

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 1

 OBJECT MONITORING FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the object monitoring framelet. This framelet proposes an
architectural solution to the problem of monitoring an
object and its properties. The framelet consists of
application-specific design patterns and interfaces.

Written By: A. Pasetti

Date: 30 April 2002

Issue: 2.1

Reference: SWE/99/AOCS/008

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 2

TABLE OF CONTENTS

REFERENCES.. 3
1 ACRONYMS.. 4
2 INTRODUCTION... 5

2.1 Context ... 5
2.2 Applicability to Java Version .. 5
2.3 Notation ... 6

3 FRAMELET CONSTRUCTS.. 7
4 PROPERTY MODEL .. 8

4.1 Property Definition Design Pattern ... 8
4.2 Property Objects.. 8
4.3 Property Objects as External Objects ... 8
4.4 Property Objects as Internal Objects.. 9
4.5 Baseline Selection.. 11
4.6 Additional Properties Pattern... 11
4.7 Summary.. 12

5 CHANGE OBJECTS ... 13
5.1 Reference Values of Change Objects.. 14
5.2 The Telemetry Interface ... 14
5.3 The Reset and Configurable Interface ... 15

6 PROPERTY CHANGE EVENTS... 16
6.1 The Telemetry Interface ... 17
6.2 The Reset and Configurable Interface ... 17

7 PROPERTY MONITORING.. 18
7.1 Design Pattern for Direct Monitoring.. 18
7.2 Instantiation of Direct Monitoring Pattern ... 18
7.3 Design Pattern for Monitoring Through Change Notification 19
7.4 Instantiation of Monitoring with Change Notification Pattern..................................... 20

8 FRAMELET HOT-SPOTS .. 22
8.1 Change Object Hot-Spot .. 22
8.2 Property Change Hot-Spot.. 22

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 3

REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

RD3 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 4

1 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
OBDH On-Board Data Handling system (aka as OBDS)
NM Normal Mode
NTT Non-Time-Tagged
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 5

2 INTRODUCTION

This document describes the object monitoring framelet for the AOCS framework. The framelet
is described at both the framelet concept level and at the framelet architectural level.

 This framelet proposes an architectural solution to the problem of monitoring an object and
its properties. Object monitoring is useful for FDIR purposes, for managing operational mode
changes and more generally for helping components synchronize their behaviour.

The framelet enhances re-usability because it decouples the task of managing the monitoring
process from that of performing the monitoring checks.

2.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD2 and in particular with the sections dealing with
properties, change objects and monitoring.

RD2 outlines a baseline for the handling and monitoring of properties. The architectural
solution proposed in the present document follows the conceptual guidelines of RD2.

In comparing the present document with RD2, readers should bear in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce an
architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

2.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level – in particular its design
patterns – is language-independent and is equally applicable to both the C++ and Java
versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 6

address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific
points to note are:

− Events in the Java framework are implemented using the Java event mechanism.

− Property monitoring is done in a slightly different way. The Java framework does not
have property objects (see section 4.2). Monitorable components (components that expose
properties that can be subjected to monitoring) are instead characterized by
implementation of interface Monitorable.

2.3 Notation

The pseudo-code examples in this document use a C++ notation.

The class diagrams use UML notation and were generated with the reverse engineering tool
of Rational Rose.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 7

3 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

OBJECT MONITORING FRAMELET

Design Patterns

Property Definition Pattern : pattern to define properties in objects and the methods to access them

Additional Properties Pattern : pattern to add new properties to a component that is already
packaged as a binary unit (not used in prototype framework)

Direct Monitoring Pattern : pattern to directly monitor an object’s property

Monitoring through Change Notification Pattern : pattern to implement a notification mechanism
when a property changes in a specified manner.

Framelet Interfaces and Abstract Base Classes

ChangeObject : abstract base class for object encapsulating a type of property change

Framelet Core Components

Property : encapsulation of property objects

Framelet Default Components

SimpleChange : implementation of interface ChangeObject encapsulating a simple change in a
property value

OutOfRangeChange : implementation of interface ChangeObject encapsulating an out-of-range
change in a property value

DeltaChange : implementation of interface ChangeObject encapsulating a delta change in a
property value

SpikeFilteredDeltaChange : implementation of interface ChangeObject encapsulating a
delta change in a property value with spike filtering (not implemented in prototype framework)

The components listed above are those envisaged for the prototype version of the AOCS
framework. Later version may offer a richer set of default implementations of the framelet
interfaces. In particular, they may offer a richer set of change objects.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 8

4 PROPERTY MODEL

A property is an attribute of an object that describes one aspect of its behaviour or of its
internal state and that is accessible to external objects.

Properties can be accessed either directly or indirectly, through property objects.

4.1 Property Definition Design Pattern

To each property may be associated getter and setter methods to allow direct access to it. The
getter and setter methods follow naming conventions. A property of name <PropertyName>
and type <PropertyType> has getter and setter methods that conform to the following
signature and naming pattern:

<PropertyType> get<PropertyName>();
void set<PropertyName>(<PropertyType> value);

Objects that wish to directly monitor the object’s property call its get method. Objects that
wish to set the property call its set method. Some properties are read-only and do not
provide a set method. Additionally, properties of boolean type may have an
is<PropertyName> method to check their value.

Direct access to a property only gives access to the value of the property. Controlled access to
a reference can be obtained through property objects.

4.2 Property Objects

Property objects encapsulate a reference to a property and provide a way of identifying the
property through a property identifier.

Property objects only give read access to the property. Some form of controlled write access
(using perhaps dynamic access control) could be easily implemented but is regarded as
unnecessary in the AOCS context.

Property objects can be implemented in two different manners: either as objects external to the
property owner or as objects internal to the property owner. The framework uses the second
option. However the first one is also discussed for future reference.

4.3 Property Objects as External Objects

An abstract base class Property is defined from which subclasses are derived to encapsulate
specific properties. The definition of class Property could be:

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 9

class Property {
AocsObject* propertyOwner;

public:
Real getValue()=0;

}

Method getValue is implemented in subclasses to recover the property value from the
property owner.

The advantage of this approach is that the property owner does not need to know whether its
property will be accessed as a property object. It simply has to provide a get method and, if
access through an object is required, this is arranged externally to the property owner by
setting up a suitable property object of type Property.

The drawback of this approach is that a subclass of Property for each property object must
be created. This could lead to a proliferation of small classes and for this reason this option
was discarded.

4.4 Property Objects as Internal Objects

This is the option that was selected for the AOCS framework. It relies on the property owner
itself returning an object encapsulating a reference to the property giving read access to the
property itself. It might seem that DataItemRead objects can serve this purpose. However,
as they stand, they are unsuitable to act as property objects because they are anonymous:
there is no way to identify the property from its DataItemRead. Moreover, DataItemRead
objects can only encapsulate references to Real variables and often properties can be integer
or boolean.

Hence a new class was created for property objects with the following definition:

class Property : public RootObject {

Real* realDatum;
int* intDatum;
bool* boolDatum;
int selector; // holds the type of the property
PropertyId propertyId;

public :

Property(Real* datum, PropertyId p);
Property(int* datum, PropertyId p);

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 10

Property(bool* datum, PropertyId p);

PropertyId getPropertyId();

Real get();
};

The class can hold references to Real, integers and booleans. Three constructors are provided
to accept these three types. However, the value of the property is always returned as a Real
(operation get will, if required, perform a type conversion from int and bool to Real).

Consider now the case of a class aClass that has a property prop to which it wants to give
access as a property object. Class aClass would implement the following methods:

class aClass {

Real prop; // property
PropertyId propId; // property identifier

public :

// Provide direct access to the property
Real getProp() { return prop; }

// Provide access to the property as a “property object”
Property getPropProperty() {

return Property(&prop, propId);
}

. . . // other methods
}

Thus, now the property owner exposes a method called get<PropertyName>Property
that returns the property object as an instance of class Property.

The advantage of this approach is that it uses only existing classes. Its drawback is that it puts
the onus of creating property objects on the property owner. This is not very flexible because
it means that the decision as to which properties should be available as property objects must
be made at design time.

Note that this approach involves associating to each property a property identifier that
uniquely identifies the property. In practice, the property identifier is formed by combining
the object identifier of the property owner with an identifier of the property within the object.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 11

4.5 Baseline Selection

As already mentioned, the second of the two options outlined in the previous subsections is
baselined for the AOCS framework. This choice is motivated by a desire to keep the total
number of classes in the framework low and by a belief that it will be possible to decide at
design time which properties should be available as property objects.

Properties that will normally be available also as property objects are:

• health status flags
• operational mode indicators
• data items in AOCS data variables
• outputs (both housekeeping and functional) of AOCS units

4.6 Additional Properties Pattern

The mechanism baselined for property objects works best when the decision as to which
properties should be available as property objects is done at design time. However, the
possibility should still remain to introduce new property objects even after a component has
been packaged as binary unit. This can be done using the additional properties pattern
described below.

Consider the following example class:

class aClass {

protected :

Real prop; // the property

public :

// Method to provide direct access to the property
Real getProp() { return prop; }

. . . // other methods

}

With the above class definition, only direct access to property prop is possible. If, however,
access through a property object is desired, the class can be extended through inheritance as
follows:

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 12

class aNewClass : public aClass {

PropertyId propId;

public:

// Provide new method to allow access to the property
// as a “property object”
Property getPropProperty() {

return Property(&prop, propId);
}

This extension is possible because prop was defined in the base class as protected.

4.7 Summary

The following design rules are adopted in the AOCS framework

• a property <property> can be directly accessed through getter and setter (if write access
is allowed) methods following the naming conventions of section 4.1.

• an object may make a property available as a property object by exposing a method called
get<property>Property that returns a Property object encapsulating a reference to
the property and the property identifier.

• in order to allow extension of property object facilities by inheritance, properties are
declared as protected variables.

• only variables for which automatic conversion to type Real is possible, can be properties.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 13

5 CHANGE OBJECTS

Change objects encapsulate a type of change in a property. The class diagram of change
objects is:

ChangeObject

+checkValue(value:Real):bool

+getReferenceValue():Real

+setReferenceValue(newReferenceValue:Real

RootObject

Resettabl

Configurabl

Telemeterabl

AocsObject

ChangeObject is an abstract class from which concrete change objects can be constructed as
subclasses.

The basic method of class ChangeObject is checkValue. Clients that intend to check the
value of a variable to verify y whether a particular type of change has occurred, hold a change
object that encapsulates the desired type of change and periodically pass the variable as an
argument to method checkValue.

The second and third methods defined by class ChangeObject are getReferenceValue
and setReferenceValue that set and get the reference value (see next subsection)
associated to the change object.

 The following classes of concrete change objects are predefined in the AOCS framework and
are made available to application developers as default components:

• Simple change: the change occurs when the monitored property changes its value.

• Out-of-range change: the change occurs whenever the monitored property moves outside a
pre-defined range.

• Delta change: the change occurs whenever the monitored property changes by more than a
pre-defined delta value.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 14

• Filtered delta change: monitors are notified whenever the filtered value of the monitored
property changes by more than a pre-defined threshold (not implemented in the AOCS
framework).

More specific types of change objects can be added as required.

5.1 Reference Values of Change Objects

In order to characterize a change object, a reference value is attached to it. Its interpretation
depends on the type of change object. For the basic change object classes defined in the
previous section, its interpretation is as follows:

• for a simple change, it is the value of the property before the change was detected (ie. its
“default” value)

• for an out-of-range change, it is the limit closest to the last value of the property (ie. the
limit that was “violated” by the change)

• for a delta change, it is the maximum allowed variation for the property
• for a filtered delta change, it is the maximum allowed variation for the filtered property

For more complex types of change objects, it may be necessary to attach more than one
reference value to each change object.

5.2 The Telemetry Interface

Change objects are telemetry objects because they inherits from AocsObject the
telemeterable interface.

The data sent to the telemetry stream by a SimpleChange object in each telemetry mode are
summarized in the table:

TM Format TM Data

Short none

Normal reference value (default value of property)

Long same as normal TM

Debug same as normal TM

The data sent to the telemetry stream by a DeltaChange object in each telemetry mode are
summarized in the table:

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 15

TM Format TM Data

Short none

Normal reference value (delta limit for property change)

Long normal TM + firstCheck flag (true if this is the first time the change object was
triggered)

Debug same as long TM

The data sent to the telemetry stream by a OutOfRangeChange object in each telemetry
mode are summarized in the table:

TM Format TM Data

Short none

Normal lower and upper bounds defining allowed range

Long normal TM + last value passed through change object

Debug same as long TM

5.3 The Reset and Configurable Interface

Change objects inherit from ChangeObject the Resettable and Configurable
interfaces. The base class ChangeObject does not have any configuration or state data and
therefore does not provide any class-specific implementation of the methods required by
these interfaces.

Subclasses may provide class-specific implementations are required by their semantics.
Among the classes predefined by the prototype framework, only DeltaChange has a class-
specific implementation of method reset.

Finally, note that, for the default change objects provided by the framework, the
characteristics of the change object (eg. the delta threshold for a DeltaChange object) are not
part of the configurable state and hence cannot be changed dynamically (ie. they are set once
and for all when the object is constructed).

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 16

6 PROPERTY CHANGE EVENTS

The detection of a change by a change object can be signaled by an event of type
ChangeEvent. The class diagram for this class is shown in the next UML diagram:

AocsObject

AocsEvent

ChangeEvent

+ChangeEvent()

+initialize(creator:AocsObject *,evtType:EventType,propertyId:PropertyId,changeObject:ChangeOb

+getPropertyId():PropertyId

+getChangeObject():ChangeObject *

+getLastValue():Real

+resetConfiguration():void

+isConfigured():bool

+writeToTelemetry(stream:TelemetryStream *):void

+getTelemetryImageLength():int

Reference to the parameters of the initialize method shows that the change event adds
the following attributes to those defined by the base class AocsEvent:

• lastValue : the value that triggered the change (this is the argument passed in the last
call to the checkValue method of the change object).

• the identifier of the property object that underwent the change
• a reference to the change object that caught the change

The reference to the property object is non-null only when the change occurred in a property
(as opposed to an ordinary variable). Getter methods are offered for all these attributes. Note
that through the change object it is possible to retrieve the reference value associated to the
change object.

To the change event is, as usual, associated an event repository class
ChangeEventRepository.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 17

6.1 The Telemetry Interface

Change events are telemetry objects because they (indirectly, through AocsEvent) inherit
from AocsData the telemeterable interface.

The data sent to the telemetry stream by a change event in each telemetry mode are
summarized in the table:

TM Format TM Data

Short none

Normal property identifier, change object class identifier (this identifies the type of
change that occurred)

Long property identifier, change object class identifier, last value

Debug property identifier, change object class identifier, last value

6.2 The Reset and Configurable Interface

Change event objects inherit from AocsObject the Resettable and Configurable
interfaces and must therefore implement the corresponding method.

Change events have no dynamic state associated to them and therefore they do not define a
class-specific reset method.

Change events define a class-specific resetConfiguration method that resets all event
attributes to zero. Method isConfigured returns true if the change object reference is
different from NULL.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 18

7 PROPERTY MONITORING

The term monitoring refers to the observation of a change over time in the value of a property.
Monitoring of an object can either be done directly, through property objects, or by change
notification. Each of these monitoring types is covered by a design pattern as described in the
three following sub-sections.

7.1 Design Pattern for Direct Monitoring

The direct monitoring design pattern is introduced to address the problem of granting access
to an internal property to a monitoring component. This pattern is very simple as it prescribes
that the monitor directly accesses the monitored property through its getter methods:

7.2 Instantiation of Direct Monitoring Pattern

An object that is interested in monitoring property <property> belonging to object
<object> will periodically access it by calling method get<property> on <object>.

If the monitoring object is interested in detecting changes of a certain type, recourse can be
made to a change object. Consider for instance the case of a monitored object of type
SunSensor and suppose that the monitor is interested in detecting whether its X output is
out of range. This can be done with the following statements:

output = aSunSensor.getXoutput();
if (aOutOfRangeChange.checkValue(output))

. . . // change has been detected
else

. . . // change has not been detected

Object aOutOfRangeChange encapsulates an out-of-range change check.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 19

The direct monitoring pattern can also be instantiated by having the getter method in the
monitored component return a property object. Consider again the example of the previous
sub-section and assume that aSunSensor exposes its X output as a property object. Direct
monitoring can also be performed as follows:

// holder for property object
Property XoutputProperty;
. . .
// retrieve the property object
XoutputProperty = aSunSensor.getXoutputProperty();
. . .
// perform the test on the property value
if (aOutOfRangeChange.checkValue(XoutputProperty.get()))

. . . // change has been detected
else

. . . // change has not been detected

The result of the monitoring test is the same as before but the test is now performed on a
property object. The advantage of this approach is that the entity doing the test need not have
a reference to the sun sensor object, all it needs is the property object represented by the data
item. This allows systematic monitoring of lists of property objects.

7.3 Design Pattern for Monitoring Through Change Notification

This design pattern is introduced to address the problem of a monitoring component that
wishes to be automatically notified when a change of a certain type occurs in a specific
property in which it is interested.

With this mechanism, the property owner allows monitors to register their interest in change
of a certain type in its property and notifies them when the change occurs.

A property for which monitoring through change notification is possible is called a bound
property.

This design pattern is modeled on the JavaBeans property mechanism and on the observer
pattern of RD1. Its UML diagram is:

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 20

7.4 Instantiation of Monitoring with Change Notification Pattern

The property owner allows monitors to register and unregister their interest in a property. It
does so by exposing methods with the following signatures:

void add<Property>Monitor(Monitor* monitor, ChangeObject* changeObject);
void remove<Property>Monitor(Monitor* monitor);

When a monitor monitor calls add<Property>Monitor it notifies the property owner that
it is interested in property <property>. The second parameter in the method indicates the
type of change in which the monitor is interested.

When a monitor monitor calls remove<Property>Monitor it notifies the property owner
that it is no longer interested in property <property>.

The property owner maintains a list of registered monitors together with their change objects
and every time the property is changed, the new value is passed through its corresponding
checkValue method.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 21

Note that the property owner only receives a reference to the change object. This means that
responsibility for ensuring that the change object is used only by a single monitored
component (change objects have state!) rests with the monitor component.

Monitors are notified of changes through a call to method propertyChange. They must
therefore implement the following interface:

class PropertyMonitor {
void propertyChange(AocsObject* changeOriginator,

Property monitoredProperty,
ChangeObject* changeObject) = 0;

}

ChangeOriginator is the property owner, monitoredProperty is a copy of the property
being monitored, and changeObject is a reference to the change object associated to the
monitoring action.

The action to be taken in response to the detection of a change in a monitored property is
application-specific and therefore method propertyChange defines a framework hot-spots
(the property change hot-spot)

Sample code for updating the value of property property looks like this:

property := newValue;
for (all currently registered monitors) do {

if (changeObject->checkValue(newValue)) // a change has occurred!
{ . . . // construct event encapsulating the change

monitor->propertyChange(this,property,changeObject)
// notify the monitor

}

The following are examples of variables that are treated as bound properties in the AOCS
framework:

• health status of real AOCS units
• execution status of manoeuvres
• operational mode indicators of mode managers

Note that monitoring through change notification must be used sparingly because the
monitor has to sort incoming change events and it can only do this efficiently if the number of
changes to which it is listening is limited.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 22

8 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD3.

8.1 Change Object Hot-Spot

Name: Change Object Hot-Spot

Visibility Level: framework-level

Adaptation Time: compile-time

Adaptation Method: derivation from base classes ChangeObject

Pre-defined Options: change object components exported by the framelet (see section 3)

Related Hot-Spots: none

Description

A change object subclass has to be constructed for each type of change with respect to which
monitoring is desired. The derived class only has to provide an implementation for method
checkValue.

8.2 Property Change Hot-Spot

Name: Property Change Hot-Spot

Visibility Level: framelet-level

Adaptation Time: compile-time

Adaptation Method: implementation of method propertyChange

Pre-defined Options: none

Related Hot-Spots: none

Description

Some of the predefined components in the AOCS framework act as property monitors that perform
monitoring through change notification. These components must implement interface Monitor

University of Constance
Department of Computer Science

Software & Web Engineering Group
Object Monitoring Framelet
Issue 2.1
30 April 2002
Page 23

and must provide implementations for method propertyChange.

