

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 1

 AOCS FRAMEWORK - IMPLEMENTATION NOTES

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework was
developed in full at the architectural design level but only
a representative subset of it was implemented at the
prototype level. Although there is no detailed design
documentation for the AOCS framework, this document
contains enough information about its implementation to
allow an informed reader to understand – and where
necessary modify or extend – its code.

Written By: A. Pasetti (University of Constance/SWE)

Date: 30 April 2002

Issue: 2.3

Reference: SWE/99/AOCS/020

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 2

TABLE OF CONTENTS

1 REFERENCES.. 4
2 ACRONYMS.. 6
3 INTRODUCTION... 8

3.1 Context ... 8
4 SOFTWARE ORGANIZATION ... 9

4.1 Visual Studio Software Organization .. 9
4.2 ERC32 Software Organization .. 12
4.3 UML Models Files .. 13

5 PORTING FROM VISUAL STUDIO TO ERC32 ENVIRONMENT 14
5.1 Conditional Compilation... 14
5.2 Compilation Inconsistencies ... 14
5.3 Other Porting Problems... 15
5.4 Suspected Bug in Erc32 Environment.. 15

6 INCLUDE FILES POLICY ... 17
6.1 General Purpose Include Files .. 17

7 UNIT TESTING... 19
7.1 Regression Test ... 20

8 OBJECT STATE... 23
8.1 Horizontal Decomposition of Objects’ State... 23
8.2 Vertical Decomposition of Objects’ State .. 24
8.3 Static/Non-Static Decomposition of Objects’ State ... 24
8.4 Control over the Resettable State ... 25
8.5 Control over the Configuration State .. 25
8.6 Control Over the Fixed State... 26
8.7 Configuration Check .. 26

9 OBJECT CONSTRUCTION AND DESTRUCTION... 28
9.1 Object Construction.. 28
9.2 Delegation of Object’s Construction to Derived Objects .. 28
9.3 Object Destruction .. 29
9.4 Implementation Alternatives .. 29
9.5 Implementation Improvements.. 29

10 ITERATORS... 31
10.1 Implementation Improvements.. 31

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 3

11 HELPER OBJECTS.. 32
11.1 Implementation Improvements.. 32

12 BASIC OBJECTS.. 33
12.1 The RootObject Class ... 33
12.2 The AocsObject Class ... 33
12.3 Implementation Alternatives .. 35
12.4 Implementation Improvements.. 35

13 OBJECT LISTS ... 36
13.1 Object List Operations.. 37
13.2 Implementation Improvements.. 39
13.3 Implementation Alternative.. 39

14 CLASS AOCSDATA... 40
15 THE SYSTEM MANAGER.. 41
16 CONTROL CHANNELS ... 43

16.1 Control Channel Linking... 43
16.1.1 The ccLinks array .. 43
16.1.2 Control Blocks Input Links.. 43
16.1.3 The IoLink Structure.. 43

16.2 Internal Control Blocks Data Buffers ... 44
16.3 Propagation of Operations within Control Channels ... 44
16.4 The Xmath Autocode Interface... 47
16.5 Implementation Improvements.. 49

17 EVENT REPOSITORIES... 50
17.1 Iteration through Event Repositories... 50
17.2 Event Types ... 51

18 PROPERTY IDENTIFIERS... 52
19 THE MODEMANAGER CLASS .. 53
20 THE FAILURE DETECTION MANAGER.. 54
21 AOCS UNITS... 55

21.1 Data Items and AOCS Units ... 55
21.2 Interface to Unit Data Converters .. 56

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 4

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

RD3 Deleted

RD4 A. Pasetti (2000), Methodological Issues, AOCS Framework Document ref.
SWE/99/AOCS/018

RD5 A. Pasetti (2000), Inter-Component Communication Framelet, AOCS Framework
Document ref. SWE/99/AOCS/005

RD6 A. Pasetti (2000), Object Monitoring Framelet, AOCS Framework Document ref.
SWE/99/AOCS/008

RD7 A. Pasetti (2000), Data Processing Framelet, AOCS Framework Document ref.
SWE/99/AOCS/006

RD8 A. Pasetti (2000), AOCS Unit Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/017

RD9 A. Pasetti (2000), Reconfiguration Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/015

RD10 A. Pasetti (2000), Operational Mode Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/009

RD11 T. Brown, A. Pasetti (2000), Manoeuvre Management Framelet, AOCS Framework
Document ref. SWE/99/AOCS/012

RD12 A. Pasetti (2000), Failure Detection Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/010

RD13 A. Pasetti (2000), System Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/021

RD14 A. Pasetti (2000), Failure Recovery Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/011

RD15 A. Pasetti (2000), Telemetry Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/003

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 5

RD16 A. Pasetti (2000), Telecommand Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/014

RD17 A. Pasetti, T. Brown (2000), Controller Management Framelet, AOCS Framework
Document ref. SWE/99/AOCS/016

RD18 A. Pasetti (2000), AOCS Framework – Prototype Definition, AOCS Framework Document
ref. SWE/99/AOCS/019

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 6

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
MIMO Multi-Input-Multi-Output
NM Normal Mode
NTT Non-Time-Tagged
OBDH On-Board Data Handling system (aka as OBDS)
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SISO Single-Input-Sinle-Output
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 7

VS Visual Studio

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 8

3 INTRODUCTION

This document contains some notes relative to the implementation of the prototype AOCS
framework. The prototype AOCS framework is a partial implementation of the AOCS
framework. This document is intended to serve as a guide to the implementation of the
prototype in lieu of standard detailed design documentation which – owing to budget and
schedule constraints – could not be generated within the AOCS framework project. The
objective of this document is to give enough information to allow an informed reader to
understand – and where desired to modify and extend – the prototype framework.

Where appropriate, this document also consider alternative implementations and
implementation improvements.

3.1 Context

The context for the definition of the prototype framework is the architectural design of the
full framework. This is presented at system concept definition level in RD2 and at framelet
concept and at framelet architectural definition level in RD5 to RD17.

The prototype framework is described in RD18.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 9

4 SOFTWARE ORGANIZATION

This section describes how the prototype framework software is organized in its full form.
Please note that the standard delivery package does not include the test software (see section
7).

The software delivered with the prototype framework can be divided into four parts:

− The Framework Software: all the components and abstract interfaces making up the AOCS
framework

− The Framework Testing Software: the software modules that were used to test at unit and
class level the framework software

− The Framework Instantiation Software: the software modules and components required to
instantiate the AOCS prototype

− The AOCS Prototype Software: the AOCS prototype application instantiated from the
prototype framework

It should be noted that the framework testing software is not a formal deliverable. It is
provided without documentation and its quality is inferior to that of other parts of the
framework software.

The prototype framework was initially implemented in Microsoft’s VisualStudio (VS)
environment. Here, initial debugging and functional testing was done. In a second stage, the
framework software was ported to an ERC32 simulator where performance testing was
carried out. The two versions of the AOCS framework software are described in the next two
subsections.

UML models were used to describe the framework architecture. The relative files are stored
as described in subsection 4.3

4.1 Visual Studio Software Organization

The VS version of the framework software is organized as a single VS workspace containing
18 projects.

The directory structure of the software is illustrated in the table below where subdirectory
levels correspond to indentation levels. The table only shows user-generated directories.
Directories that were automatically generated by the VS environment are not shown.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 10

Directory Name Description

AocsFrameworkHome AOCS Framework Home Directory

VSWorkspaces Root directory for VS workspaces

AocsFrameworkPrototype_1 Workspace file for prototype framework

VSProjects Root directory for VS projects

AocsData Source files to define AOCS data concept

AocsDataTest Project directory to test AOCS data concept

AocsEvent Source files to define AOCS event concept

AocsEventTest Project directory to test AOCS event concept

AocsFactories Source files related to AOCS prototype instantiation

AocsPrototypeTest Project directory for the AOCS prototype test

AocsUnit Source files to define AOCS unit concept

AocsUnitTest Project directory to test AOCS unit concept

BasicObjects Source files to define AOCS basic classes

BasicObjectTest Project directory to test basic classed

ControllerManagement Source files for controller management f/l

ControllerManagementTest Project directory to test controller management f/l

FailureDetectionManagement Source files for failure detection f/l

FailureDetectionManagementTest Project directory to test failure detection f/l

FailureRecoveryManagement Source files for failure recovery f/l

FailureRecoveryManagementTest Project directory to test failure recovery f/l

GeneralInclude General purpose include files

GeneralUtilities General purpose procedures

ManoeuvreManagement Source files for manoeuvre f/l

ManoeuvreManagementTest Project directory to test manoeuvre f/l

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 11

ModeManagement Source files for operational mode f/l

ModeManagementTest Project directory to test operational mode f/l

ObjectList Source files to define object lists

ObjectListTest Project directory to test object lists

ObjectMonitoring Source files for object monitoring f/l

ObjectMonitoringTest Project directory to test object monitoring f/l

OperatingSystemObjects Source files for objects performing OS-like functions

ReconfigurationManagement Source files for reconfiguration f/l

ReconfigurationManagementTest Project directory to test reconfiguration f/l

RegressionTest Project directory for the regression test

SequentialDataProcessing Source files for data processing f/l

SequentialDataProcessingTest Project directory to test data processing f/l

SystemManagement Source files for system management f/l

SystemManagementTest Project directory to test system management f/l

TelecommandManagement Source files for telecommand f/l

TelecommandManagementTest Project directory to test telecommand f/l

TelemetryManagement Source files for telemetry f/l

TelemetryManagementTest Project directory to test telemetry f/l

Xmath Source files for interface to Xmath

Thus, the VS framework software is entirely stored under directory VSProjects. This
software is organized in subdirectories that gather together groups of logically related files.
These subdirectory are called subsystem directories. Typically, subsystem directories contain all
the files required to define an important type in the AOCS framework or an entire framelet.

The subsystem directories only contain source files (.h and .cpp files). Executables and object
files are stored in project directories. A project directory contains the project files for a VS
project. All projects are associated to tests for some specific feature of a group of files.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 12

The project name is always obtained as <feature>Test where <feature> is the name of
the feature to be tested. Thus, for instance, the AocsData type is tested in a project called
AocsDataTest.

The project directories have additional subdirectories which are created by the VS project
management.

4.2 ERC32 Software Organization

The ERC32 version of the AOCS framework files are stored within the ERC32 simulator
directory tree. If /erc32 is the simulator home directory, then their base directory is:
/erc32/src/aocs-framework-1. The directory structure below this level is the same as in
the VS environment except for the MemoryTest subdirectory that is specific to the ERC32
environment and contains the code for performing the memory measurements.

Each subsystem directory has its own make file. A make file in /erc32/src/aocs-
framework calls all lower level make files and can be used to reconstruct the entire ERC32
version of the AOCS framework software.

It must be stressed that the dependency files in the make files are not guaranteed to be
complete. The only safe way to reconstruct an executable, is to delete all the object files and
then call its make file.

Regeneration of all AOCS framework executables takes about 2-5 minutes on an ordinary
SUN SPARC workstation.

The only executables that should be build in the ERC32 environment are:

− AocsPrototypeTestErc32

− TimingTestErc32

− MemoryTestOnlyFunctMan

− MemoryTestFullFw

− EmptyMemoryTest

− RegressionTest

These executables also exist in a debug version.

Make files are present to build other executables but these are not supported and are
provided for information only.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 13

4.3 UML Models Files

The UML models describing the framework architecture were generated using Together
version 4.0. The directory structure for the Together files is as shown in the following table
(subdirectory levels correspond to indentation levels):

Directory Name Description

AocsFrameworkHome AOCS Framework Home Directory

Together Base directory for Together files

Xxx Together project directory

SourceFiles Read/Write project directory for Together project Xxx

In the AOCS framework project, Together was essentially used to draw class diagrams for
inclusion in the framework documentation.

There are several Together projects (ie. several Xxx directories). Typically, to each Together
project therefore corresponds one framelet. In general, the Together projects have a project
directory at location Xxx/SourceFile where new classes are created that are needed only
for drawing diagrams (ie. classes that are not part of the framework software). Additionally,
the projects may use framework directories as either read-only project directories or as search
directories.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 14

5 PORTING FROM VISUAL STUDIO TO ERC32 ENVIRONMENT

As discussed in section 4, the framework software was first developed under Microsoft’s
Visual Studio and then ported to the ERC32 development environment.

5.1 Conditional Compilation

There are very few differences in the framework software as it runs in the VS and in the
ERC32 environment. Conditional compilation was used to cover these differences.
Conditional compilation is determined by the value of the #define symbol MS_HOST. This
symbol is in turn defined in the CompilerSwitches.h include file. The symbol should be
defined for tests under Visual Studio and should be undefined for tests in the ERC32
environment.

5.2 Compilation Inconsistencies

In general, the VS and ERC32 C++ compilers were found to be largely compatible. The few
cases were inconsistencies were found are:

• In the Visual Studio environment, the following is legal:

void someFunction(AocsObjct* arg){
. . . // function definition

}
. . .
someFunction(NULL); // function call

In the ERC32 development the function call is rejected by the compiler and the constant
NULL had to be explicitly cast to (AocsObject*).

• The Visual Studio environment has <Math.h> as a valid name for the math library. The
ERC32 only accepts <math.h>

• The telemetry framelet uses the memcpy built-in function. In the Visual Studio
environment, this function is declared in both <memory.h> and <string.h>. The
ERC32 environment only accepts the latter #include file.

• In the Visual Studio compiler, the scope of variables defined in a for-init-statement is the
same as the scope of the module enclosing the for statement. By default, in the ERC32
environment, the scope of such variables is limited to the for loop. If the compiler

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 15

directive –fno-for-scope is enabled, the ERC32 compiler behaves like the Visual
Studio compiler.

• Some of the load modules for the ERC32 environment are compiled with the –rtems
switch in order to link in the RTEMS libraries and include files. One of the RTEMS files
defines the symbols FALSE and TRUE which are also defined in the Xmath include file
sa_defn.h. This double definition causes a compiler warning. This was removed by
modifying the sa_defn.h file to define the FALSE and TRUE symbols only when
compiling in the MS_HOST environment

5.3 Other Porting Problems

The only porting problem encountered in the migration from the VS to the ERC32
environment is the following. Code that must be executed before the main program is
entered will give rise to errors in the ERC32 environment. This situation arises typically with
non-primitive static or global variables whose constructor has to be executed before the main
program. The prototype AOCS implementation has to be modified to avoid this situation.

5.4 Suspected Bug in Erc32 Environment

The regression test on the ERC32 platform did not work in its original form because of a fatal
address error being reported in the TestCase constructor on the following instruction:

testName = new char[nameLength];

The error occurred when the constructor was called by the following instruction in the
RegressionTest main program:

testSuite.loadTestCase(new TestCaseControlChannel_3());

Investigations showed that:

− the error is not due to the system running out of heap memory;

− the error occurs on the third call to testSuite.loadTestCase() with a control
channel test case as argument. It does not occur on calls with any different argument

− after testSuite.loadTestCase() has been called once with a control channel test
case as an argument, then the error occurs on the second call of: new char[24] (24 is
the length of the control channel test names).

− the error disappears if the length of the control channel names is changed from 24 to 20

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 16

It is believed that the error is due to a bug in the ERC32 environment. The error was removed
by changing the length of the control channel names to 20 characters.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 17

6 INCLUDE FILES POLICY

There are two files for each C++ class in the framework. The header file with extension .h
contains the class declaration. The body file with extension .cpp contains the class definition.
The file name is the same as the class name.

In order to facilitate the collection of include files, each subsystem directory contains a file
called include.h that contains all the header files from that subsystem directory.

The policy adopted in respect of include files can be formulated as follows:

− A file – ForwardDeclarations.h – is provided containing the forward declaration of
all framework classes

− Non-trivial header files always include the forward declaration #include file

− Header and body files directly include the #include files that define the types and
classes they use

6.1 General Purpose Include Files

Directory GeneralInclude contains the following general purpose include files:

• BasicType.h

This file gathers together user-defined types (typedef definition) and enumeration
types.

User-defined types are used to avoid dependency on hard-coded types. The most
common user-defined type is Real that is used for all variables representing floating
point quantities.

• Constant.h

This file gathers together the definition of the general purpose constants used in the
AOCS framework.

• ClassId.h

Class identifiers for all the class in the AOCS framework.

• ForwardDeclarations.h

Forward class declarations.

• CompilerSwitches.h

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 18

Compiler switch definitions used to differentiate the executables built for testing under
the Visual Studio environment from the executables built for the ERC32

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 19

7 UNIT TESTING

For each framelet or subset of a framelet, a test program is provided that performs unit-level
testing on the components exported by the framelet. In the VS environment, the test programs
are the executables associated to the VS projects (see section 4.2). In the ERC32 environment,
the test programs are built by the make files in the XxxTest subdirectories (see section 4.2).

The test programs are not a formal deliverable of the AOCS framework study and are not
included in the standard framework delivery package. They are provided upon request for
information only and without documentation. Owing to schedule and resource constraints, it
was not possible to ensure that they have the same quality as the rest of the framework
software.

The test programs are organized as test case. A test case is encapsulated in a class derived
from the following base class:

class TestCase {

. . .

public :

TestCase(int testId, char* testName);

// To be called before the test starts. Returns false if
// initialization failed
virtual bool setUpTestCase()=0;

// To be called to execute the test
virtual void runTestCase()=0;

// To be called after test execution. Returns false if
// shut down failed
virtual bool shutDownTestCase()=0;

// Set the test result -- can only be called once!
void setTestResult(bool outcome, char* failureMessage);
. . .

};

Test cases are completely self-contained.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 20

Sequences of test cases can be loaded into a test suite. Test suites are encapsulated in instances
of the following class:

class TestSuite {
. . .

public :

TestSuite(FILE* out);

// Execute all test cases in the test suite
void runTestSuite();

// Load a test case in the test suite
void loadTestCase(TestCase* newTestCase);

};

In the VS environment, the test routines send their output to a test file. The typical output of a
successful test looks like this:

Running test FailureDetectionManagementTest ...
Test run performed on: Wed Nov 15 17:48:51 2000

Test failureDetectionManagementTest_1 executed successfully ...
Test failureDetectionManagementTest_2 executed successfully ...
Test failureDetectionManagementTest_3 executed successfully ...

In the ERC32 environment the test output is sent to the console.

In case of failure, analysis of the test program code is necessary to establish the cause of the
failure.

In the VS environment, test suites are provided for each framelet. In the ERC32 environment
only the regression test is provided.

7.1 Regression Test

A regression test is provided that executes all the test cases for all the framelets. Its nominal
output in the VS environment is:

Running test RegressionTest ...
Test run performed on: Wed Feb 07 13:52:54 2001

Test TestCaseAocsData_1 executed successfully ...
Test TestCaseAocsData_2 executed successfully ...

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 21

Test TestCaseAocsData_3 executed successfully ...
Test TestCaseAocsData_4 executed successfully ...
Test TestCaseAocsData_5 executed successfully ...
Test TestCaseAocsData_6 executed successfully ...
Test TestCaseAocsData_7 executed successfully ...
Test TestCaseAocsData_8 executed successfully ...
Test TestCaseAocsEvent_1 executed successfully ...
Test TestCaseAocsEvent_2 executed successfully ...
Test TestCaseAocsEvent_3 executed successfully ...
Test TestCaseAocsEvent_4 executed successfully ...
Test TestCaseAocsEvent_5 executed successfully ...
Test TestCaseAocsUnit_1 executed successfully ...
Test TestCaseAocsUnit_2 executed successfully ...
Test TestCaseAocsUnit_3 executed successfully ...
Test TestCaseAocsUnit_4 executed successfully ...
Test TestCaseAocsUnit_5 executed successfully ...
Test TestCaseAocsUnit_6 executed successfully ...
Test TestCaseAocsUnit_7 executed successfully ...
Test TestCaseAocsUnit_8 executed successfully ...
Test TestCaseAocsObject_1 executed successfully ...
Test TestCaseAocsObject_2 executed successfully ...
Test TestCaseAocsObject_3 executed successfully ...
Test TestCaseRootObject_1 executed successfully ...
Test TestCaseRootObject_2 executed successfully ...
Test TestCaseController_0 executed successfully ...
Test TestCaseController_1 executed successfully ...
Test TestCaseController_2 executed successfully ...
Test TestCaseController_3 executed successfully ...
Test TestCaseController_4 executed successfully ...
Test TestCaseController_5 executed successfully ...
Test TestCaseFailureDetection_1 executed successfully ...
Test TestCaseFailureDetection_2 executed successfully ...
Test TestCaseFailureDetection_3 executed successfully ...
Test TestCaseFailureRecovery_1 executed successfully ...
Test TestCaseFailureRecovery_2 executed successfully ...
Test TestCaseFailureRecovery_3 executed successfully ...
Test TestCaseManoeuvre_1 executed successfully ...
Test TestCaseManoeuvre_2 executed successfully ...
Test TestCaseManoeuvre_3 executed successfully ...
Test TestCaseManoeuvre_4 executed successfully ...
Test TestCaseObjectList_1 executed successfully ...
Test TestCaseObjectList_2 executed successfully ...
Test TestCaseObjectList_3 executed successfully ...
Test TestCaseObjectMonitoring_1 executed successfully ...
Test TestCaseObjectMonitoring_2 executed successfully ...
Test TestCaseReconfiguration_1 executed successfully ...

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 22

Test TestCaseReconfiguration_2 executed successfully ...
Test TestCaseReconfiguration_3 executed successfully ...
Test TestCaseReconfiguration_4 executed successfully ...
Test TestControlChannel_1 executed successfully ...
Test TestControlChannel_2 executed successfully ...
Test TestControlChannel_3 executed successfully ...
Test TestControlChannel_4 executed successfully ...
Test TestControlChannel_5 executed successfully ...
Test TestControlChannel_6 executed successfully ...
Test TestControlChannel_7 executed successfully ...
Test TestControlChannel_8 executed successfully ...
Test TestCaseXmathUcbBlock_1 executed successfully ...
Test TestCaseXmathUcbBlock_2 executed successfully ...
Test TestCaseXmathUcbBlock_3 executed successfully ...
Test TestCaseSystemManagement_1 executed successfully ...
Test TestCaseTelecommand_1 executed successfully ...
Test TestCaseTelecommand_2 executed successfully ...
Test TestCaseTelecommand_3 executed successfully ...
Test TestCaseTelecommand_4 executed successfully ...
Test TestCaseTelecommand_5 executed successfully ...
Test TestCaseTelecommand_6 executed successfully ...
Test TestCaseTelecommand_7 executed successfully ...
Test TestCaseTelemetry_1 executed successfully ...
Test TestCaseTelemetry_2 executed successfully ...
Test TestCaseTelemetry_3 executed successfully ...

In the ERC32 environment the regression test output looks slightly different because the
output of TestCaseTelemetry_1 which in the VS system is sent to file
TestTelemetryTest.txt is sent to the output stream (the ERC32 has no file system).

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 23

8 OBJECT STATE

The state of an object is the set of values of all the attributes that define a particular instance of
an object. The state of an object can be decomposed along three orthogonal directions:

• horizontally, in terms of its components
• vertically, in local and base state
• in terms of static/non-static components

These decompositions are discussed in the following subsections.

8.1 Horizontal Decomposition of Objects’ State

In the AOCS framework, the state of an object is treated as made up of three distinct
components:

• The Resettable State

This component of an object’s state covers those of its attributes that are regularly
updated during the object’s lifetime as a result of the object performing its allotted task.

As an example, consider an object implementing a digital integrator. The resettable state
of this object consists of the variables that are updated every time the integrator is
triggered.

The resettable state is often called just “state” where the context makes the usage
unambiguous.

• The Configuration State

This component of an object’s state covers those of its attributes that are normally set
during the application initialization to configure it. These attributes are used to tune the
object’s behaviour and are modified during the object’s lifetime on an occasional basis
only.

Consider again the example of the integrator. Its configurable state would include the
integration gain and any other parameters that are used by the integration algorithm.

The configuration state is often called simply “configuration”.

• The Fixed State

This component of an object’s state covers those of its attributes that must be defined once
when the object is created and that cannot be modified during the object’s life.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 24

Typically, the fixed state includes data relative to the size of the internal buffers used by
the object. Such data are used to allocate the memory required by the object but, since
there is no dynamical memory allocation in the AOCS framework, their values are set
once when the object is created (sometimes by the constructor) and cannot be altered later.

Other data that are normally part of the fixed state include the class and instance
identifiers and the size of the telemetry image.

8.2 Vertical Decomposition of Objects’ State

An object’s state can be decomposed vertically as follows:

• The Local State

For an object that is an instance of class A, the local state is the set of attributes that are
directly defined by class A.

• The Base State

For an object that is an instance of class A, the base state is the set of attributes that are
inherited from the base class(es) of A.

Thus, for instance, if A if derived from class B, then the base state of A includes the local
state of B.

8.3 Static/Non-Static Decomposition of Objects’ State

An object’s state can be decomposed according to the storage class of its attributes as follows:

• The Static State

This component of an object’s state covers those of its attributes that are marked static
and that are shared with all instances of the same class.

References to event repositories are an example of static state attributes.

• The Non-Static State

This component of an object’s state covers those of its attributes that are not marked
static.

Most object attributes in the AOCS framework are non-static.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 25

8.4 Control over the Resettable State

The resettable state is updated by the object itself and should normally not be changed by the
clients of the object. Where appropriate, however, setter methods are exposed by the object to
allow its clients to change its resettable state. The naming convention for such setter methods
is: set<AttributeName>. Getter methods are normally provided for each setter method.

Objects that are derived from base class AocsObject inherit interface Resettable. This
interface declares method reset that resets the resettable state of an object. Both the local
and base parts of the resettable state are reset.

For a class A that is derived from a class B, method reset is normally implemented as
follows:

void A::reset() {
B::reset(); // reset base state
localReset(); // reset local state

}

Method localReset is a private method that resets the local part of an object’s resettable
state.

8.5 Control over the Configuration State

The configuration state should normally be defined as part of an object’s configuration at
initialization time. The configuration state may be defined either by the constructor or
through setter methods. The naming convention for such setter methods is:
set<AttributeName>.

Objects that are derived from base class AocsObject inherit interface Configurable. This
interface declares method resetConfiguration that resets the non-static part of the
configuration state of an object. Interface Configurable also declares method
resetStaticConfiguration that resets the static part of the configuration state of an
object..

For a class A that is derived from a class B, method resetConfiguration is normally
implemented as follows:

void A::resetConfiguration() {
B::resetConfiguration(); // reset base configuration
localResetConfiguration (); // reset local configuration

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 26

}

Method localResetConfiguration is a private method that resets the local part of an
object’s configuration state.

8.6 Control Over the Fixed State

The fixed state should ideally be set by the constructor. However, this is not always possible.
Some classes require default constructors (for instance to allow arrays of that class to be
defined). In other cases, objects are created by abstract factories that do not have enough
information to set the entire fixed state.

In such cases, definition of the fixed state has to be deferred. Three types of initialization
methods are provided for this purpose.

Method initialize initializes the entire fixed state.

Methods init<AttributeName> initializes one single attribute.

Method allocateMemory allocates memory for internal data structures (typically arrays).

The initialization methods should be called only once. For objects that are derived from
AocsObject, attempts to call them more than once result in a configuration error being
generated.

8.7 Configuration Check

If the configuration or the fixed part of the state are not defined, the object cannot perform its
allotted tasks.

Objects that are derived from AocsObject expose method isConfigured declared by
interface Configurable. This method returns false if the configuration or the fixed part of
the state are not fully defined. Note that a return value of true does not ensure that the object
is properly configured. Thus method isConfigured can only indicate a configuration
failure, it cannot guarantee a correct configuration.

It is normally not necessary to check that configuration of objects not derived from
AocsObject. Where this is required (eg in the case of data item objects), methods with
names like isConfigured<ClassName> are provided.

Normally, after the application initialization has been completed, method isConfigured
should be called on all objects derived from AocsObject.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 27

In the AOCS framework, objects derived from AocsObject register with the system
manager when they are created and the system manager offers a method
isSystemConfigured that automatically calls isConfigured on all registered AOCS
objects and checks that they all return true.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 28

9 OBJECT CONSTRUCTION AND DESTRUCTION

The term “object construction” refers to the instantiation of an object and to the initialization
of the fixed part of its internal state.

The term “object destruction” refers to de-allocation of the memory used by the object.

9.1 Object Construction

Object construction is normally handled by a C++ constructor but, as discussed in section 8.6,
calls to initialization methods may be required to complete the definition of the fixed part of
the object’s state.

A typical constructor in the AOCS framework has the following structure:

A::A() { // constructor for class A

// initialize the fixed component of the local state
. . .

// reset the resettable component if the local state
localReset();

// reset the configuration component if the local state
localResetConfiguration();

}

Note that in C++ when the constructor for class A is executed, the constructors for all base
classes of A are also automatically executed. Hence, A’s constructor should only act on the
local component of the state since the base component will be handled by the base
constructor. This is why it is localReset and localResetConfiguration that should be
called by A’s constructor rather than reset and resetConfiguration.

Obviously, classes where the local resettable or configuration states are empty have no
localReset or localResetConfiguration methods.

9.2 Delegation of Object’s Construction to Derived Objects

In some cases, the construction of an object can only be completed by an instance of an object
from a derived class. This situation occurs for the following initialization methods:

• allocateMemory in class EventRepository

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 29

• initialize in class AocsData
• allocateMemory in class ControlChannelBlock

Delegation of an object’s construction to a derived object may be necessary for the following
reasons:

• The delegated operation calls pure virtual methods that are only defined by the derived
class (C++ does not allow pure virtual methods to be called by constructors)

• The delegated operation needs information that can only be provided by the derived
classes.

9.3 Object Destruction

No actions are associated to objects’ destruction in the AOCS framework and destructors are
consequently never defined (except for the AocsObject destructor, see below).

Objects that are derived from class AocsObject should never be destroyed: they are created
at initialization time and they exist until the program terminates or until the AOCS software
undergoes a full software reset.

In order to ensure that this rule is adhered to, the AocsObject destructor is defined to create
a failure report (using the standard failure reporting mechanism of the AOCS framework, see
RD5) if it is called.

9.4 Implementation Alternatives

Most classes have some static data (typically, the telemetry image size buffer) that at present
are initialized in the constructor. This introduces a processing overhead whenever there are
more than one instance of the same class. This processing overhead could be removed by
having a class instance counter that is used to ensure that static data are only initialized when
the first instance of a class is created. This option however would introduce a memory
overhead (to store the class instance counter).

9.5 Implementation Improvements

The following improvements could be implemented in a future version of the AOCS
framework:

• Initially, the policy was followed to use only parameterless constructors. This policy was
abandoned in the second part of the framework design. An inconsistency has arisen. This
should be removed by using constructors with parameters wherever this is appropriate

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 30

• Instances of class AocsObjects should never be destroyed. A static check on this
condition could be implemented by declaring a private destructor for this class. This
however would make compilation of some test programs (where destruction of AOCS
objects is permitted) impossible.

• Many classes in the AOCS framework should be singletons (in the sense of RD1). Their
constructors could be modified to ensure that attempts to create more than one instance of
such classes result in configuration error events being raised.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 31

10 ITERATORS

Many classes in the AOCS framework expose so-called iteration methods. These are methods
that allow the class’s client to go through a list of objects contained in or associated to the
class. There are three iteration methods with signatures like:

Object* first();
Object* next();
bool isLast();

where Object is the class of the objects in the list.

A typical usage of the iterator methods is in a for loop as follows:

for (Object obj=first(); !isLast(); obj=next())
{ . . . }

In order to ensure an efficient implementation that is compliant with the constraints of the
AOCS framework, the iterator methods are not implemented using the C++ template library.

10.1 Implementation Improvements

Method next should only be called if isLast is not true. If it is called after the end of the list
has been reached, the result is unpredictable and likely to be erroneous. The iteration
mechanism could be improved by introducing a check on the call of next that raises an failure
event if a call is made after the end of the list has been reached.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 32

11 HELPER OBJECTS

It may sometimes happen that some default behaviour should be associated to an abstract
interface (C++ pure virtual class). If multiple inheritance of implementation were allowed,
this default behaviour could be coded into the class encapsulating the interface. In the AOCS
framework – where only single inheritance of implementation is permitted – this is not
possible. In this case, a helper object is used to encapsulate the default behaviour. Objects
implementing the interface can then delegate implementation of many of the interface
operations to the helper object.

In the present version of the framework, this situation arises for the Reconfigurable
abstract interface. The abstract management of reconfigurations in a group of reconfigurable
objects is the same for all reconfiguration managers. This abstract management behaviour
was built into class ReconfigurerHelper (which implements interface Reconfigurable).
Concrete reconfiguration managers can then create an instance of ReconfigurerHelper
and delegate to it most of the management of the reconfigurations.

11.1 Implementation Improvements

Objects subjected to monitoring notify all their registered monitors when there is a change in
the monitored property. The management of the notification and the registration of monitors
are standard operations that are independent of the monitored class and could therefore be
delegated to a helper object.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 33

12 BASIC OBJECTS

The basic objects for the AOCS framework are RootObject and AocsObject. Their
implementation is discussed in the next two subsections.

12.1 The RootObject Class

The RootObject class is defined as follows:

class RootObject {
InstanceId instanceId;
ClassId classId;
static int instanceCounter;

protected :
void setClassId(ClassId id) { classId = id; }

public :
RootObject();
InstanceId getInstanceId() { return instanceId; }
ClassId getClassId() { return classId; }

};

This class defines the class and instance identifier and offers methods to get their values.

The instance identifier is obtained from a counter that is incremented by one every time a
new object is created. Thus, the instance identifier of the n-th object to be created in the
framework is n. The instance identifier is defined by the RootObject constructor.

The class identifier is defined by the constructor of each class through a call to the protected
method setClassId. The values of the class identifier is taken from the ClassId general
include file.

12.2 The AocsObject Class

An extract from the definition of the AocsClass is shown below:

class AocsObject: public RootObject,
public Resettable,

public Configurable,
public Telemeterable {

static AocsClock* aocsClock;
static FailureEventRepository* failureEvtRep;
static ConfigurationEventRepository* configEvtRep;
static int tmImageLength[NTMFORMATS];
. . .

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 34

TelemetryFormat currentTmFormat;
protected :

void reportFailure(AocsObject* creator,
EventType failureType,

AocsObject* location,
RecoveryAction* recoveryAction);

void reportConfigurationError(AocsObject* creator,
EventType configErrType,

AocsObject* location);
AocsTime getTime();
AocsCycle getCycle();

public :
. . .

};

The purpose of this class is twofold:

• to gather together the Resettable, Configurable and Telemeterable interfaces
that are to be inherited by all non-trivial objects of the AOCS framework

• to define failure and configuration event handling services, and time handling services
and make them available to its derived classes.

The first purpose is covered in RD2 and in section 8.4. The second purpose is described
below.

Class AocsObject maintains a (static) reference to the failure event repository and to the
configuration event repository and uses it to implement methods reportFailure and
reportConfigurationError. These methods should be used by derived objects to report,
respectively, failures and configuration errors. They allow uniform treatment of all such
events throughout the AOCS framework.

 Class AocsObject maintains a (static) reference to the AOCS clock and uses it to implement
methods getTime and getCycle whereby derived objects can have a simple interface to
the timing services of the AOCS framework.

Objects of type AocsObjects are intended to be never destroyed. They are created statically
and should continue existing until the AOCS software is rebooted. In order to ensure that
this condition is not violated, they are provided with a destructor that generates a failure
event if it is ever executed.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 35

12.3 Implementation Alternatives

The class identifier is now a variable in class RootObject. This means that every object
carries a copy of its own class identifier. This has the advantage of confining the management
of the class identifier to the RootObject class but it introduces a small memory overhead. A
more efficient option would be to have the class identifier defined as a static member of each
framework class. This however would require making method getClassId in RootObject
virtual which would cause all objects derived from it to carry a virtual table pointer. This
seemed undesirable and therefore classId was left as a private member of RootObject.

12.4 Implementation Improvements

The following implementation improvements can be envisaged:

− The failure and configuration error reporting mechanisms (methods reportFailure
and reportConfigurationError in class AocsObject) require as arguments both the
originator of the report and the reference to the object where the failure or configuration
error was found. In practice, it was found that the originator of the report always
coincides with the location of the failure or configuration error (ie. objects find errors or
failures in their own operations, not in those of other objects). Hence, one of these two
arguments could be removed.

− At present, each object instance is identified by its object identifier. During testing it was
found that it would be useful to be able to identify an object by a string containing a short
description of the object itself. This would be useful because objects are often handled
through pointers whose type, because of extensive use of dynamic typing, does not
necessarily identify the object in question. Thus, an object identifier string could be
associated to the instance identifier. Its associated memory overhead could be avoided by
enclosing its declaration in a conditional compilation block to be disabled after testing has
been completed.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 36

13 OBJECT LISTS

Framework components often need to maintain lists of objects. For this purpose, the
framework provides a generic object list of type ObjectList. This class manages a list of
references to objects of generic type void*. Basically, it maintains a list of references and
offers methods to add and remove references and to iterate through the references in the list.

AOCS framework components that use object lists normally need to see the list as a container
for objects (or references to objects) of a specific type. If they used directly ObjectList they
would therefore have to perform potentially dangerous cast operations.

In order to avoid this danger, a template class ObjectListTemplate is offered that acts as a
wrapper for ObjectList and performs the casting from void* to the specific type required
by the client application. The resulting class structure is:

RootObjec

Resettabl

Configurabl

Telemeterabl

AocsObject

ObjectListTemplate

<class ObjectTyp

ObjectList

The operations in the template class are essentially implemented by delegation to the
corresponding operations in the base class ObjectList. The only change is the introduction
of casting operations to move between the void* type and the template type.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 37

13.1 Object List Operations

The operations offered by class ObjectList are:

AocsObjec

ObjectList

+ObjectList()

+allocateMemory(listSize:int):void

+addObject(newObject:void *):int

+removeObject(object:void *):int

+isListFull():bool

+isObjectInList(object:void *):bool

+first():void *

+next():void *

+isLast():bool

+getPosition():int

+getObjectByPosition(i:int):void *

+removeObjectByPosition(i:int):void

+reset():void

+resetConfiguration():void

+isConfigured():bool

+writeToTelemetry(stream:TelemetryStream *

+getTelemetryImageLength():int

+getListSize():int

+getNumberOfItems():int

The public methods specific to the ObjectList class (ie not inherited from base classes) are
described in the table:

allocateMemory(n)

Define the size n of the list and allocates the memory for the internal data structures
holding the list references. This method can only be called once. Attempts to call it
more than once result in configuration error events being raised.

addObject(&object)

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 38

Loads object object into the list. There is no guarantee as to where in the list the
object will be placed. The method returns an integer i in the range [0..listSize-1] that
indicates where in the list the object was inserted. If the object cannot be inserted
because the list is full, a failure event is raised and a negative number is returned.

removeObject(&object)

Methods to remove an object from the list. The method returns the position in the list
of the object that was removed as an integer i in the range [0..listSize-1. If the object
is not found in the list, a failure event is raised and a negative value is returned.

isListFull

Returns true if the list is full.

first, next, isLast

Iteration methods that iterate through the non-null references in the list.

getPosition

While an iteration is under way, the method returns the position of the last element
retrieved by the iterator operations. The position is returned as an integer i in the
range [0..listSize-1].

getElementByPosition(i), removeElementByPosition(i)

Returns or remove the i-th element in the list. The list elements go from 0 to (listSize-
1).

reset

Resets any on-going iteration.

resetConfiguration

Resets the references to the recovery actions (see below) and clears all entries in
the list.

isConfigured

Returns true if memory for the list was already allocated (ie. if method
allocateMemory has been called).

writeToTelemetry(TmStream), getTelemetryImageLength

Telemetry methods (not implemented in framework prototype).

getListSize

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 39

Returns the size of the list.

getNumberOfItems

Returns the number of items currently in the list.

13.2 Implementation Improvements

When a new object is added to the list, method add performs a linear search through the list
to find the first empty slot where the object can be inserted. Similarly, when an object is to be
removed, method remove performs a linear search through the list. Linear searches can be
expensive in terms of processing time1. Future versions of object list could implement more
sophisticated search mechanisms.

13.3 Implementation Alternative

The implementation proposed here wraps a template class around the basic ObjectList
class. The wrap is required because ObjectList only deals with references to void*
whereas users want to see references to specific types. With this approach, the framework
code then contains a single copy of ObjectList but several copies of
ObjectListTemplate, one for each type for which the template is instantiated. The
overhead introduced by the multiple copies of ObjectListTemplate is minimal because
this class, being merely a wrapper class, is very small.

The alternative approach was to make ObjectList itself a template class parameterized by
the type of the objects to be stored in the list. This class however is rather heavy and therefore
the overhead introduced by the multiple instantiation of the template would have been
considerable.

1 This problem should not be overstated: in AOCS systems as they are now, it is unlikely that more than 20-
30 objects would ever be stored in an object list.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 40

14 CLASS AOCSDATA

Class AocsData is the base class for the AOCS data types in the AOCS framework. It is one
of the main framework hot-spots and application developers are expected to construct new
classes derived from it encapsulating application-specific data types.

One of the chief concerns driving the implementation choices for class AocsData was the
need to make derivation of these application-specific AOCS data classes as easy as possible.
This meant that an attempt was made to concentrate as far as possible implementation
complexity in the base class AocsData.

The main consequence of this decision is that many AocsData operations are parameterized
by the number of data items in the AOCS data structure. This number is obviously undefined
at AocsData level and varies from one application type to another (it is for instance 4 for
quaternions and three for 3-dimensional vectors). Hence, AocsData defines a pure virtual
method getNumberOfItems that must be defined by every subtype to return the number of
data items in the AOCS data structure.

Unfortunately, since getNumberOfItems is a pure virtual method, it cannot be used in the
constructor. Hence, some operations that logically belong to the constructor of AocsData
must be delegated to its derived classes. The implication is the AocsData constructor does
not follow the pattern outlined in section 8.4: its localReset and
localResetConfiguration methods must be called by the constructors of its derived
classes.

Class AocsData should also allocate memory for its internal data structures. However, the
size of these data structures depends on the specific type of application data and hence the
actual memory allocation must again be deferred to the constructor of the derived type. Class
AocsData provides a method – initialize – for this purpose.

Class AocsData exposes metrics operations. The default implementation provided by this
class assumes a Euclidean distance. Derived classes that need to use a different type of
distance should override methods distance. All the other metrics methods however can
remain unchanged since they are all built upon distance.

The AocsData implementation makes derivation of new data types very easy. At its simplest,
the only piece of extra implementation to be provided by a derived class is a constructor and
a (trivial) implementation for getNumberOfItems.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 41

15 THE SYSTEM MANAGER

The system manager maintains a list of references to objects of type AocsObject. This list is
implemented using the object list mechanism of section 13. Normally, it is intended to include
most of the objects of type AocsObject instantiated by the AOCS software.

A default mechanism is provided to load the list maintained by the system manager as
described in RD13: class AocsObject holds a reference to the system manager in variable
systemManager. Its constructor contains the following code:

AocsObject::AocsObject()
{

. . .
if (systemManager!=NULL)

systemManager->add(this); // load this object in the
// system manager list

. . .
}

This ensures that all objects of type AocsObjects, created after the system manager was
loaded into AocsObject, are automatically loaded into the system manager.

Thus, a sample initialization sequence for the AOCS software could be as follows:

1 // Create and configure the syst. manager and the syst. evt repository
SystemEventRepository systemEvtRep;
systemEvtRep.setRepositorySize(4);
SystemManager systemManager(100, &systemEvtRep);

5
// Create and configure the failure and config. event repositories
FailureEventRepository failureEvtRep;
failureEvtRep.setRepositorySize(4);
ConfigurationEventRepository configEvtRep;

10 configEvtRep.setRepositorySize(4);

// Create the AOCS clock
ErcAocsClock aocsClock;

15 // Configure the static part of AocsObject
AocsObject::setAocsClock(&aocsClock);
AocsObject::setFailureEventRepository(&failureEvtRep);
AocsObject::setConfigurationEventRepository(&configEvtRep);
AocsObject::setSystemManager(&systemManager);

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 42

20 // Create other objects
. . .

The system manager is loaded into the AocsObject class only at line 19. This means that all
the objects that were created before line 19 were not loaded into the system manager. Objects
created afterwards, on the other hand, are automatically loaded into the system manager.

It normally makes sense not to load the main event repositories in the system manager
because this ensures that they will survive a system reset thus preserving crucial event
information.

The mechanism outlined above is very convenient as it relieves the programmer of the
burden of manually loading newly created objects into the system manager but it can lead to
a slightly inefficient execution of a software reset. This is because calls to method resets are
propagated by an object to the objects with which it has a relationship of strong association.
Hence, in the event of a system reset, the latter objects will have their reset method called
twice: once directly by the system manager and once indirectly by the objects that (logically)
own or enclose them.

This overhead can be avoided by manually loading objects into the system manager: the
programmer can then take care not to load objects that are logically contained or owned by
other objects.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 43

16 CONTROL CHANNELS

The main issues required for an understanding of how control channels are implemented are:
the linking mechanisms for control channels, the internal data buffers in control blocks, the
propagation of operations within super blocks, and the Xmath interface.

16.1 Control Channel Linking

Control channels are always linked at the level of the AbstractControlChannel interface,
ie. they see other abstract control channels and do not know whether they are dealing with
control blocks or control super blocks.

16.1.1 The ccLinks array

All control channels need to keep track of the control channels that may be linked to their
inputs. This information is maintained in array ccLinks: ccLInks[i] contains a pointer to
the control channel linked to the i-th input. This information is used to propagate methods
calls from one control channel to the control channels that are linked to its inputs.

Note that ccLinks is not sufficient to fully define the input link: a.ccLinks[i] is a control
channel which has one of its outputs linked to the i-th input of control channel a but the array
does specify which input is linked to the i-th input of a.

Note also that some or all of the elements of ccLinks may be null since not all inputs of a
control channel need be connected to the outputs of other control channels.

16.1.2 Control Blocks Input Links

 The input links of a control block are stored in array inputLink. If cc is a control block,
then cc.inputLink[i] is a DataItemRead variable that encapsulates the reference to the
i-th input of cc.

16.1.3 The IoLink Structure

Super blocks use the IoLink structure to store an internal link. An internal link is a link from
a super block to a control channel that is embedded in the superblock and that is linked to an
input or an output of the superblock.

Note that superblocks only have direct links to those of their embedded control channels
which are linked to their inputs or to their outputs.

The IoLink structure is defined as follows:

struct IoLink

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 44

{ AbstractControlChannel* cc;
int n;

};

Each super blocks maintains two arrays of type IoLink: inputLink and outputLink. If sp
is a superblock, then sp.inputLink[i].cc is a pointer to a control channel whose input
number sp.inputLink[i].n is internally connected to the i-th input of sp.

Similarly, sp.outputLink[i].cc is a pointer to a control channel whose output number
sp.outputLink[i].n is internally connected to the i-th output of sp.

16.2 Internal Control Blocks Data Buffers

Control blocks maintain four internal data buffers:

• input, output and state

These are scratch arrays where the input, output and state values are stored during state
and output propagation. These are the arrays upon which routine
propagationAlgorithm operates. values during the propagation computation may be
inconsistent.

• outputBuffer

This is an array where the last set of computed outputs is copied after
propagationAlgorithm has terminated execution.

This array is only useful in case preemptive scheduling is used as it allows a consistent set
of outputs to be accessed even while state and output propagation is under way.

Variable validityTime stores the validity time for the values stored in outputBuffer.

16.3 Propagation of Operations within Control Channels

Control channels can be embedded within each other. Some operations when performed on
an enclosing control channel must be propagated to all control channels embedded within it.
Consider for instance the following figure:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 45

When a call to method reset is performed on super block 1, all the control channels within
super block 1 should be reset. Note that some of the these enclosed control channels could
themselves be super blocks enclosing other lower-level control channels.

The operations that are propagated from an outer control channel to the enclosed control
channels are:

• reset : when a super block is reset, all the control channels it contains should also be
reset.

• resetConfiguration : when the configuration of a super block is reset, the
configuration of all the control channels it contains should also be reset.

• hold/release : when a super block is put in the hold state, all the control channels it
contains should also be put in the same state. The same should happen when the super
block is released.

�������

�������

������	

������

�����������

������� ������� �������

����������	

�����������

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 46

• writeToTelemetry : the telemetry data of a super block are the telemetry data of the
control channels it contains. Hence, calls to writeToTelemetry on a super block must
trigger calls to the same method on all lower-level control channels.

• getTelemetryImageLength : because of the previous bullet, the size of the telemetry
image of a super block is computed as the sum of the sizes of the telemetry images of all
lower level control channels. Hence, calls to getTelemetryImageLength must be
propagated to all lower level blocks.

• setTelemetryFormat : a super block and the channels it contains should have the same
telemetry format. Hence, a call to setTelemetryFormat on a super block should trigger
calls to the same method with the same format value on all lower-level control channels.

A general mechanism as described below is used to propagate operations from one control
channel to all enclosed control channels.

Each control channel holds a reference to its enclosing control channel. This reference can be
retrieved through methods getEnclosingControlChannel. If the method returns NULL,
then the control channel is not enclosed in any other control channel.

The enclosing control channel is defined, with method setEnclosingControlChannel,
when the control channel is configured at initialization time. It is the responsibility of the
developer to ensure that it is correctly set.

Each control channel holds a list of references to all the control channels that are connected to
its inputs. This list is held in array ccLink. The array is automatically loaded when the
inputs of the control channel are linked to external control channels.

Calls to propagation methods can be propagated backward by using the information in array
ccLinks.

Only super blocks can act as containers for other control channels. Super blocks hold
references to the control channels that are internally connected to their outputs.

When a call to a propagation method is made on a super block, the super block transfers the
call to the control channels connected to its outputs. These will then propagate it backward
using the ccLink information. The propagation stops when the beginning of the super block
is reached and this is checked using the enclosingControlChannel parameter.

This mechanism allows a method call to be propagated (recursively, if necessary) from a
super block to all the control channels it contains. However, it cannot guarantee that the
operation is called only once on each control channel.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 47

Consider for instance again super block 1 in the above figure. A call to its reset method would
be propagated twice to block 1, once backward from block 2 and a second time backward
from block 3.

In order to ensure that operations are called only once, a token mechanism is used. To each
propagated operation is associated a unique token. In practice, this could be the time when
the operation is called. A control channel holds a token value in variable
propagationToken for which getter and setter methods are provided.

When a propagated operation is performed on a control channel, the control channel receives
the token associated to that operation. An operation is performed on a control channel only if
the control channel has not yet received its token. This ensures that the operation will not be
performed more than once.

For an example of the implementation of this mechanism, see the implementation of the
reset method in super blocks.

16.4 The Xmath Autocode Interface

Class XmathUcbBlock acts as a wrapper for UCB routines generated by the Xmath autocode
tool using the default template.

The link with the UCB routine is made through a function pointer to the UCB routine. The
pointer is passed to class XmathUcbBlock as one of its constructor parameters and is stored
in variable ucbHook.

The constructor of XmathUcbBlock additionally specifies the number of inputs, outputs and
state variables of the procedure superblock from which the UCB routine was generated, its
sampling time and the number of real and integer parameters. The latter two parameters
should always be zero in the present implementation of XmathUcbBlock.

The management of the iinfo and rinfo control flags for the UCB routine is difficult to
understand because the Xmath documentation is not very clear on this point. The policy
followed in the AOCS framework is based on the following assumptions:

• flag iinfo[0] is used as an error flag that can be set by the UCB routine if it finds any
internal errors. The framework wrapper checks this flag after every call to the UCB
routine and, if it finds it set, it raises a failure event

• flag iinfo[1] is an initialization flag that must be used jointly with flag iinfo[3]
according to the following convention:

o iinfo[0] == 1 && iinfo[3] == 1

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 48

This combination ensures that the UCB routine will call
init_application_data (initialize any %variables that are used in the
UCB routine) and will initialize the internal state buffers.

o iinfo[0] == 1 && iinfo[3] == 0

This combination ensures that the UCB routine will call
init_application_data (initialize any %variables that are used in the
UCB routine) and then exit.

o iinfo[0] == 0

This combination ensures that the UCB routine performs both state and output
propagation without calling init_application_data.

• flag iinfo[2] is not used by the UCB routines.

• flag rinfo[0] is the time to which the outputs must be propagated in the current call of
the UCB routine (ie. this is the same as the argument with which method propagate is
called).

• flag rinfo[1] is the sampling time.

There are three problems with the present implementation of XmathUcbBlock which arise
when the Xmath model contains so-called "percent variables" (ie. parameters that can be set
dynamically to tune the behaviour of the Xmath model). The framework UCB wrapper can
offer handles to allow these parameters to be set dynamically. However, their initial value is
hardcoded in the autocode software (in routine Init_Application_Data) and when the
UCB wrapper is reset, then the block parameters are reassigned their initial default values.
These values can of course be changed again but only after the UCB model has gone through
one iteration.

Additionally, the "percent parameters" are only accessible through the name they were given
in the Xmath autocode. A better solution would be to have access to them through a generic
array of parameters.

Finally, the “percent parameters” are declared as static variables in the Xmath-generated C
module. This modules contains both the variable declaration and the routine implementing
the Xmath model transfer function. This effectively means that the Xmath code is non-
reentrant because different instances of XmathUcbBlock necessarily share the same set of
“percent parameters”.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 49

It is unclear whether modification of the autocode template would allow these drawbacks to
be remedied.

16.5 Implementation Improvements

The following improvements could be implemented in a future version of the AOCS
framework:

• Remove the fourth and firth parameters (number of integer and real parameters) of the
constructor of class XmathUcbBlock (these parameters must always be zero).

• The propagate method of control channels instantiated from class XmathUcbBlock
should be called at constant interval since they represent discrete procedure super blocks
from the Xmath environment that are intended to be triggered at a fixed sampling rate. A
check could be introduced in the propagate method of this class that verifies whether this
constraint is verified and, if it is not, it raises a failure event.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 50

17 EVENT REPOSITORIES

Concrete event repositories are derived from class EventRepository. This class implements
all the functionalities required by event repositories except for the allocation of the memory to
hold the events in the repository.

Class EventRepository sees the events in the repository as references to the generic class
AocsEvent. In particular, it holds an array list declared as follows:

AocsEvent** list;

list thus is an array to references to AocsEvent. This array holds the references to the
events in the repository. All repository operations are implemented using the elements in this
array.

The space to hold the events themselves (as opposed to their references) is allocated by the
concrete event repository classes. Consider for instance the failure event repository. Its
corresponding class FailureEventRepository adds to its base class EventRepository
the declaration of the following array:

FailureEvent* buffer;

buffer is the array that holds the events in the repository. The operations defined by class
FailureEventRepository ensure that the two arrays – buffer in class
FailureEventRepository and list in class EventRepository – remain consistent with
list[i] holding a pointer to buffer[i].

17.1 Iteration through Event Repositories

Operations latestXxxEvent, previousXxxEvent and isLast iterate through the events
in the event repository for events of type Xxx. The iterators return references to the events in
the repository starting from the most recent one.

The iterator operations in the concrete event repository classes are built on top of the
similarly-named iterators offered by the base class EventRepository.

The iterators are implemented in such a manner that creation of events while an iteration is
under way does not disrupt the iteration itself. It should however be noted that events
created after an iteration has begun will be returned at the end of the iteration.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 51

17.2 Event Types

The event types are stored as #define variables in the file EventTypeId.h in the
subsystem directory AocsEvent.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 52

18 PROPERTY IDENTIFIERS

Suppose that an object exposes n properties. The property identifier used to identify the i-th
property object is derived according to the following formula:

propertyId = i*MAX_INSTANCE_ID+instanceId

where i is MAX_INSTANCE_ID is an integer defining the maximum possible value for the
instance identifiers and instanceId is the instance identifier of the object containing the
property.

For greater flexibility, an include file (PropertyId.h) is also provided that can be used to
define property identifiers individually.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 53

19 THE MODEMANAGER CLASS

The following notes help understand the implementation of the ModeManager class:

• The implementers are stored as references to type RootObject in array implementerArray.
the memory for the array is allocated by the constructor to match the number of strategies
and modes requested for each instance of the mode manager.

• The mode managers expose their mode as a bound property object and allow property
monitors to register their interest in changes in its value. The mode manager maintains
the references to the registered property monitors and their associated change objects in
arrays monitorList and changeObjectList. Insertion and removal into these two
arrays are always done in parallel so as to ensure that the content of the two arrays
remains synchronized.

• Protected method changeMode(i) will cause the mode to be updated from the current
mode to the target mode i. This method takes care of checking whether any external
monitors should be notified of the mode change. Mode changes should always be
performed through calls to changeMode.

• Internal mode variables use the convention that the mode indicator is an integer in the
range [0..N-1] where N is number of modes. Similarly, strategy indicators are integers in
the range [0..S-1] where S is the number of strategies.

• Private method isModeLegal is provided to check that a certain integer is a legal mode
indicator (ie that it lies in the range [0..N-1]). This is declared as a virtual method to allow
derived classes to use different ranges for the mode indicators. There is no analogous
method for the strategy indicators since it is not anticipated that strategy indicators might
have a range different from the default one [0..S-1].

• The mode manager needs to interact with the mode event repository (to log mode
changes) and with the change event repository (to log changes in its mode property when
the latter is monitored by external monitors). For this purpose it maintains two static
references to ModeEventRepository and ChangeEventRepository.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 54

20 THE FAILURE DETECTION MANAGER

While coding the failure detection manager (class FailureDetectionManager), it was
realized that a type cast from class ConsistencyCheckable to class AocsObject is
required.

This situation arises as follows. The failure detection manager performs consistency checks on
all the objects contained in list consistencyCheckableList. This list contains references
to type ConsistencyCheckable. When a consistency check fails (ie, when method
doConsistencyCheck returns false), the failure detection manager must create a failure
event to report the failure. One of the parameters to the supplied for the creation of the event
is the “location of the failure”, namely the object where the failure was found. In this case, the
failure location is the object on which the consistency check was performed. This object is
seen by the failure detection manager as of type ConsistencyCheckable but the event
creation operation requires a reference to an AocsObject. Hence the need for the type cast.

Type casts of this kind – because they cannot be guaranteed a priori to be safe – should be
avoided in the AOCS framework. In this particular case, the problem is not serious because
only non-trivial objects implement consistency checks and all such objects are derived from
AocsObject. However, a future implementation of the framework should be designed to
avoid the need for this type of cast.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 55

21 AOCS UNITS

This section discusses implementation issues related to the AOCS unit framelets.

21.1 Data Items and AOCS Units

AOCS units may need two types of links to data items in data pools: links to the data source
buffers and links to the data destination buffers. The links are set up using methods
linkXxxOut (link for outgoing data to source buffer) and linkXxxIn (link for incoming
data to destination buffer) where ‘Xxx’ can refer either to functional or to housekeeping data.
As usual, the link is made through data item objects.

In principle, the link to source buffer is a read-only link and therefore could be done through
DataItemRead objects. The link methods however always use DataItemWrite objects.
This was found to be necessary when units are linked in chains of fictitious units as in the
figure:

��������

���������������
������� ���������������� ����������

�������	

��������	
�������� ��������	
��������

Both the reconfiguration manager and the smoothing filter components implement the
AocsUnitFunctional interface and are therefore (fictitious) AOCS units. Clearly, the
source buffers of the reconfiguration manager component must be linked to the hardware
output buffers of the smoothing filter.

From the point of view of the smoothing filter, the reconfiguration buffer is a plug-in
component. When it receives the reconfiguration manager, the smoothing filter must be able
to access its source buffers as data item write objects because it needs to link them to its
(writable) output buffers. For this reason, the reconfiguration manager must see its source
buffer as DataItemWrite variables.

This situation is quite general. All AOCS units can potentially be combined with each other in
chains of fictitious AOCS units and each unit must be able to pass its source buffer to the next

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 56

unit in the chain as a writable object. Hence it was necessary to model both the destination
and source buffers in AOCS units as DataItemWrite objects.

For a concrete example of this situation in the prototype framework, see the
TorquingThruster component that is combined in a chain of fictitious units with the
SapPrototype component.

21.2 Interface to Unit Data Converters

Unit data converters are used to convert unit data from raw data level to AOCS data level.
They are implemented using the control channel construct exported by the sequential data
processing framelet. Control channels take as inputs data of type Real and produce outputs
of the same type. More precisely, they take as inputs and generate as outputs ReadDataItem
objects that encapsulate a reference to a Real.

In order to encapsulate unit data converters in control channels, class AocsUnit defines the
hardware buffers as arrays of Real. Unit raw data, however, are often best represented as
sequences of bits. The AOCS prototype for instance assumes a MACS-based interface to
external units where raw unit data are most naturally represented as 16-bit unsigned short
integers. In such cases, the actual unit datum is mapped to a subset of the bits making up the
Real datum and the unit data converter will have to operate on those bits only. This
obviously implies that concrete AOCS unit objects and their data converters agree on a
convention to map raw data bits to a subset of the bits in the Real variable representing the
unit hardware buffer.

In the case of the units defined for the AOCS prototype, the mapping is done as follows.
Consider for instance incoming functional data. Their hardware input buffer is defined as
follows:

Real* fcHwInBuf; // declaration
. . .
fcHwInBuf = new Real[nFcInpBuf]; // in the AocsUnit constructor

where nFcInpBuf is the number of functional data to be acquired from the unit. The datum
actually acquired from the external unit consist of 16 bits. Such data are handled internally to
the unit hardware object as variables of type unsigned short int. The link between the
two types of variable – the Real and the unsigned short integer – is as follows:

unsigned short int* unitDatum;
. . .

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 57

unitDatum = (unsigned short*)&fcHwInpBuf[i];

The data converter that processes incoming functional data sees its input as a Real but it can
simply recover the original 16-bit datum as follows:

Real* input; // control channel input
unsigned short* rawDatum;
. . .
rawDatum = (unsigned short*)&input[i];

after the data conversion, variable rawDatum contains exactly the same bit pattern as variable
unitDatum that was acquired from the MACS bus.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Implementation Notes
30 April 2002
Issue 2.3
Page 58

CONTROLLER MANAGER

The follower controller mode manager resets the controllers as they are switched in. The
procedure that does this (getControllerList) assumes that all controller lists have been loaded
in the same order (ie. the first controller in the list is always the Xaxis controller, the second
one is always the Yaxis controller, etc).

