

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 1

University of Konstanz – A. Pasetti/T. Brown

MANOEUVRE MANAGEMENT FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the manoeuvre management framelet. This framelet
proposes an architectural solution to the problem of
managing manoeuvres such as wheel unloading, attitude
slews, delta-V, etc. The framelet enhances reusability
because it separates the task of managing the
manoeuvres from the task of carrying them out.

Written By: A. Pasetti/T. Brown (University of Constance/SWE)

Date: 30 April 2002

Issue: 2.1

Reference: SWE/99/AOCS/012

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 2

University of Konstanz – A. Pasetti/T. Brown

TABLE OF CONTENTS

1 REFERENCES.. 3
2 ACRONYMS.. 4
3 INTRODUCTION... 5

3.1 Context ... 5
3.2 Applicability to Java Version .. 5
3.3 Notation ... 6

4 FRAMELET CONSTRUCTS.. 7
5 THE MANOEUVRE DESIGN PATTERN... 8
6 MANOEUVRE OBJECTS... 10

6.1 Manoeuvre Type... 14
6.2 Manoeuvre State ... 15
6.3 Event Generation .. 16
6.4 Telemetry Interface... 16
6.5 Reset Interface ... 16

7 MANOEUVRE EVENTS.. 17
7.1 The Telemetry Interface ... 18
7.2 The Reset Interface ... 18

8 MANOEUVRE MANAGER.. 19
8.1 Possible Future Enhancement to Manoeuvre Monitoring.. 22
8.2 Telemetry Interface... 22
8.3 Reset Interface ... 22

9 FRAMELET HOT-SPOTS .. 23
9.1 Manoeuvre Hot-Spot.. 23
9.2 Manoeuvre State Change Handler Plug-In... 24
9.3 Manoeuvre Event Repository Plug-In ... 24
9.4 Change Event Repository Plug-In.. 25

10 FRAMELET FUNCTIONALITIES.. 26
10.1 Conventions... 26
10.2 Functionality List .. 26

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 3

University of Konstanz – A. Pasetti/T. Brown

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

RD3 A. Pasetti (2000), Inter-Component Communication Framelet – Concept and Architecture
Description, AOCS Framework Document ref. SWE/99/AOCS/005

RD4 Deleted

RD5 A. Pasetti (2000), Operational Mode Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/009

RD6 A. Pasetti (2000), Telemetry Framelet, AOCS Framework Document ref.
SWE/99/AOCS/003

RD7 A. Pasetti (2000), Failure Detection Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/010

RD8 A. Pasetti (2000), Object Monitoring Framelet, AOCS Framework Document ref.
SWE/99/AOCS/008.

RD9 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 4

University of Konstanz – A. Pasetti/T. Brown

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
OBDH On-Board Data Handling system (aka as OBDS)
NM Normal Mode
NTT Non-Time-Tagged
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 5

University of Konstanz – A. Pasetti/T. Brown

3 INTRODUCTION

This document describes the manoeuvre management framelet for the AOCS framework. The
framelet is described at both the framelet concept level and at the framelet architectural level.

This framelet proposes an architectural solution to the problem of managing manoeuvres
such as wheel unloading, attitude slews, delta-V, etc.

The framelet enhances reusability because it separates the task of managing the manoeuvres
from the task of carrying them out.

3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD2 and in particular with the section dealing with
manoeuvre management.

The architecture proposed here follows the concept outlined in RD2.

In comparing the present document with RD2, readers should bear in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce
an architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level – in particular its design
patterns – is language-independent and is equally applicable to both the C++ and Java
versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following
address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific
points to note are:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 6

University of Konstanz – A. Pasetti/T. Brown

− Events in the Java framework are implemented using the Java event mechanism.

− Manoeuvre objects in the C++ framework expose their current execution state as a
property. Property objects do not exist in the Java framework. Manoeuvre objects are
instead implemented as monitorable components (they are made to implement interface
Monitorable).

− The manoeuvre event repository hot-spot (section9.3) and the change event repository
hot-spot (section 9.4) are not applicable to the Java framework. Event repositories are
event listeners and can be linked to the mode manager through the associated
addListener methods.

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

The class diagrams use UML notation generated with the reverse engineering capabilities of
the Together tool (version 4.0).

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 7

University of Konstanz – A. Pasetti/T. Brown

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

MANOEUVRE MANAGEMENT FRAMELET

Design Pattern

Manoeuvre Design Pattern: design pattern to separate the management of manoeuvres from their
implementation.

Framelet Interfaces and Base Abstract Classes

Manoeuvre : abstract base class for manoeuvres

Framelet Core Components

ManoeuvreManager : component encapsulating a manoeuvre manager. This component maintains
a list of currently loaded manoeuvres and is responsible for invoking methods of the Manoeuvre
interface to control the execution of manoeuvres

Framelet Components

ManoeuvreEvent : component used to encapsulate information about a significant event in the life
cycle of a manoeuvre

DummyManoeuvre : a “dummy” implementation of the Manoeuvre base class useful for testing
purposes

AttitudeSlew : a manoeuvre which carries out a simple linear attitude slew

The components listed above are those for the prototype version of the AOCS framework.
Later versions may offer a richer set of default implementations of the framelet interfaces. In
particular, more default implementations of the Manoeuvre abstract base class might be
provided.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 8

University of Konstanz – A. Pasetti/T. Brown

5 THE MANOEUVRE DESIGN PATTERN

This design pattern is introduced to address the problem of separating the management of
manoeuvres from their implementation. It is based on the manager meta-pattern of RD2.

The pattern is illustrated in the following class diagram:

The manoeuvre manager holds a list of manoeuvre objects that are seen through their base
class Manoeuvre. Presence of this abstract class separates the management of manoeuvres
from their implementation.

At each activation, the manoeuvre manager goes through the list of pending manoeuvres,
checks which ones are due for execution and which ones are already executing and are in a
condition to continue execution and on all these it calls method doContinue to advance the
manoeuvre execution. Finally, the manoeuvre manager checks whether manoeuvres have
terminated their execution and, if they have, remove them from the list of pending
manoeuvres.

Note that, in principle, clients can only add manoeuvres to the manoeuvre manager list.
Removal from the list is done autonomously and internally to the manoeuvre manager when
a manoeuvre has terminated its execution.

The manoeuvre pattern is instantiated as follows in the AOCS framework:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 9

University of Konstanz – A. Pasetti/T. Brown

u The manoeuvre manager is implemented as an active object and its activate method is
the run method declared by interface Runnable (see section 8).

u The manoeuvre manager is given responsibility for creating events that record the
beginning and end of a manoeuvre and other manoeuvre-related occurrences (see section
7).

u The manoeuvre base class is implemented with some additional functionalities such as
manoeuvre abort or manoeuvre hold (see section 6).

u The execution status of manoeuvres is implemented as a bound property (see section 6).

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 10

University of Konstanz – A. Pasetti/T. Brown

6 MANOEUVRE OBJECTS

In order to allow their uniform and mission-independent treatment, manoeuvres are
encapsulated in objects. The base class for manoeuvre objects is:

(Note that, as is often true with UML class diagrams, not all operations are shown in the
above diagram. Only those operations which need to be highlighted for the purposes of the
present discussion are shown.)

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 11

University of Konstanz – A. Pasetti/T. Brown

Manoeuvre is an abstract class providing default – and mostly trivial – implementations of its
methods. Concrete manoeuvres are instances of subclasses of Manoeuvre as shown in the
following class diagram:

WheelUnloading and AttitudeSlew are two examples of concrete manoeuvres.

Manoeuvres are loaded in a manoeuvre manager that is responsible for correctly executing
them. The manoeuvre manager uses the methods exposed by class Manoeuvre to control
manoeuvre execution. The methods of the Manoeuvre class are described in the following
table.

getTimeTag()

Manoeuvres may carry a time tag defining the time after which they can be
considered for execution. This method is provided to retrieve a manoeuvre’s time
tag.

canStart()

Reaching the time tag is not necessarily enough to trigger execution of a manoeuvre.
Sometimes, other conditions have to be satisfied to ensure that the manoeuvre can
execute safely. For instance, an attitude slew should only start if the spacecraft
angular rates are below a pre-defined threshold. This method is provided to check
these kind of peripheral conditions. It should return true if the AOCS context is such
as to make execution of the manoeuvre safe. The manoeuvre manager will only start
manoeuvre execution if canStart returns true.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 12

University of Konstanz – A. Pasetti/T. Brown

initialize()

Manoeuvres may have to perform some special initialization action when their
execution begins. This method encapsulates this type of action. It is called by the
manoeuvre manager the first time the manoeuvre is executed.

canContinue()

Manoeuvre execution should only proceed if external conditions are safe. For
instance, a manoeuvre that performs a slew should periodically check that the
spacecraft is indeed following the slew profile. If the deviation from the slew profile
exceeds some pre-specified threshold, then an error is likely to have occurred and
the manoeuvre should be aborted.

The manoeuvre manager can call this method to ask the manoeuvre to verify if the
conditions for its continued execution hold. If they do, then method doContinue can
be called and the manoeuvre execution is advanced. If they do not, the manoeuvre is
aborted. After a manoeuvre is aborted it is cancelled from the list of pending
manoeuvres and will no longer be executed.

doContinue()

Manoeuvres execute over a prolonged period of time. This method is called by the
manoeuvre manager to advance the execution of the manoeuvre. When a
manoeuvre object receives this command, it retrieves the current AocsTime and
performs any actions that are due for execution at that time.

This is an abstract (or pure virtual) method and must be defined in concrete
subclasses of Manoeuvre.

abort(), wasAborted()

The abort method is called to allow a manoeuvre to perform any clean-up actions
before it is descheduled. The manoeuvre manager calls abort when a manoeuvre
must be aborted. This may happen either because the manoeuvre itself declares that
it is unable to continue execution (i.e. canContinue returns false) or because the
manoeuvre manager autonomously decides to abort the manoeuvre. Method
wasAborted returns true if the manoeuvre has been aborted.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 13

University of Konstanz – A. Pasetti/T. Brown

terminate(), isFinished()

The method isFinished returns true when the manoeuvre has terminated. When
the manoeuvre manager detects that the manoeuvre has terminated execution, it
calls terminate to give the manoeuvre the chance to perform any final closedown
actions and then de-schedules it.

canHold(), hold(), isHolding(), canResume(), resume()

The manoeuvre manager may wish to temporarily interrupt execution of a
manoeuvre. The manoeuvre manager can call the method canHold on the
manoeuvre to determine whether or not execution of the manoeuvre can be
temporarily interrupted. If the manoeuvre manager decides to interrupt execution of
the manoeuvre, it should call the method hold on the manoeuvre to allow it to take
any action required in connection with a suspension of the manoeuvre. Similarly, the
manoeuvre manager can request from the manoeuvre and indication of whether or
not its execution can be resumed by calling the method canResume. When the
manoeuvre execution is resumed, method resume should be called. The
manoeuvre manager can determine whether or not the manoeuvre is currently
suspended by calling the method isHolding.

reset()

Resetting a manoeuvre is similar, but not quite identical, to aborting the manoeuvre.
Resetting a manoeuvre, which is done by calling the reset method of the
manoeuvre, can be thought of as a more gentle form of aborting the manoeuvre.
Resetting a manoeuvre causes the manoeuvre’s canContinue method to return
false. When the canContinue method returns false, the manoeuvre manager
responds by aborting the manoeuvre. More information about resetting a manoeuvre
is provided in the Reset Interface section below.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 14

University of Konstanz – A. Pasetti/T. Brown

Note that manoeuvres are executed by the manoeuvre manager. Thus, for instance, a call to
method hold does not actually cause the manoeuvre to hold since only the manoeuvre
manager can decide to suspend manoeuvre execution. The method is provided to inform the
manoeuvre that it is being held so as to give it chance to perform any actions that are required
to ensure that the AOCS remains safe and that the manoeuvre can be correctly resumed at a
later time. Calls to methods terminate, resume, and abort serve similar purposes.

The remaining methods shown in the diagram are discussed in subsequent sections.

6.1 Manoeuvre Type

Manoeuvres have a type attribute. Functionally similar manoeuvres have the same type.
Thus, all reaction wheel unloading manoeuvres or all attitude slew manoeuvres belong to the
same type. The type of a manoeuvre can be retrieved by calling method getType.

In the current implementation, the type of a manoeuvre coincides with its class and therefore
the implementation of method getType is the same as that of method
getClassIdentifier. The type ManoeuvreType is therefore identical with the type
IdType.

Generally speaking, the manoeuvre manager allows operations to be performed either on
individual manoeuvres or on all manoeuvres of the same type. In the former case, the
manoeuvre to be operated upon is specified by giving a reference to its manoeuvre object. In
the latter case, the manoeuvre type is specified by giving the manoeuvre type as an instance
of type ManoeuvreType.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 15

University of Konstanz – A. Pasetti/T. Brown

6.2 Manoeuvre State

Each manoeuvre has a current state. The possible manoeuvre states are: ready, inProcess,
finished, aborted, onHold, and beenReset. The transitions that can be made between
these states are shown in the following UML statechart diagram.

In the diagram, the transition names match the names of methods that cause the transition
from one state to another. Note that when the doContinue method is invoked, the
manoeuvre may remain in the inProcess state or transition into the finished state. Also notice
that transitioning out of the finished or aborted state is not possible.

In addition to using such methods as wasAborted, isFinished, and isHolding to
determine a manoeuvre’s state, there is a more generic method available called getState.

A manoeuvre’s state is an internal property of the manoeuvre as defined in RD8. Thus direct
access to the property is provided by the getState method and access to the property as a
property object is provided by the getStateProperty method.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 16

University of Konstanz – A. Pasetti/T. Brown

6.3 Event Generation

A PropertyMonitor can monitor an individual manoeuvre’s state. When a manoeuvre’s state
changes, the manoeuvre is responsible for notifying any registered property monitors of its
state change. This notification is carried out via the creation of a monitored property change
event and the invoking of a monitor’s propertyChange method. This follows the
“Monitoring Through Change Notification” pattern described in RD8. Thus manoeuvres
provide the methods addMonitor and removeMonitor as required by that pattern.

If the manoeuvre encounters a failure, this – like all failures – must be reported as a failure
event. Creating the failure event and storing it in the failure event repository is the
responsibility of the manoeuvre itself. Note that manoeuvre objects inherit a setter method for
the failure event repository from AocsObject.

6.4 Telemetry Interface

Manoeuvre objects inherit the Telemeterable interface from AocsObject. The
implementation of method writeToTelemetry is, however, specific to each concrete
manoeuvre class.

6.5 Reset Interface

Manoeuvre objects inherit the Resettable interface from AocsObject. The
implementation of method reset is, however, specific to each concrete manoeuvre class.
Note that in general a manoeuvre that has been reset while it is executing will not be able to
continue its execution (i.e. its canContinue method will return false).

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 17

University of Konstanz – A. Pasetti/T. Brown

7 MANOEUVRE EVENTS

The inter-component communication framelet identifies – without defining – a class
dedicated to recording manoeuvre-related events. The manoeuvre event class is defined as
shown in the following class diagram:

The reference manoeuvre points to the manoeuvre object that occasioned the creation of the
event.

Thus, a manoeuvre event stores the following information:

• time stamp identifying the time when the event was detected
• event type identifier (see below)
• reference to the event creator (usually, the manoeuvre itself)
• reference to the manoeuvre to which the event is related

Except for the last item, all other data items are inherited from the base class AocsEvent.

The following manoeuvre-specific event types are foreseen:

• manoeuvre execution has started

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 18

University of Konstanz – A. Pasetti/T. Brown

• manoeuvre has been put on hold
• manoeuvre has been resumed
• manoeuvre has been aborted
• manoeuvre has terminated

Note that manoeuvre execution failures are not recorded since manoeuvre failures – like any
other type of failure – are reported as failure events (see section 6.3).

7.1 The Telemetry Interface

The manoeuvre event is a telemetry object because it (indirectly, through AocsEvent)
inherits from AocsData the telemeterable interface.

Only one telemetry format, normal, applies to recovery events. Normal telemetry prints the
identifier of the manoeuvre object.

7.2 The Reset Interface

The manoeuvre event (indirectly, through AocsEvent) inherits from AocsData the
resettable interface and must therefore implement the corresponding method.

Method reset on manoeuvre events simply causes the settable fields in the event to be set to
zero.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 19

University of Konstanz – A. Pasetti/T. Brown

8 MANOEUVRE MANAGER

The manoeuvre manager is an active component that is responsible for controlling execution
of manoeuvres. Manoeuvres are loaded into the manoeuvre managers and from that moment
onward their execution, termination, holding, and resumption remain under the control of
the manoeuvre manager.

The manoeuvre manager class is shown in the following class diagram:

The manoeuvre manager inherits from Runnable to signify that it is an active object. The
currently loaded manoeuvres are maintained as a list of references to Manoeuvre objects.

The manoeuvre manager maintains a link to the manoeuvre event repository. This link is not
currently used. But a possible future enhancement is to add notifications of events that
involve any manoeuvre in a particular group. In the case that this enhancement is made, it
may become the responsibility of the manoeuvre manager to create and store events
reflecting these group operations. See section 8.1 for more information.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 20

University of Konstanz – A. Pasetti/T. Brown

The operations exposed by the manoeuvre manager are shown in the following diagram:

The methods of the ManoeuvreManager class are described in the following table.

addManoeuvre(), removeManoeuvre()

Operations addManoeuvre and removeManoeuvre are used to load and unload
manoeuvres. Currently executing manoeuvres cannot be unloaded (their execution
has to be aborted first). Both methods could potentially fail: the manoeuvre list can
be full or the manoeuvre to be removed may not be in the list or may be currently
executing. Each method reports such failures using the standard event mechanism
described in RD3. That is, it creates a configuration error event and stores it in the
appropriate event repository.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 21

University of Konstanz – A. Pasetti/T. Brown

holdManoeuvre(), resumeManoeuvre()

Manoeuvres can be held and resumed by calling holdManoeuvre and
resumeManoeuvre. Two versions of each of these methods exist. The first version
operates on a specific manoeuvre; the second version operates on all manoeuvres of
a certain type. The version that operates on a specific manoeuvre creates and stores
configuration error events if the specified manoeuvre is not currently loaded in the
manoeuvre manager or if the specified manoeuvre is not currently in a state in which
it can be put on hold (as determined by the canHold method.) The version that
operates on all manoeuvres of a specified type simply puts “on hold” all manoeuvres
of the specified type which are both loaded in the manoeuvre manager and can be
put on hold.

Corresponding resumeManoeuvre methods, one for individual manoeuvres and one
for all manoeuvres of a specified type, are also available.

startManoeuvre()

Manoeuvres normally start when their time tag has been reached and when the
conditions for their initiation (as defined by method canStart) are satisfied.
However, authorized clients of the manoeuvre manager can force the start of a
manoeuvre by calling startManoeuvre. Two versions of this method are provided.
One operates on individual manoeuvres; the other operates on all manoeuvres of a
specified type.

Note that the canContinue test is not overridden by calling startManoeuvre.
Execution of a manoeuvre is continued only if its canContinue method returns true
regardless of whether the manoeuvre was started by the manoeuvre manager or
whether manoeuvre was forced to start by an external object calling
startManoeuvre.

abortManoeuvre()

Manoeuvres are normally aborted in response to method canContinue on the
manoeuvre object returning false. This can be overridden through use of the method
abortManoeuvre on the manoeuvre manager. Again two versions of the method
are available: one that forces an individual manoeuvre to abort and one that aborts
all manoeuvres of a specified type.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 22

University of Konstanz – A. Pasetti/T. Brown

8.1 Possible Future Enhancement to Manoeuvre Monitoring

Execution and termination of manoeuvres are important events in an AOCS with system-
wide implications. In particular, some components may want to change their mode in
response to changes in the execution status of manoeuvres. As is described in sections 6.2
and 6.3, notification is achieved through the generic property monitoring mechanism. The
execution status of a manoeuvre has been encapsulated in a property that can then be
subjected to monitoring through change notification.

However, one possible addition to this mechanism is the ability for an object to be notified of
manoeuvre related events that involve any member of a group of manoeuvres, for example
any manoeuvres of a specific type.

This feature is not available in the current implementation. Adding this feature in the future
will likely involve creating a ManoeuvreGroup class and adding methods to the manoeuvre
manager to allow an object in the system to register its interest in being notified about events
which occur involving any manoeuvre which is a member of a ManoeuvreGroup. The
ManoeuvreGroup concept is similar in nature to the ThreadGroup concept in the Java thread
mechanism.

8.2 Telemetry Interface

The manoeuvre manager inherits the Telemeterable interface from AocsObject.

Only the normal telemetry format applies to the manoeuvre manager.

The manoeuvre manager writes to the telemetry stream the identifiers of the currently loaded
manoeuvres and their execution status.

Calls to writeToTelemetry are not propagated to the manoeuvre objects as manoeuvre
objects are considered to be external to the manoeuvre manager (the manoeuvre manager’s
relationship to manoeuvres is one of mere association with its manoeuvres).

8.3 Reset Interface

The manoeuvre manager inherits the Resettable interface from AocsObject. A call to its
method reset will cause currently executing manoeuvres to be aborted and all manoeuvres
to be unloaded.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 23

University of Konstanz – A. Pasetti/T. Brown

9 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD9.

9.1 Manoeuvre Hot-Spot

Name: Manoeuvre Hot Spot

Visibility Level: framework-level

Adaptation Time: compile-time

Adaptation Method: derivation from base class Manoeuvre

Pre-defined Options: AttitudeSlew manoeuvre component exported by this framelet

Related Hot-Spots: none

Description

The abstract base class Manoeuvre implements all the basic mechanisms of a manoeuvre but
leaves several hooks for manoeuvre specific behavior. In particular, subclasses of Manoeuvre
must override the pure virtual method doContinue to perform the actions associated with the
specific manoeuvre. Subclasses can override other methods of the Manoeuvre class (including,
but not limited to: canStart, initialize, canContinue, abort, terminate, hold, resume, and reset) to
implement manoeuvre specific behaviors.

Implementation of a concrete manoeuvre thus requires derivation of a class from Manoeuvre. The
derived class must, at a minimum, provide an implementation for method doContinue.
Additionally, it may be necessary to override the reset and telemetry related methods to send some
manoeuvre specific data to the telemetry stream.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 24

University of Konstanz – A. Pasetti/T. Brown

9.2 Manoeuvre State Change Handler Plug-In

Name: Manoeuvre State Change Handler Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Manoeuvre class (method addMonitor)

Pre-defined Options: none. By default, no handlers are associated with a change of manoeuvre state.

Related Hot-Spots: none

Description

Manoeuvres expose their state as a monitorable property. Monitors can register their interest in
monitoring the manoeuvre state and can ask to be notified whenever the state change in
accordance with certain time profile as specified by a ChangeObject object.

9.3 Manoeuvre Event Repository Plug-In

Name: Manoeuvre Event Repository Plug-In

Visibility Level: framelet-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Manoeuvre class (method
setManoeuvreEventRepository)

Pre-defined Options: ManoeuvreEventRepository component exported by inter-component
communication framelet.

Related Hot-Spots: none

Description

Manoeuvres log changes in their execution state as events stored in the manoeuvre event
repository. This hot-spot allows the manoeuvre event repository component to be loaded. Note that
this component is loaded as a static reference.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 25

University of Konstanz – A. Pasetti/T. Brown

9.4 Change Event Repository Plug-In

Name: Change Event Repository Plug-In

Visibility Level: framelet-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Manoeuvre class (method setChangeEventRepository)

Pre-defined Options: ChangeEventRepository component exported by inter-component
communication framelet.

Related Hot-Spots: none

Description

Manoeuvres whose execution state is being monitored by other components log changes in the
state as events stored in the change event repository. This hot-spot allows the change event
repository component to be loaded. Note that this component is loaded as a static reference.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 26

University of Konstanz – A. Pasetti/T. Brown

10 FRAMELET FUNCTIONALITIES

This section defines the functionalities offered by the framelets together with their mutual
relationships and their mappings to framelet architectural constructs. The definition follows
the guidelines of RD9.

10.1 Conventions

The functionality code defines the type of the functionality according to the following
convention:

• CF = can-functionality
• DF = do-functionality
• OF = offer-functionality

The following numbering conventions are used:

• if Fx is a functionality, then the functionalities that are obtained by expanding it are
numbered as Fx.n where n is 1, 2, 3, etc

• if CFx is a can-functionality, then the offer-functionality that implement it are numbered
OFx,n where n is 1, 2, 3, etc

10.2 Functionality List

The functionalities for the manoeuvre management framelet are shown in the table below.
Each entry covers one functionality giving its definition, its relationships to other
functionalities (if any) and its mappings to framelets architectural constructs (if any).

The manoeuvre management framelet can manage and execute an arbitrary
set of manoeuvres

CF1

expands-to DF1.1 and CF1.2

The manoeuvre management framelet implements an algorithm for executing
a set of concurrent manoeuvres

DF1.1

is-implemented-by the ManoeuvreManager component

CF1.2 The manoeuvre management framelet can implement any manoeuvre

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Manoeuvre Management Framelet
Issue 2.1
30 April 2002
Page 27

University of Konstanz – A. Pasetti/T. Brown

 matches the Manoeuvre Hot Spot (and thus the Manoeuvre component)

The manoeuvre management framelet can take any action in response to a
significant event in a manoeuvre’s life cycle

CF2

matches the Manoeuvre State Change Handler Plug-In (and thus the
ManoeuvreEvent component)

uses DF2.1

The manoeuvre management framelet reports significant events in each
manoeuvre’s life cycle so that they may be responded to appropriately

DF2.1

The Manoeuvre component uses the Monitoring through Change Notification
functionality of the object monitoring framelet

The manoeuvre management framelet provides operations to dynamically
hold, resume, abort, and reset an active manoeuvre.

DF3

is-implemented-by the hold, resume, abort, and reset operations in the
ManoeuvreManager component

The manoeuvre manager reports configuration errors detected at run-time. DF4

The ManoeuvreManager component uses event repository functionalities of
the component communication framelet

Each manoeuvre reports configuration errors detected at run-time. DF5

The Manoeuvre component uses event repository functionalities of the
component communication framelet

