failure location). Hence class
FailureEvent differs from its base mainly for the presence of an initialize method that
takes a different set of parameters. These parameters are those that are specific to failure
events: they include the recovery action and the failure location reference as well as the
reference to the event creator and the event type. Additionally, the subclass adds a getter
method for the recovery action.

5.3 The Telemetry Interface

Event objects inherit from AocsObject the telemeterable interface and must therefore
implement the corresponding methods.

The data sent to the telemetry stream in each telemetry mode are summarized in the table:

TM Format TM Data

Short none

Normal event type

Long event type, time stamp

Debug same as LongTm

5.4 The Reset and Configurable Interface

Event objects inherit from AocsObject the Resettable and Configurable interfaces and
must therefore implement the corresponding method.

Method reset resets all event attributes to zero.

Events have no configuration data associated to them.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 15

6 EVENT REPOSITORIES

Event data are shared among framework component. The shared areas through which events
are shared are the event repositories.

6.1 The Shared Event Design Pattern

This design pattern is introduced to address the problem of allowing components to share
access to event objects that are generated asynchronously. The pattern is illustrated in the
following UML diagram:

Both the producer and the consumers of the events have access to a repository component
that acts as a shared data area for the exchange of the events. The event producer calls
method create to ask the repository to create and store a new event. The event consumer
use the iteration methods to retrieve all the events in the repository and process them as
necessary.

6.2 Instantiation of Shared Event Pattern

The EventRepository class is introduced to act as the repository through which events are
shared between their producers and consumers.

More specifically, an event repository is an object with a double role:

• it acts as a shared data area where events are stored, and
• it acts as a factory of new event objects.

In principle, one could have one single repository for all events, regardless of their event
class. However, there are advantages to having dedicated repositories for each event class:

• the number and type of parameters required to create an event vary from class, it is
therefore impossible to have a single create method to create all kinds of events.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 16

• if dedicated repositories are available, it is easier to subject different classes of events to
different treatment. For instance, if it is desired to store in telemetry failure events, and
only failure event, this can be done by simply passing the reference to the failure event
repository to the telemetry manager.

Hence, in the framework there is an event repository object for each class of events. The
following naming convention is adopted: to event class <eventClass> there corresponds an
event repository called <eventClassRepository>.

6.3 Repository Base Class

The base class for event repositories is:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 17

Its public methods not inherited from base classes are described in the table:

latest, previous, isIterationEnded

Iteration methods that iterate through all the events in the repository starting from the
one that was created last. Note that iteration is performed on events that have been
created in the repository in the sense of section 6.4

getCounter

Returns the total number of events created in the repository since the last reset.

getListSize

Returns the capacity of the repository (the maximum number of events it can store).

Note that repositories implement the ConsistencyCheckable interface (see section 6.7).

6.4 Event Creation

Events by their very nature must be created dynamically. However, in an embedded system,
memory dynamically cannot be allocated dynamically. Hence, each event repository pre-
allocates memory and exposes create methods to be called by clients that need a new event.

Events are created by passing the parameters that define the event. Since different event
subclasses have different sets of parameters, the create method is not part of the interface of
the base EventRepository class. Each repository subclass exposes a create method with a
signature tailored to the events it contains.

As an example consider the repository for FailureEvents:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 18

This class differs from its base mainly in the presence of a create method whose signature is
tailored to the signature of the initialize method of the corresponding event subclass (see
section 5.2). A call to this create method simply cause an event in the repository to be
initialized with the parameters specified by method create.

Note that events are never explicitly destroyed. The repository has a pre-defined capacity and
when that capacity is reached, the oldest event is overwritten.

The size of the event buffer maintained by each event repository is defined at initialization
time by calling method setRepositorySize.

6.5 Repository Subclasses

Class EventRepository acts as a base class to more specific event repository subclasses.
There is an event repository subclass for each event sub class.

For each category of events of type <EventType>, an object of type
<EventTypeRepository> exists (eg. Events of class FailureEvent are stored in
repository objects instantiated from class FailureEventRepository).

Note that it is not possible to treat repositories as instantiation from templates because of
differences in the signature of their create methods.

6.6 Use of Events

When a component needs to deposit a new event in a repository, it calls the create method
of the corresponding repository. This method retrieves memory for the new event from a
circular buffer. In practice, this means that it overwrites an existing – but old – event.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 19

If components were allowed to hold references to events in repositories, they would have to
be notified of the overwriting of events to ensure that their references are consistent. Such a
notification mechanism is judged too complex. The selected approach is as follows:

• Event producers do not get a reference to the event they deposit in the repository: they
can ask for the creation of an event of a certain type but the event itself is stored in the
repository and they do not have direct access to it.

• Event consumers retrieve events by inspecting the event repositories.

In this manner, references to repository events are not directly passed from component to
component and the consistency problem does not arise.

Note that components can still exchange references to events outside repositories as method
parameters. This is allowed for the case where the event creator does not know what to do
with the event (should it be stored in a repository? In which repository should it be stored?
Etc.).

As an example of this situation, consider the case of a change object that detects a change.
This situation is to be reported as an event however the change object itself does not know
(and should not know) in which repository the event is to be stored. The solution adopted
here is:

• The change object creates an event and returns it to the monitor that is responsible for
performing the check;

• The monitor copies the event to the appropriate repository.

6.7 “Lost” Repository Events

Event producers create new events which are stored in an event repository. Consumers
process events by periodically inspecting the events in the repository. Since the memory in
the repository is finite, it may happen that an event is overwritten before its consumer gets to
see it. The chances of this happening should be minimized by judicious selection of the
repository size but, if it does happen, it should be recognized and flagged.

For this purpose, repositories are made to implement the ConsistencyCheckable interface
The implementation of method doConsistencyCheck checks that the number of events
created in between two successive calls to doConsistencyCheck are less than the
repository capacity. If this is not the case, then a system event is created.

Method doConsistencyCheck is normally called by the failure detection manager. If this
check is scheduled with appropriate frequency, then it can be used to notify the ground or

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 20

some error handler that one or more events have been “lost” because they have been
overwritten before having been processed.

6.8 The ConsistencyCheckable Interface

Event repository objects implement the ConsistencyCheckable and must therefore
implement method doConsistencyCheck.

The consistency check on event repositories is described in section 6.7.

As usual, a recovery action object can be defined to specify the recovery action to be taken in
case the consistency check fails.

6.9 The Telemetry Interface

Repositories inherit from AocsObject the telemeterable interface and must therefore
implement the corresponding methods.

The data sent to the telemetry stream in each telemetry mode are summarized in the table:

TM Format TM Data

Short identifier of new events (events not yet reported in telemetry)

Normal calls writeToTelemetry on all new events in the repository

Long calls writeToTelemetry on all new events in the repository

Debug calls writeToTelemetry on all events (new and old) in the repository

6.10 The Reset and Configurable Interface

Event objects inherit from AocsObject the Resettable and Configurable interfaces and
must therefore implement the corresponding method.

Method reset deallocates all events in the repository.

Method resetConfiguration clears the recovery action associated to the consistency
checkable interface (see section 6.7).

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 21

7 PRELIMINARY CONCEPT FOR AOCS DATA

This section discusses a concept for AOCS data that is very attractive in its generality but that
appears very difficult to realized and may be incompatible with the constraints imposed by
an embedded environment.

7.1 Objective

The cyclical data in an AOCS can be of many concrete types (quaternions, scalars, vectors,
etc). It is desirable to have components that process them in a manner that is independent of
their concrete type. Thus, ideally, components should be able to perform operations on the
abstract AocsData type in the knowledge that this operation would be invisibly dispatched
to the correct concrete sub-type.

This in particular applies to arithmetic operations: components should, for instance, be able to
add together two AocsData variables without worrying about whether the addition is
implemented as scalar addition, a vector addition, a quaternion addition, etc. The following
subsections explore the feasibility of achieving this effect.

7.2 Replacement of Concrete Type by a Base Type

Consider a hypothetical Integrator class containing a function to implement an integrator.
This is a very common type of component that will be found in many different AOCS
systems. When it operates on Real data, a sample implementation of the function:

class Integrator_1 {

Real y = 0; // output of PI controller
Real Dt; // time step probably set by constructor

public:

Real integrate(Real u) {
y = y + u*Dt;
return y;

}

// other methods as needed . . .
}

Assume now that there is a base type AocsData from which all concrete data types are
derived and assume furthermore that the basic arithmetic operators have been overloaded for

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 22

this type to allow direct addition, multiplication, etc of AocsData variables. One naïve way
of making Integrator type-independent would be as follows:

class Integrator_2 {

AocsData y = 0; // output of PI controller
AocsData Dt; // time step probably set by constructor

public:

AocsData integrate(AocsData u) {
y = y + u*Dt;
return y;

}

// other methods as needed . . .
}

However, this solution will not work in practice. AocsData is a base class. If it is made
abstract, the above code will not compile. If it is made a concrete class, the code will compile
but will fail at run-time when method integrate is passed an argument which is one of the
derived classes of AocsData (for instance, a Vector or a Scalar).

A second attempt at making Integrator type-independent would rely on the use of
pointers rather than objects:

class Integrator_3 {

AocsData* y; // output of PI controller
AocsData* Dt; // time step probably set by constructor

public:

AocsData* integrate(AocsData* u) {
(*y) = (*y) + (*u) * (*Dt);
return y;

}

// other methods as needed . . .
}

This version of Integrator will compile without errors but now problems arise in the
overloading of the arithmetic operators for AocsData.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 23

The definition of AocsData will look like this:

class AocsData {

int format; // identifier of the concrete data type
. . .

int getFormat() { return format;}

virtual AocsData operator+(AocsData& d) {
// just a placeholder, dummy definition

}

. . .
}

The methods in AocsData can be either pure virtual or (as in the example above) can contain
dummy definitions to be overridden by the derived classes. One example of derived class
encapsulating the scalar type is:

class Scalar : public AocsData {

Real value;

. . .

AocsData operator+(AocsData& d) {
. . . // definition of addition on scalars

}

. . .
}

The problem here is that a natural definition of operator+ for Scalar would take a Scalar
argument and return a Scalar result but in this case both argument and result must be of
AocsData type to maintain compatibility with the base class.

One could imagine having conversion operators that go from AocsData to Scalar and vice-
versa. The format field that identifies the data type could be used to perform up- and down-
casts. The definition of operator+ for class Scalar might then look like this:

class Scalar : public AocsData {

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 24

Real value;

. . .

AocsData operator+(AocsData& d) {
if (d.getScalar() == SCALAR)

return Scalar(value+d.value);
else

. . . // error, create failure event
}

. . .
}

This code assumes that the value returned by the method as a Scalar can be converted to an
AocsData. Even if this code is accepted by the compiler, it will fail at run-time because the
memory requirements of the base type AocsData are smaller than those of its derived
concrete types.

Another option would be to have operator+ return a pointer to the result of the addition (as
opposed to returning the result itself). The method would then have the following signature:

AocsData* operator+(AocsData& d);

Unfortunately, this will make it impossible to chain operations together as in: (a+b)*c

Moreover, returning a pointer to the result implies that memory must be dynamically
allocated to store the result itself on the heap. This is usually not possible in embedded
systems.

7.3 Use of Handles

An alternative solution to the problem of section 7.1 is to operate on a handle rather than on
the data themselves.

The AocsData class is now defined to hold a handle to a datum:

class AocsData {

Datum* pDatum; // pointer to concrete data item

public:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 25

AocsData(Datum* p) {pDatum = p;}

~AocsData() { delete pDatum; }

AocsData operator+(AocsData d) {
return AocsData((*pDatum)+(*d.pDatum));

}

. . . // definition of other arithmetic operators

}

An AocsData variable holds a pointer to a variable of type Datum. This is the base class for
concrete types.

Users only see AocsData variables and can operate directly upon them. The implementation
of AocsData arithmetic operators then delegates the operation to Datum.

Datum is defined as follows:

class Datum {

int format; // identifier for the concrete type

public:

virtual operator new()=0;

virtual operator delete()=0;

int getFormat() {return format;}

Datum* operator+(Datum d)=0;

. . . // definition of other arithmetic operators
}

Note that now the addition operator returns a reference to the result. As discussed above, this
means that dynamic memory allocation is required and for this purpose the new and delete
must be overloaded to make memory allocation efficient and predictable (and hence
compatible with the constraints of embedded systems).

As an example consider the definition of the Scalar concrete type:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 26

class Scalar : public Datum {
Real value;

public:

. . . // class-specific definition of ‘new’ and ‘delete’

void set(Real v) {value = v;}

DataItem* operator+(Datum d) {
if (v.format == SCALAR)

Scalar* res = new Scalar; // calls Scalar version of ‘new’
res.set(value+(Scalar)d.value);
return res;

else
. . . // error! create failure event

}
}

Note that the arithmetic operators defined on type Datum return references whereas the
arithmetic operators defined on type AocsData return values. Thus, while it is not possible to
chain together operations performed on Datum, it is possible to do so for operations
performed on type AocsData.

The memory allocated within operator+ is released by the destructor of AocsData.

Defining new types is easy and can be done by simply adding new subclasses to Datum.
There are no repercussions on either user’s code (which operates entirely on AocsData
variables) or on existing Datum subclasses.

7.4 Assessment

The solution proposed in the last sub-section achieves the stated goal of allowing uniform
treatment of data. Users can perform their manipulation on AocsData while remaining
oblivious to the specific type on which they operate. An integrator can be defined that will
work equally well on scalars or on vectors of any dimension.

There are, however, three serious drawbacks to the proposed solution. Firstly, it is clear that
not all types can be mixed together in all operations. It is for instance possible to multiply a
vector by a scalar but it does not make sense to add a vector to a quaternion. However,
correctness of argument matching cannot be checked statically because all operations take
arguments of the same, generic, AocsData type. Type mismatches can only be discovered at

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 27

run-time (the if statement in the definition of operator+ in class Scalar). This, in an
embedded environment, can be a serious problem because it allows unrecoverable errors to
remain undetected until run-time.

This problem could be mitigated by connecting components to their inputs as part of their
configuration. Each component would then check that it is connected to an input of the
appropriate type. Thus, one would still have to wait until run-time to discover type
mismatches but one would also know that their existence would be flagged during
initialization and would not unpredictably crash the system during normal operation.

The second drawback of this solution is the overhead due to: indirection introduced by the
handle mechanism; need to perform type checking at every operator call; dynamic memory
management. Some of this overhead is, however, inevitable: generality of treatment is almost
always realized by adding one layer of indirection and is therefore almost always bought at
the expenses of greater execution inefficiencies.

The third drawback is the recourse to dynamic memory management. This is usually frowned
upon in real-time system because of its unpredictability and because of the danger of memory
leaks. The first danger can be overcome by suitably overloading the new and delete
operators but the second one cannot be avoided.

These drawbacks are judged to be unacceptable and the solution proposed here is
consequently rejected. This unfortunately means that the objective of generality of treatment
of AOCS data without regard to their exact concrete type cannot be achieved in full. Section 9
proposes an alternative architecture that achieves this objective only in part. This is the
selected baseline for the AOCS framework.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 28

8 THE DATA ITEM CONCEPT

As discussed in the previous section, it is not possible to define a generic AocsData type on
which arithmetic operations can be directly performed. Hence, components in the AOCS
framework that need to perform operations on each other’s data have to do so at the level of
atomic variables of primitive type.

The term data item is used to designate an atomic variable of primitive type that cannot be
further decomposed into lower level entities. A variable of class ThreeVector, for instance,
contains three data items representing the three elements of the 3-dimensional vector.

Data items are normally private class attributes that cannot be directly accessed from the
outside. Access to them must therefore take place through wrapper objects. Two types of
wrappers are defined providing respectively read-only and read-write access. The two
wrappers are represented by classes DataItemRead and DataItemWrite presented in the
next two sub-sections.

8.1 The DataItemRead Class

Class DataItemRead encapsulates a reference to a data item and gives read-access to it. Its
UML diagram is:

The data item object is constructed around a reference to a datum. The object only provide
read access to the datum.

Its non-trivial methods are described in the following table:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 29

DataItemRead(&datum)

Constructor that creates the data item object to encapsulate the reference to datum.

get()

Returns the value of the datum.

initialize(Real* d)

Initializes the reference encapsulated by the DataItemRead object. This is useful
when the default constructor is used to create the object (eg. when arrays of
DataItemRead objects are created).

isDataItemConfigured()

Returns true if the data item object contains a non-null reference to a datum. This
method allows to identify data items that are “empty” (in the sense that they do not
refer to any datum).

Note that it is assumed that the data item is of basic type Real. It is used for any data item
that either is a Real or can be converted to a Real.

DataItemRead objects can be used to establish links between producers and consumers of
data. Suppose for instance that component A uses a data item d from component B as an input
for its operations. Component B will then expose a method getDataItemRead() to allow A
to get a DataItemRead object that encapsulate d. A will then use this DataItemRead object
to access d.

Class DataItemRead is designed to be very light-weight because instances of this class are
extensively used in the AOCS framework. In particular, it neither has nor inherits virtual
methods which means that there is no virtual pointer table associated to it.

8.2 The DataItemWrite Class

DataItemWrite objects extend DataItemRead objects to give write access to the data item
they encapsulate.

Class DataItemWrite is defined as shown in the following UML diagram:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 30

Basically, this class adds to the DataItemRead class: a reference to the time tag of the data
item; a reference to the AOCS clock; and methods to set the encapsulated datum and read its
time tag. The time tag is automatically set by the set method that uses the AOCS clock to
retrieve the current time.

Its non-trivial methods of are described in the following table:

DataItemWrite(&t, &datum)

Constructor that creates the data item object to encapsulate the reference to datum
and its time tag.

set(value)

Sets the new value of the datum. The time tag is automatically set by this method.

initialize(Real* d, AocsTime* timeTag)

Initializes the reference encapsulated by the DataItemWrite object. This is useful
when the default constructor is used to create the object (eg. when arrays of
DataItemWrite objects are created).

setAocsClock(&aocsClock)

Data item write objects needs to have access to the clock so as to be able to set the

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 31

time tag of the datum they encapsulate. This method is used to set the reference to
the AOCS clock.

isDataItemConfigured()

Returns true if the data item object contains a non-null reference to a datum. This
method allows to identify data items that are “empty” (in the sense that they do not
refer to any datum).

DataItemWrite instances are vehicles for setting the value of an internal variable of some
object. Access to a data write object gives write access to the underlying datum.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 32

9 BASELINE CONCEPT FOR AOCS DATA

This section presents a concept for AOCS data that does not achieve the generality of that
presented in section 7 but which is baselined for its greater efficiency of implementation.

AOCS data present two “faces” to the rest of the AOCS software that reflect the two main
purposes for which AOCS components may need to access them. Some components access
AOCS data for housekeeping purposes like integrity checking, telemetry reporting, failure
investigations, etc. Other components access AOCS data for computational purposes, namely
they use them as inputs or outputs of arithmetic computations.

Section 7 showed that it is not possible to create an abstract computational interface for AOCS
data: arithmetic operations must be done on concrete types. They cannot be efficiently done
on the abstract type AocsData which must therefore be limited to encapsulating
housekeeping functionalities.

Consequently, the objective of section 7.1 can only be partially achieved: it is possible to have
a interface to AOCS data that is general with respect to housekeeping access but not with
respect to computational access. The latter must be done on concrete data items.

9.1 Housekeeping Access to AOCS Data

The class hierarchy for the AOCS data types offered by the prototype framework is shown in
the following UML diagram:

AocsObject

ConsistencyCheckabl

AocsData

NVector Scalar ThreeEulerAngle TwoEulerAngles

All concrete data types – scalar, vectors, quaternions, etc – are derived from the base class
AocsData. This base class offers all the functionalities required for housekeeping access to
AOCS data. Obviously, specific missions may add further concrete data types as required.

The AocsData base class is:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 33

The public methods specific to AocsData (ie not inherited from base classes) are described in
the table:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 34

Distance, close, size, setClosenessThreshold

Metrics methods, see section 9.2.

getEarliestTimaTag, getLatestTimeTag, getTimeTAG(i)

Time tag methods (see section 9.4) returning, respectively, the earliest time tag, the
latest time tag and the time tag of the i-th data item.

normalize, setNormalizationThreshold

Normalization methods (see sections 9.3 and 9.9).

getFormat

Return the AOCS data format (see section 9.7).

getDataItemRead(i)

Returns the data item object for the i-th element of the AOCS data.

getProperty(i)

Returns the property object for the i-th element of the AOCS data (see section 9.5).

getDataItemWrite(i)

Provide write access to the i-th element of the AOCS data.

getIllegalActionRecoveryAction, setIllegalActionRecoveryAction

Getter and setter method for recovery action for illegal access failures (see section
9.6).

Note that, except for the data item setter and getter methods, all other methods imply a pure
read-only access to the datum and do not require any knowledge of its concrete type. They
represent the housekeeping access to the datum and realize the objective of generality of
treatment laid down in section 7.1.

The data item methods are used for the computational access to the AOCS data which is
discussed in section 9.7.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 35

9.2 Metrics Methods

The AOCS data class defines four methods: distance, equal, size and close, that
are metrics methods. They assume that the concrete data types exist in a space in which a
metric can be defined. The basic method is distance that computes the distance between
two items. In the case of scalars, this distance is simply the absolute value of the difference
between the two items. In the case of two equal size vectors, the Euclidean distance is
computed. In other cases, type-specific notions of distance may be implemented.

Method equal returns true only if the distance is zero.

Method size returns the distance of the object from the zero point in the metric space.

Method close returns true if the distance is less than epsilon.

By convention, attempts to compute a metrics function on a pair of items not of the same
concrete type will result in some default value being returned.

Metrics functions are useful for failure detection as they can be used to perform property
monitoring. Consider for instance the monitoring of an attitude control error. If this error is
represented as a variable of AocsData type, it will be possible to use its size methods to
encapsulate it in a property object and hence to subject it to monitoring to ensure that it
remains within certain boundaries.

9.3 AOCS Data Normalization

Some data types - vectors, quaternions, and Euler angles - can be normalized. A call to
method normalize causes the normalization to be performed. In the case of a quaternion or
unitary vector, for instance, a call to normalize rescales the elements of the data type to
ensure that their quadratic sum evaluates to 1. In the case of Euler angles, method
normalize moves all angles to the interval [-180deg, +180deg].

Method normalize returns a Real indicating how far from the normal range the datum
was. This return value can be used to perform consistency checks on data as discussed in
section 9.9.

9.4 AOCS Data Time Tags

It is generally not possible to associate a single time tag to an AocsData since this is a
composite type that contains several individual data items (eg. a Vector contains three
elements that can be set at different times). Methods getFirstTimeTag and

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 36

getLastTimeTag return, respectively, the oldest and the most recent time tags of the
element in the AOCS data composite.

9.5 AOCS Data Properties

Property objects are associated to each element in an AocsData. Methods getProperty(i)
returns the property object associated to the i-th element.

9.6 Recovery Actions for Illegal Accesses

When methods getDataItemRead, getProperty, getDataItemWrite, or
setDataItemWriteOwner are called with an illegal argument, a failure event is raised. It is
not possible to associate a specific recovery action to each one of these failures. Instead, a
generic recovery action is defined for this contingency that can be set with method
setIllegalActionRecoveryAction.

9.7 Computational Access to AOCS Data

AOCS data are retrieved from their data pool as references to the AocsData abstract type.
However, as discussed in section 7, computational access to them cannot be done directly on
this type. Two alternatives are instead open.

The first and most straightforward option is to use method getFormat to obtain the
identifier of the underlying concrete type and use it to perform a downcast to the concrete
type. Arithmetic operations may be defined on the concrete types (eg. vector operations upon
vectors) that allow their manipulation for computational purposes.

This option should be used sparingly both because of the intrinsic danger of downcast and
because it circumvents the access control mechanism described below for individual data
item.

The second option is to use the data item mechanism to access individual elements in the
AOCS data structure.

A component that needs read access to the j-th element of an AocsData object can obtain it
by calling method getDataItemRead(j) that returns a DataItemRead variable that
encapsulates the desired element.

Similarly, a component that needs read-write access to the j-th element of an AocsData object
can obtain it by calling method getDataItemWrite(this, j) that returns a
DataItemWrite variable that encapsulates the desired element.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 37

As an example of the access mechanisms based on the data item concept, consider the
ThreeVector class modelling 3-dimensional vectors. An incomplete implementation for the
class is:

class ThreeVector : public AocsData {

Real v[3]; // elements of 3-vector
AocsTime timeTag[3]; // element time tags
. . .

public:

DataItemRead getDataItemRead(int j) {
if (j<3)

return DataItemRead(&v[j]);
else

. . . // failure event
}

DataItemWrite getDataItemWrite(AocsObject* caller, int j) {
if (j<3)

return DataItemWrite(&timeTag[j], &v[j]);
else

. . . // failure event
}

. . . // other methods

Thus, clients that need to perform computations on the vector obtain access to its elements by
calling getDataItemRead and getDataItemWrite. These methods return instances of
DataItemRead and DataItemWrite that encapsulate references to a vector elements. The
data item objects can then be used to establish a permanent link between a component and a
location in a data pool.

9.8 Concrete Data Types

The concrete data types provided by the framework prototype are shown in the first figure of
section 9.1. Their names are self-explanatory. More concrete types can be added as required.

9.9 The ConsistencyCheckable Interface

AOCS data objects implement the ConsistencyCheckable and must therefore implement
method doConsistencyCheck.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 38

A consistency check on an AOCS data fails if the datum is not properly normalized. The
check consists in calling method normalize and verifying that the return value is smaller
than a pre-defined normalization threshold.

Thus, for instance, call of method normalize on a quaternion returns the quadratic sum of the
quaternion data members. If it was found that this quadratic on a quaternion representing the
satellite attitude after integration of the Euler equations had a value of, say, 1.1, then it is
likely that the integration algorithm is misbehaving and the fact can be reported as an error.

The normalization threshold that determines whether or not an AOCS datum is normalized is
set by calling method setNormalizeThreshold.

As usual, a recovery action object can be defined to specify the recovery action to be taken in
case the consistency check fails.

9.10 The Telemetry Interface

AocsData variables inherit the telemeterable interface from AocsObject and must
therefore implement the corresponding methods.

The data sent to the telemetry stream in each telemetry mode are summarized in the table:

TM Format TM Data

Short none

Normal values of data items

Long values of data items and their time stamps

Debug values of data items and their time stamps

9.11 The Reset and Configurable Interface

Event objects inherit from AocsObject the Resettable and Configurable interfaces and
must therefore implement the corresponding method.

Method reset resets all data items values to zero.

Method resetConfiguration perform the following actions:

• clear the recovery action associated to the consistency checkable interface
• set the closeness and normalization thresholds to the default value of 1

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 39

9.12 Alternative Implementation

The data item interface in AocsData may seem superfluous. One could endow AocsData
with the following methods:

void set(AocsObject* owner, int j, Real newValue);
Real get(int j);

These methods could be used to set and get the j-th component of the datum. However, in
order to link components to locations in the data pools, it is necessary to have references to
them.

One might then think to provide class AocsData with the following method:

Real* get(int j);

This method would return the reference to the j-th element and could be used to read and
write the element. Now linking to components that use the element is possible but no access
control is possible: any component can set the value of any AOCS data items.

The type AocsData is a composite type that gathers together the individual elements of the
concrete types it represents. These individual elements may have individual properties. For
instance, each element may have its own time tag. For this reason, too, is encapsulation of
individual data items useful: it makes access to the item’s properties easy and natural.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 40

10 DATA POOLS

Data exchanges among components in the AOCS framework are done through shared data
areas called data pools.

10.1 The Shared Data Design Pattern

This design pattern is introduced to address the problem of allowing components to share
access to data that are generated synchronously. The pattern is illustrated in the following
UML diagram:

The data pool component contains a single instance of the shared datum. The datum
producer (of which there should be only one: the datum owner) calls the setter method to set
the datum parameters. The datum consumers can use the getter methods to retrieve the
attributes of the shared datum and, if necessary, to reconstruct it internally.

10.2 Instantiation of Shared Data Pattern

In principle, one could have one single data pool for all shared AOCS data. However, the
alternative approach of having several data pools grouping together logically related data is
preferred as it makes it easier to subject different classes of data to different treatment. For
instance, if it is desired to store attitude data in telemetry, this can be done by simply passing
the reference to the attitude data pool to the telemetry manager.

Data pools are derived from the following abstract base class:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 41

 The public operations that are specific to this class (ie not inherited from any base class) are
shown in the table:

first, next isLast

Iteration methods that iterate through the AOCS data in the data pool.

Data pools contain a set of objects that represent the AOCS data in the pool. These data can
only be accessed by outside components through the methods exposed by the data pool.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 42

The number and structure of data pools will vary from mission to mission. Different projects
will want to store different objects in data pools and will want to group them in different
manners. Typical data pools that might be found in an AOCS include:

• AttitudeDataPool : contains all the data relative to the spacecraft attitude, including
attitude sensor and actuator data.

• OrbitDataPool : contains all the data relative to the spacecraft orbit, including orbit
sensor and actuator data.

• SpacecraftDataPool : contains the spacecraft data base with data such as the
spacecraft inertia tensor, its mass, flexible appendage parameters and other physical
characteristics

The UML diagram below shows, as an example, one segment of the attitude data pool used
for the prototype AOCS instantiated from the prototype AOCS framework:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 43

AocsObject

ConsistencyCheckabl

AocsDataPool

AttitudeDataPool

-fssData:TwoEulerAngles *

-sas1Data:TwoEulerAngles *

-sas2Data:TwoEulerAngles *

-sas3Data:TwoEulerAngles *

-gyrRate:Scalar *

-scTorque:NVector *

-rwAngularMomentum:NVector *

-rwTorque:NVector *

+AttitudeDataPool()

+getFssData():AocsData *

+getSas1Data():AocsData *

+getSas2Data():AocsData *

+getSas3Data():AocsData *

+getGyrRate():AocsData *

+getScTorque():AocsData *

+getRwTorque():AocsData *

+getRwSpeed():AocsData *

The concrete data pool adds to the DataPool base class getter methods for each AOCS
datum contained in the class. Note that the AOCS data are contained in the data pools where
they are declared with their concrete type. However, the are accessed through getter method
that return references to the generic AocsData type.

10.3 The Telemetry Interface

Data pools inherit the telemeterable interface from AocsObject and must therefore
implement the corresponding methods.

Method writeToTelemetry on data pools simply iterates on the same method on all
AOCS data contained in the data pool.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 44

10.4 The Reset and Configurable Interface

Event objects inherit from AocsObject the Resettable and Configurable interfaces and
must therefore implement the corresponding method.

Method reset on data pools simply iterates on the same method on all AOCS data
contained in the data pool. Method resetConfiguration does the same and additionally
clears the recovery action associated to the consistencyCheckable interface.

10.5 The ConsistencyCheckable Interface

DataPool variables inherit the ConsistencyCheckable interface from their base class
and must therefore implement method doConsistencyCheck.

The method iterates on all the AocsData variables in the pool and calls the
doConsistencyCheck method on each (see section 9.9). If any of these calls reports a
consistency check failure, then the consistency check on the data pool is also deemed to have
failed.

A recovery action object must be defined to specify the recovery action to be taken in case the
consistency check fails.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 45

11 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD5.

11.1 Event Subclass Hot-Spot

Name: Event Subclass Definition

Visibility Level: framelet-level

Adaptation Time: compile-time

Adaptation Method: derivation from base classes AocsEvent and EventRespository

Pre-defined Options: event and event repository components exported by the framelet (see section 4)

Related Hot-Spots: none

Description

The base class AocsEvent allows only basic attributes to be attached to an event. If more specific
data are required for certain event classes, then dedicated subclasses of AocsEvent need to be
created. A new subclass will generally require definition of getter methods for the class-specific
attributes. There should be no need to override any of the methods in the base AocsEvent class
beside the standard telemetry and reset methods.

To each event class, there must correspond an event repository class. Hence, when a new
subclass of AocsEvent is created, a corresponding subclass of EventRepository must also be
created. Definition of the new repository subclass will generally require definition of a new
initialize method. There should be no need to override any of the methods in the base
EventRepository class beside the standard telemetry and reset methods.

11.2 AOCS Data Subclass Hot-Spot

Name: AOCS Data Subclass Definition

Visibility Level: framelet-level

Adaptation Time: compile-time

Adaptation Method: derivation from base class AocsData

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 46

Pre-defined Options: AOCS data types exported as components by the framelet (see section 4)

Related Hot-Spots: none

Description

To each category of AOCS data there should correspond a subclass of AocsData. A new
subclass will typically require only the protected abstract method getNumberOfItems to be
defined. In some cases, it may be necessary to override also method distance (its default
implementation computes the Euclidean distance). Standard telemetry and reset methods must be
redefined as usual when subclassing.

11.3 AOCS Clock plug-In for Data Items Hot-Spot

Name: AOCS Clock Plug-In for Data Items

Visibility Level: framelet-level

Adaptation Time: run-time

Adaptation Method: plug-in component in DataItemWrite class

Pre-defined Options: none

Related Hot-Spots: AOCS clock plug-in for AocsObject class

Description

DataItemWrite objects attach a time tag to each value they write. They therefore need a clock to
provide them with the time. Class DataItemWrite offers method setAocsClock to define the
plug-in clock that is used for this purpose. Note that the link to the clock object is static and hence
the clock only needs to be plugged in one instance of class DataItemWrite.

11.4 Data Pool Subclass Hot-Spot

Name: Data Pool Subclass Definition

Visibility Level: framework-level

Adaptation Time: compile-time

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 47

Adaptation Method: derivation from base classes DataPool

Pre-defined Options: none

Related Hot-Spots: none

Description

AOCS data objects are grouped in data pools whose content is highly mission specific. A data pool
is created by deriving a class from DataPool. The derived class contains AOCS data objects that
are logically related (eg. all AOCS data objects relative to attitude control, all AOCS data objects
relative to orbit control, etc.). The derived class does not override any of the methods of its
superclass besides the standard telemetry and reset methods and it adds to its base getter
methods for all the AOCS data objects it contains.

11.5 Repository Size Hot Spot

Name: Repository Size Hot-Spot

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: setter method for initialization parameter in event repository sub-classes

Pre-defined Options: none

Related Hot-Spots: none

Description

Event repositories maintain a pre-allocated buffer of events. The size of this buffer is set when the
event repository is initialized by calling method setRepositorySize on the repository object.
This method can only be called once. Attempts to call it more than once will results in a
configuration error event being raised.

11.6 Recovery Action plug-In for Event Repositories

Name: Recovery Action Plug-In for Event Repositories

Visibility Level: framework-level

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 48

Adaptation Time: run-time

Adaptation Method: plug-in component in AocsData class (method setRecoveryAction)

Pre-defined Options: no recovery action is defined by default. Standard recovery action components are
exported by the Failure Recovery Framelet.

Related Hot-Spots: none

Description

Event repository implements the ConsistencyCheckable interface. Hence they must provide a
plug-in for the recovery action object defining the action to be taken if the consistency check fails.

11.7 Recovery Action plug-In for AOCS Data

Name: Recovery Action Plug-In for AOCS Data

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in AocsData class (method setRecoveryAction)

Pre-defined Options: no recovery action is defined by default. Standard recovery action components are
exported by the Failure Recovery Framelet.

Related Hot-Spots: none

Description

AOCS data implement the ConsistencyCheckable interface. Hence they must provide a plug-in
for the recovery action object defining the action to be taken if the consistency check fails.

11.8 Illegal Access Recovery Action Plug-In for AOCS Data

Name: Illegal Access Recovery Action Plug-In for AOCS Data

Visibility Level: framework-level

Adaptation Time: run-time

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Inter-Component Framelet
30 April 2002
Issue 2.3
Page 49

Adaptation Method: plug-in component in AocsData class (method setIllegalRecoveryAction)

Pre-defined Options: no recovery action is defined by default. Standard recovery action components are
exported by the Failure Recovery Framelet.

Related Hot-Spots: none

Description

A failure is reported if an attempt is made to access a non-existent data item or if incompatible data
types mixed in calls to metrics method. This hot-spot allows the recovery action associated to this
failure event to be defined.

11.9 Recovery Action plug-In for Data Pools

Name: Recovery Action Plug-In for Data Pools

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in AocsData class (method setRecoveryAction)

Pre-defined Options: no recovery action is defined by default. Standard recovery action components are
exported by the Failure Recovery Framelet.

Related Hot-Spots: none

Description

AOCS data pools implement the ConsistencyCheckable interface. Hence they must provide a
plug-in for the recovery action object defining the action to be taken if the consistency check fails.

