

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 1

 CONTROLLER MANAGEMENT FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the controller framelet. This framelet proposes an
architecture to handle closed-loop controllers. The
framelet enhances reusability because it decouples the
task of managing the controllers from the implementation
of the control algorithms.

Written By: A. Pasetti/T. Brown

Date: 30 April 2002

Issue: 2.1

Reference: SWE/99/AOCS/016

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 2

TABLE OF CONTENTS

1 REFERENCES .. 4
2 ACRONYMS.. 5
3 INTRODUCTION... 6

3.1 Context ... 6
3.2 Applicability to Java Version .. 6
3.3 Notation ... 7

4 FRAMELET CONSTRUCTS.. 8
5 CONTROLLER MODEL.. 9

5.1 Controller Inputs .. 9
5.2 Controller Outputs ... 10
5.3 Controller Transfer Function Blocks.. 10
5.4 Controller Configuration... 10
5.5 Closed and Open Loop Operation ... 10
5.6 Operational Modes ... 11
5.7 Stability Checks... 11
5.8 Limits on Actuator Commands .. 11

6 THE CONTROLLER DESIGN PATTERN .. 12
6.1 Instantiation of Controller Design Pattern.. 12

7 CONTROLLER OBJECTS.. 14
7.1 The Controller Class ... 14
7.2 The MimoController Class.. 18
7.3 Merging MimoController and Controller... 19
7.4 The Telemetry Interface ... 20
7.5 The Reset Interface ... 20

8 THE CONTROLLER MANAGER.. 21
8.1 Controller Mode Manager... 21
8.2 The Telemetry Interface ... 24
8.3 The Reset and Configurable Interfaces.. 24

9 FRAMELET HOT-SPOTS .. 25
9.1 Controller Mode Manager Plug-In... 25
9.2 Instability Recovery Action Plug-In... 25
9.3 Controller List Plug-In ... 26
9.4 Compensator Plug-In ... 26

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 3

9.5 Measurement Filter Plug-In .. 27
9.6 Feedforward Filter Plug-In.. 27
9.7 Reference Signal Filter Plug-In ... 28
9.8 Actuator Command Link... 28
9.9 Compensator Command Link .. 29
9.10 Control Error Link .. 29
9.11 Reference Signal Link... 29
9.12 Sensor Measurement Link... 30
9.13 Feedforward Signal Link ... 30

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 4

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (1999), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

RD3 Deleted

RD4 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

RD5 A. Pasetti (2000), Operational Mode Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/009

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 5

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
MIMO Multi-Input-Multi-Output
NM Normal Mode
NTT Non-Time-Tagged
OBDH On-Board Data Handling system (aka as OBDS)
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SISO Single-Input-Single-Output
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 6

3 INTRODUCTION

This document describes the controller management framelet for the AOCS framework. The
framelet is described at both the framelet concept level and at the framelet architectural level.

This framelet proposes an architecture to implement closed-loop controllers. The framelet
enhances reusability because it decouples the task of managing the controllers from the
implementation of the control algorithms.

3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD2 and in particular with the section dealing with the
controller management.

The architecture proposed here follows the concept outlined in RD2.

In comparing the present document with RD2, the reader should bear in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce
an architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

Also note that MIMO controllers are not implemented in the framework prototype.

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level – in particular its design
patterns – is language-independent and is equally applicable to both the C++ and Java
versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following
address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific
points to note are:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 7

− The mechanism to link controllers to their inputs and outputs is different. It is no longer
based on the data item concept that was not carried over to the Java version of the
framework. It is instead based on the data sink and data source concept.

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

The class diagrams use UML notation generated with the reverse engineering tool of the
Together tool.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 8

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

CONTROLLER MANAGEMENT FRAMELET

Design Pattern

Controller Design Pattern: design pattern to separate the management of controllers from their
implementation

Framelet Interfaces

ControllerModeManager : interface for controller mode managers

Framelet Core Components

Controller : class encapsulating a SISO controller

MimoController : class encapsulating a MIMO controller (not provided by framework prototype)

ControllerManager : class encapsulating a controller manager

Framelet Default Components

FollowerControllerModeManager : implementation of the controller mode manager interface
based on the follower mechanism

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 9

5 CONTROLLER MODEL

Closed-loop controllers are widely used inside AOCS applications. They are primarily used to
control the satellite attitude but can also be used to control the satellite orbit or the reaction
wheel speeds.

The controller model assumed by the framelet is shown in the figure:

��������	�

�����
���	�

������
�
���	�

����
�����
���	�

�����������
	
���

��������
�������

�����������

�����������
������

������

�����

���������
	
���

The figure shows a classical closed loop control system. The arrows represent signal flows
and each arrow can represent several parallel flows. The boxes represent multi-input- multi-
output transfer functions.

5.1 Controller Inputs

The inputs to a controller are:

• The reference signals that must be tracked by the controller
• The measurements from a sensor
• The feedforward compensation signals that are added to the control output and typically

model known disturbances

The sensor measurement inputs are mandatory. The reference signals and feedforward
compensation inputs are optional. If they are absent, the controller assumes that they are
equal to zero.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 10

5.2 Controller Outputs

A controller has three outputs:

• The actuator commands that represent the commands for the actuator
• The compensator outputs that represent the inputs to the compensator block
• The control errors that are obtained as the difference between filtered measurements and

reference signals

Generation of the actuator command outputs is mandatory. Generation of the other two
outputs is optional.

5.3 Controller Transfer Function Blocks

A controller includes four transfer function blocks:

• The compensator which implements the control law
• The measurement filter that filters the measurement signals
• The feedforward filter that filters the feedforward signals
• The reference signal filter that filters the reference signals

Explicit specification of the compensator transfer function is mandatory. The other transfer
function blocks need not be specified by the user, in which case they are implicitly assumed
to be equal to 1.

The measurement filter block often represents a state estimator.

5.4 Controller Configuration

A controller is implemented as a configurable component. At configuration time, the user
links the component to the input and output signals and loads the transfer function blocks.

The links to the input signals are made through readDataItem objects. The links to the
output signals are made through writeDataItem objects. The transfer function blocks are
implemented as abstract control channels.

5.5 Closed and Open Loop Operation

A controller can operate in one of two modes:

• Closed Loop

This is the nominal operating mode. The controller processes all the inputs and uses them
to compute the input to the compensator.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 11

• Open Loop

In this mode, the feedback signals from the measurement sensors are ignored. The inputs
to the compensator are computed exclusively from the feedforward and reference signals.

5.6 Operational Modes

The control and filtering algorithms used by a satellite controller are normally operational
mode dependent. The framelet models this dependency by endowing the controller manager
with mode-dependent behaviour.

5.7 Stability Checks

Closed loop controllers can become unstable. It is often possible to devise checks that the
controller can perform upon itself to verify whether instability has set in. The framelet
accordingly endows controller objects with the ability to perform a stability check upon
themselves and report its result.

5.8 Limits on Actuator Commands

In order to prevent damage to actuators or to contain the effects of temporary instabilities, it
is often useful to be able to constrain the commands to the actuator to remain within a pre-
defined threshold. For this purpose, the framelet endows controller objects with methods to
cap the commands sent to actuators.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 12

6 THE CONTROLLER DESIGN PATTERN

This design pattern is introduced to address the problem of separating the management of
closed-loop controllers from their implementations. It is based on the manager meta-pattern
of RD2.

The pattern is illustrated in the following class diagram:

The abstract base class or interface Controllable represents a generic closed-loop control
system of the kind discussed in the first part of this section. Its key method is doControl
that directs the controller to acquire the sensor measurements, derive discrepancies with the
current set-point, and compute and apply the commands for the actuators. Since closed-loop
controllers can become unstable, a second key method isStable which is provided to ask a
controller to check its own stability.

The controller manager component is responsible for maintaining a list of objects of type
Controllable and for asking them to check their stability and, if the stability is confirmed,
to perform their allotted control action.

6.1 Instantiation of Controller Design Pattern

This controller design pattern is instantiated in the AOCS framework as follows:

u The controller manager is implemented as an active object and its activate method is
the run method declared by interface Runnable.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 13

u The separation between the controller management and the controller implementation is
achieved not through an abstract interface (Controllable in the previous diagram) but
through a configurable concrete class (class Controller, see section 7.1).

u In most cases, the control algorithms that are applied by each control loop depend on
operational conditions. This is taken into account by making the controller manager
mode-dependent. The controller mode manager then manages a single strategy
represented by the list of controller objects that are managed by the controller manager.

The resulting class diagram then becomes:

0..1

1 1..*

ControllerManager ControllerModeManager

RootObject

Resettable

Configurabl

Telemeterable

AocsObject Runnable

Controller
ConcreteControllerModeManager

The mode manager is characterized by a dedicated abstract interface as discussed in section
8.1.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 14

7 CONTROLLER OBJECTS

Objects that implement a controller are called controller objects. Their class structure is shown
in the figure:

Controller

MimoController

RootObject

Resettable

Configurable

Telemeterable

AocsObject

Two classes of controller objects are defined. Class Controller in the figure represents a
SISO controller. Class MimoController instead represents a MIMO controller. SISO
controllers are of course a special case of MIMO controllers and hence the same class might
have served to represent both. However, given the wide prevalence of SISO controllers in
AOCS applications, it was deemed appropriate to have a dedicated class to represent them so
as to allow an efficient implementation.

Generally speaking, class MimoController offers the same functionalities as class
Controller but allows specification of individual signals in the MIMO system.

7.1 The Controller Class

The Controller class is defined as follows:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 15

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 16

The controller implements the structure shown in the figure of section 5. The controller
transfer function blocks are the abstract control channels to which class controller holds
multiple references.

The semantics of the methods specific to this class (i.e. not inherited from higher level base
classes) are described in the table:

doControl()

A call to this method causes the current measurements to be propagated through the
control system and the controller outputs to be accordingly updated. In
implementation terms, a call to doControl translates into calls to the propagate
methods on the abstract control channels representing the controller transfer function
blocks.

setOpenLoop(), setClosedLoop()

Methods to switch between open and closed loop operational mode.

isStable()

A call to this method directs the controller object to perform an internal stability
check. The method returns true if the check indicates that the controller is stable
and returns false otherwise.

hold(), resume()

A call to hold puts the controller in hold mode. In this mode, the controller’s inputs
are no longer propagated and its internal state and external outputs are not updated.
In implementation terms, a call to hold translates into a call to the method of the
same name on the control channels representing the controller transfer function
blocks.

A call to resume brings the controller back to its normal operation. In implementation
terms, a call to resume translates into a call to the method of the same name on the
control channels representing the controller transfer function blocks.

setCommandLimits(high, low), unSetCommandLimits()

These methods set and remove limits to the maximum and minimum values of the
actuator command. The specified actuator command is then constrained to the
interval (low, high).

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 17

setInstabilityRecoveryAction(r), getInstabilityRecoveryAction(r)

Setter and getter methods for the recovery action associated to the controller
instability condition. See section 8.

setCompensator(abstractControlChannel), getCompensator()

Getter and setter methods for the abstract control channel implementing the
compensator transfer function (see section 5.3).

setMeasurementFilter(abstractControlChannel), getMeasurementFilter()

Getter and setter methods for the abstract control channel implementing the
measurement filter transfer function (see section 5.3).

setFeedforwardFilter(abstractControlChannel), getFeedforwardFilter()

Getter and setter methods for the abstract control channel implementing the
feedforward filter transfer function (see section 5.3).

setReferenceSignalFilter(abstractControlChannel),
getReferenceSignalFilter()

Getter and setter methods for the abstract control channel implementing the
reference signal filter transfer function (see section 5.3).

linkReferenceSignal(dataItemRead)

Set up the link to the data pool location from which the reference signal (see section
5.1) is to be retrieved.

linkSensorMeasurement(dataItemRead)

Set up the link to the data pool location from which the sensor measurement (see
section 5.1) is to be retrieved.

linkActuatorCommand(dataItemWrite)

Set up the link to the data pool location to which the actuator command (see section
5.2) is to be written.

linkControllerError(dataItemWrite)

Set up the link to the data pool location to which the controller error (see section 5.2)
is to be written.

linkCompensatorOutput(dataItemWrite)

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 18

Set up the link to the data pool location to which the compensator output (see
section 5.2) is to be written.

All transfer functions are implemented as abstract control channels. This incidentally allows
the use of autocode modules from Xmath.

Recall that only the compensator transfer function must be defined by the user. For the other
transfer functions, default unitary transfer functions are assumed if none are explicitly
defined by the user.

Recall also that the only mandatory links are those to the actuator command and the sensor
measurements. All other links are optional.

7.2 The MimoController Class

The MimoController class definition is shown in the figure:

MimoController

setOpenLoop(n : int) : v oid
setClosedLoop(n : int) : v oid
setCommandLimits(high : Real, low : Real, n : int) : v oid
unSetCommandLimits(n : int) : v oid
linkActuatorCommand(d : DataItemWrite, n : int) : v oid
linkControllerError(d : DataItemWrite, n : int) : v oid
linkCompensatorOutput(d : DataItemWrite, n : int) : v oid
linkRef erenceSignal(d : DataItemRead, n : int) : v oid
linkSensorMeasurement(d : DataItemRead, n : int) : v oid

Its methods are intended to mirror those of class Controller suitably modified to allow
operations to be performed on individual channels. The semantics of the methods with class-
specific implementation is as follows:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 19

setOpenLoop(n), setClosedLoop(n)

These methods open or close the feedback loop from the n-th sensor input.

setCommandLimits(high, low, n), unSetCommandLimits(n)

These methods set and remove limits to the maximum and minimum values of the n-
th actuator command. The specified actuator command is then constrained to the
interval (low,high).

linkReferenceSignal(dataItemRead, n)

Set up the link to the data pool location from which the n-th reference signal (see
section 5.1) is to be retrieved.

linkSensorMeasurement(dataItemRead, n)

Set up the link to the data pool location from which the n-th sensor measurement
(see section 5.1) is to be retrieved.

linkActuatorCommand(dataItemWrite, n)

Set up the link to the data pool location to which the n-th actuator command (see
section 5.2) is to be written.

linkControllerError(dataItemWrite, n)

Set up the link to the data pool location to which the n-th controller error (see section
5.2) is to be written.

linkCompensatorOutput(dataItemWrite, n)

Set up the link to the data pool location to which the compensator output (see
section 5.2) is to be written.

Note that the MimoController is not implemented in the AOCS framework prototype.

7.3 Merging MimoController and Controller

In C++, the two classes MimoController and Controller could be merged into one by
using the default argument mechanism offered by the language. The Controller class can
be obtained from the MimoController interface by setting the signal specifier argument to
1.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 20

7.4 The Telemetry Interface

Controller objects are telemetry objects because they inherit from AocsData the
telemeterable interface.

The data sent to the telemetry stream by a controller object in each telemetry mode are
summarized in the table:

TM Format TM Data

Short None

Normal controller status (open/closed loop, held/not held)

Long Normal TM + identification of all links to external signals

Debug Same as Long TM

Controller objects are in a relationship of aggregation with the control channels implementing
their transfer function blocks and hence calls to their telemetry methods are propagated to the
control channels.

Note that the various telemetry formats are not implemented in the AOCS framework
prototype.

7.5 The Reset Interface

Controller objects inherit from AocsData the resettable interface and must therefore
implement the corresponding methods.

Method reset does not do any action on controller objects themselves but is propagated to
the control channels implementing their transfer function blocks.

Method resetConfiguration unloads all the control channel blocks and cancels the links
to the external signals.

Method isConfigured returns true if: the compensator transfer function has been defined,
and the links to the actuator commands and sensor measurements have been set up.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 21

8 THE CONTROLLER MANAGER

Controllers are passive objects that model a closed-loop control system. The object that is
responsible for their activation and for controlling their operations is the controller manager. Its
class structure is shown in the figure of section 6.1.

A control manager is an active object. It maintains a list of controllers that are represented as
objects of type Controller. When the controller manager is activated by the scheduler, it
goes through the list, checks whether the controllers are stable and, if they are, it calls their
doControl method. Thus, the basic implementation of method run in class
ControllerManager looks like this:

class ControllerManager : public AocsObject, public Runnable {

ObjectListTemplate<Controller>* cList;

public:
. . .

void run(AocsTime t){
{

Controller* c;
for (t=cList->first(); ! cList ->isLast(); c= cList ->next())
{

if (c->isStable())
c->doControl()

else
{ . . . // error! raise failure event
}

}
}
. . .

}

The detection of an instability condition is treated as a failure condition that is reported using
the failure event mechanism. The recovery action associated to this failure is retrieved from
the controller itself using its getInstabilityRecoveryAction method.

8.1 Controller Mode Manager

In most cases, the control algorithm to be applied to control a given variable in a satellite (the
attitude, a reaction wheel speed, etc) will be different for different satellite operational

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 22

conditions. This variation is modeled by making the controller manager mode-dependent.
The mode management design pattern of RD5 is used for this purpose.

A controller mode manager is defined by the following abstract interface:

The semantics of the operations defined by this interface are summarized in the following
table:

getControllerList()

This method is called by the controller manager to retrieve the currently valid
controller list.

loadControllerList(int n, ObjectListTemplate<Telemeterable>* c)

This method is used to configure the controller mode manager. It associates
controller list c to operational mode n.

Concrete controller mode managers are characterized by the mechanism that they use to
decide which particular controller list should be returned by method getControllerList
at any given point in time.

The prototype framework provides a default controller mode manager that is based on the
follower mode manager. It maintains a set of controller lists, one for each operational mode,
and changes operational mode in response to changes in a master mode manager.

The default controller mode manager is instantiated from the following class
FollowerControllerModeManager:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 23

Thus, the default controller mode manager uses the services offered by the generic follower
mode manager component exported by the operational mode framelet.

The basic implementation of the run method of the controller manager now becomes:

class ControllerManager : public AocsObject, public Runnable {

ControllerModeManager* modeManager;

public:
. . .

void run(AocsTime t){
{

ObjectListTemplate<Controller>* cList;
Controller* c;

cList = modeManager->getControllerList();

for (t=cList->first(); ! cList ->isLast(); c= cList ->next())
{

if (c->isStable())
c->doControl()

else
{ . . . // error! raise failure event
}

}
}
. . .

}

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 24

8.2 The Telemetry Interface

Controller managers are telemetry objects because they inherit from AocsData the
telemeterable interface.

The data sent to the telemetry stream by a telemetry manager in each telemetry mode are
summarized in the table:

TM Format TM Data

Short none

Normal instance ID of current controller list

Long same as normal TM

Debug long TM + instance ID of controller mode manager

Controller manager objects are in a relationship of aggregation with their controller mode
manager and hence calls to their telemetry methods are propagated to their mode managers.

8.3 The Reset and Configurable Interfaces

The controller manager inherits from AocsObject the Resettable and Configurable
interfaces and must therefore implement the corresponding method.

Controller managers have no internal state and therefore they do not provided a class-specific
implementation of method reset.

A call to method resetConfiguration unloads the controller mode manager.

Method isConfigured returns true if the controller mode manager has been loaded.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 25

9 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD4.

9.1 Controller Mode Manager Plug-In

Name: Controller Mode Manager Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in ControllerManager class (method
setControllerModeManager)

Pre-defined Options: FollowerControllerModeManager component exported by this framelet.

Related Hot-Spots: none

Description

Controller managers need a mode manager to supply them with the list of controller objects. This
hot-spot allows the mode manager to be loaded in the controller manager.

9.2 Instability Recovery Action Plug-In

Name: Instability Recovery Action Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Controller class (method
setInstabilityRecoveryAction)

Pre-defined Options: no recovery action is defined by default

Related Hot-Spots: none

Description

When the controller manager finds that a controller is unstable, it raises a failure event. The

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 26

recovery action associated to this failure event is stored in the controller object itself. This hot-spot
allows this recovery action to be loaded.

9.3 Controller List Plug-In

Name: Controller List Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in ControllerModeManager class (method
setControllerList).

Pre-defined Options: none

Related Hot-Spots: none

Description

The controller mode manager maintains a list of controller objects. This hot-spot defines the point
where a new list is loaded into the controller mode manager.

9.4 Compensator Plug-In

Name: Compensator Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Controller class (method setCompensator).

Pre-defined Options: none

Related Hot-Spots: none

Description

Hot-spot where the abstract control channel implementing the compensator transfer function can
be loaded into a controller.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 27

9.5 Measurement Filter Plug-In

Name: Measurement Filter Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Controller class (method setMeasurementFilter).

Pre-defined Options: none

Related Hot-Spots: none

Description

Hot-spot where the abstract control channel implementing the measurement filter transfer function
can be loaded into a controller.

9.6 Feedforward Filter Plug-In

Name: Feedforward Filter Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Controller class (method setFeedforwardFilter).

Pre-defined Options: none

Related Hot-Spots: none

Description

Hot-spot where the abstract control channel implementing the feedforward filter transfer function
can be loaded into a controller.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 28

9.7 Reference Signal Filter Plug-In

Name: Reference Signal Filter Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Controller class (method
setReferenceSignalFilter).

Pre-defined Options: none

Related Hot-Spots: none

Description

Hot-spot where the abstract control channel implementing the reference signal filter transfer
function can be loaded into a controller.

9.8 Actuator Command Link

Name: Actuator Command Link

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: method call in Controller class (method linkActuatorCommand).

Pre-defined Options: none

Related Hot-Spots: none

Description

Hot-spot to set up the link with the data pool location where the actuator command is to be written
by the controller object.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 29

9.9 Compensator Command Link

Name: Compensator Command Link

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: method call in Controller class (method linkCompensatorCommand).

Pre-defined Options: none

Related Hot-Spots: none

Description

Hot-spot to set up the link with the data pool location where the compensator command is to be
written by the controller object.

9.10 Control Error Link

Name: Control Error Link

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: method call in Controller class (method linkControlError).

Pre-defined Options: none

Related Hot-Spots: none

Description

Hot-spot to set up the link with the data pool location where the control error is to be written by the
controller object.

9.11 Reference Signal Link

Name: Reference Signal Link

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 30

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: method call in Controller class (method linkReferenceSignal).

Pre-defined Options: none

Related Hot-Spots: none

Description

Hot-spot to set up the link with the data pool location from which the reference signal is to be read
by the controller object.

9.12 Sensor Measurement Link

Name: Sensor Measurement Link

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: method call in Controller class (method linkSensorMeasurement).

Pre-defined Options: none

Related Hot-Spots: none

Description

Hot-spot to set up the link with the data pool location from which the sensor measurement is to be
read by the controller object.

9.13 Feedforward Signal Link

Name: Feedforward Link

Visibility Level: framework-level

Adaptation Time: run-time

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Controller Management Framelet
30 April 2002
Issue 2.1
Page 31

Adaptation Method: method call in Controller class (method linkFeedforward).

Pre-defined Options: none

Related Hot-Spots: none

Description

Hot-spot to set up the link with the data pool location from which the feedforward signal is to be
read by the controller object.

