

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 1

 AOCS FRAMEWORK - PROTOTYPE DEFINITION

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework was
developed in full at the architectural design level but only
a representative subset of it will be implemented at the
prototype level. This document defines the part of the
framework that will be implemented in the framework
prototype.

Written By: A. Pasetti

Date: 30 April 2002

Issue: 2.1

Reference: SWE/99/AOCS/019

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 2

TABLE OF CONTENTS

1 REFERENCES.. 3
2 ACRONYMS.. 5
3 INTRODUCTION... 6

3.1 Context ... 6
3.2 Document Structure ... 6

4 HARDWARE INTERFACES... 7
4.1 External Unit Interface... 7
4.2 Telemetry Interface... 8
4.3 Telecommand Interface ... 9

5 THE AOCS PROTOTYPE.. 10
6 FRAMEWORK IMPLEMENTATION STATUS ... 11
7 SYSTEM MANAGEMENT FRAMELET ... 12
8 OBJECT MONITORING FRAMELET.. 13
9 INTER-COMPONENT COMMUNICATION FRAMELET.. 16
10 SEQUENTIAL DATA PROCESSING FRAMELET.. 18
11 AOCS UNIT FRAMELET .. 20
12 RECONFIGURATION MANAGEMENT FRAMELET... 24
13 OPERATIONAL MODE MANAGEMENT FRAMELET.. 26
14 MANOEUVRE MANAGEMENT FRAMELET.. 28
15 FAILURE DETECTION FRAMELET... 29
16 FAILURE RECOVERY MANAGEMENT FRAMELET... 30
17 TELEMETRY MANAGEMENT FRAMELET ... 32
18 TELECOMMAND MANAGEMENT FRAMELET .. 34
19 CONTROLLER MANAGEMENT FRAMELET ... 36

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 3

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

RD3 Deleted

RD4 A. Pasetti (2000), Methodological Issues, AOCS Framework Document ref.
SWE/99/AOCS/018

RD5 A. Pasetti (2000), Inter-Component Communication Framelet AOCS Framework
Document ref. SWE/99/AOCS/005

RD6 A. Pasetti (2000), Object Monitoring Framelet, AOCS Framework Document ref.
SWE/99/AOCS/008

RD7 A. Pasetti (2000), Data Processing Framelet, AOCS Framework Document ref.
SWE/99/AOCS/006

RD8 A. Pasetti (2000), AOCS Unit Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/017

RD9 A. Pasetti (2000), Reconfiguration Management Framelet AOCS Framework Document
ref. SWE/99/AOCS/015

RD10 A. Pasetti (2000), Operational Mode Management Framelet AOCS Framework Document
ref. SWE/99/AOCS/009

RD11 T. Brown, A. Pasetti (2000), Manoeuvre Management Framelet, AOCS Framework
Document ref. SWE/99/AOCS/012

RD12 A. Pasetti (2000), Failure Detection Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/010

RD13 A. Pasetti (2000), System Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/021

RD14 A. Pasetti (2000), Failure Recovery Management Framelet, AOCS Framework Document
ref. SWE/99/AOCS/011

RD15 A. Pasetti (2000), Telemetry Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/003

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 4

RD16 A. Pasetti (2000), Telecommand Management Framelet, AOCS Framework Document ref.
SWE/99/AOCS/014

RD17 A. Pasetti, T. Brown (2000), Controller Management Framelet, AOCS Framework
Document ref. SWE/99/AOCS/016

RD18 A. Pasetti (2000), AOCS Prototype Definition, AOCS Framework Document ref.
SWE/99/AOCS/020

RD19 MACS Bus Handbook

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 5

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
MIMO Multi-Input-Multi-Output
NM Normal Mode
NTT Non-Time-Tagged
OBDH On-Board Data Handling system (aka as OBDS)
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SISO Single-Input-Sinle-Output
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 6

3 INTRODUCTION

This document describes the prototype AOCS framework. The prototype AOCS framework is a
partial implementation of the AOCS framework. The prototype framework implements a
representative subset of the constructs defined by the full framework. Its purpose is to serve
as a proof-of-concept demonstrator for the full framework.

3.1 Context

The context for the definition of the prototype framework is the architectural design of the
full framework. This is presented at system concept definition level in RD2 and at framelet
concept and at framelet architectural definition level in RD5 to RD17.

The prototype framework was intended for use at the end of the study to implement a
prototype AOCS. The decision as to which elements of the framework to include in the
prototype framework was made with a view to the implementation of the prototype AOCS.
The expected features of the prototype AOCS are described in section 5.

The intention at the beginning of the study was to provide a prototype implementation of the
framework that would implement a subset of the framelets in full. The concept that is
adopted here is different being based on a prototype framework that offers a partial
implementation of all framelets.

3.2 Document Structure

The AOCS framework was designed as a collection of framelets. The definition of the
prototype framework is also made at the framelet level. Framelets are defined in terms of the
architectural constructs they export. They can export three types of constructs: design
patterns, interfaces and components. In some cases interfaces are implemented as abstract
classes (ie. they include some basic implementation). Exported components may be default
implementations of the interfaces or abstract classes.

For each framelet, this document provides a list of the architectural constructs exported by the
framelet and of those which will be implemented for the prototype framework.

A justification of the selection of which features to include and which to leave out is also
included.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 7

4 HARDWARE INTERFACES

As mentioned above, the components included in the prototype framework are developed
with a view to their use in the assembly of the AOCS prototype. Hence the definition of some
of these components requires a precise definition of the external interfaces of the prototype
AOCS. This is notably the case for the following items:

• definition of the external unit interfaces
• definition of telemetry interface
• definition of telecommand interface

The assumption concerning these interfaces are described in the following subsection.

4.1 External Unit Interface

AOCS unit proxy objects delegate interaction with the unit interface to a lower level
component characterized by the implementation of the AocsUnitHardware interface. The
prototype AOCS is MACS-based: all communications between the AOCS computer and the
external AOCS unit take place over the MACS bus. The prototype framework accordingly
provides a component implementing the AocsUnitHardware to interface with a MACS
controller using the MACS-TC protocol (see RD19).

The assumed interface with the MACS controller is as follows. Communication with the
MACS controller is through three 16-bit registers:

• MACS_CS: control/status register
• MACS_INSTR: instruction register
• MACS_DATA: data register

All three registers are read/write memory-mapped registers that are accessed by the
processor like any other word-length memory location. The actual memory location is
determined by external hardware. The address of the three registers are passed as constructor
parameters to the MACS interface component.

The layout of the MACS_CS register is as follows:

• bit 0: writing 1 to this bit causes the instruction currently in the MACS_INSTR register to
be sent to the bus

• bit 1: this bit is set to 1 when processing of the last instruction by the MACS controller has
been completed. This includes emission on the bus of any data words associated to the

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 8

instruction or latching into MACS_DATA of any data word received as a result of the
instruction being emitted.

• bit 2: this bit is set to 1 if no acknowledge was received for the last instruction or for any
data words associated to it.

• bit 3 : this bit is set to 1 if a parity error was detected by the MACS controller while
processing the last instruction or any data words associated to it.

• bit 4 : this bit is set to 1 if the error bit was set by the MACS controller while processing
the last instruction or any data words associated to it.

• bit 5 : writing 1 to this bit causes the MACS controller to be reset aborting any on-going
transaction.

Register MACS_INSTR contains the instruction to be emitted on the bus with the following
layout:

• bits 0-2 : extension
• bits 3-7 : destination address
• bits 8-12 : destination sub-address
• bits 13-15 : instruction code

Register MACS_DATA contains the data word that is associated to the instruction in
MACS_INSTR.

The MACS interface component supplied by the prototype framework assumes that no
interrupts are associated to the operation of the MACS controller. Checking that a bus
transaction has been successfully completed must therefore be done by polling the MACS_CS
register.

4.2 Telemetry Interface

The telemetry interface assumptions have an impact on the implementation of the
TelemetryStream interface in the telemetry management framelet. The framework
prototype offers a component – DmaTelemetryStream - implementing this interface. This
component assumes a DMA-based telemetry interface. This means that the telemetry data are
assumed to be forwarded to the central on-board computer by a dedicated hardware interface
that collects them from a pre-defined memory area in the AOCS computer. This pre-defined
memory area is called the DMA buffer. It is defined by its start address and by its length. Both
start address and buffer length are settable parameters of class DmaTelemetryStream.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 9

No synchronization mechanism is assumed between the AOCS software and the hardware
telemetry interface. When the latter is triggered, it simply collects whatever happens to be in
the DMA buffer.

4.3 Telecommand Interface

The telecommand interface is based on the following assumptions:

• Telecommands are deposited by a DMA mechanism operating independently of the
AOCS processor to a predefined memory area in the address space of the AOCS
processor.

• Arrival of a new telecommand is signaled by an interrupt called the telecommand interrupt.

• The telecommand interrupt deposits the telecommands in sequence in a memory area
called the telecommand buffer. Its size is TC_BUFFER_SIZE bytes and its start address can
be retrieved from DmaTelecommandLoader.

• The DMA telecommand loader is activated periodically to process the telecommands in
the telecommand buffer and load them as instances of class Telecommand into the
telecommand manager.

The prototype framework does not supply the telecommand interrupt servicing routine. This
is because the ERC32 simulator where the prototype AOCS is tested cannot simulate the
presence of interrupts. It only supplies the DMA telecommand loader as an instance of class
DmaTelecommandLoader.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 10

5 THE AOCS PROTOTYPE

The prototype framework was used to implement a prototype AOCS. The AOCS prototype is a
simplified AOCS software which is implemented using the constructs offered by the AOCS
prototype framework. The AOCS prototype thus serves as a test bed for the AOCS prototype
framework.

The AOCS prototype is not intended to be representative of any real AOCS. Its interest lies
simply in the extent to which it allows the functionalities of the AOCS prototype framework
to be exercised and the constructs exported by it to be utilized.

The prototype AOCS is described in RD18.

The features implemented by the prototype framework are, to some extent, dictated by the
need to construct the AOCS prototype.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 11

6 FRAMEWORK IMPLEMENTATION STATUS

The AOCS framework is divided into 14 framelets. Each framelets is characterized by the
constructs it exports. Exported constructs are listed in a table at the beginning of each
framelet description document. Framelet constructs can be of three types:

u design pattern
u abstract interfaces and base classes
u core and default components

The prototype framework does not implement all the constructs defined by the framelets.
This section describes, for each framelet, the implementation status of its constructs.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 12

7 SYSTEM MANAGEMENT FRAMELET

The system management framelet defines the following constructs:

SYTEM MANAGEMENT FRAMELET

Framelet Design Patterns

System Management Pattern : design pattern to systematically perform the same operations on a
target set of objects

Memento Pattern : design pattern to preserve configuration information across system resets. This is
a standard design pattern taken from RD1.

Framelet Interfaces

Resettable : interface to declare object reset services

Configurable : interface to declare object configuration services

Framelet Core Components

SystemManager : system management component

RootObject : base class for all objects in the framework

AocsObject : base class for all non-trivial objects in the framework

The system management components are provided in full. Their implementation makes use
of both framelet design patterns.

The framelet interfaces are fully implemented by all AOCS objects provided by the prototype
framework.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 13

8 OBJECT MONITORING FRAMELET

The object monitoring framelet defines the following constructs:

OBJECT MONITORING FRAMELET

Design Patterns

Property Definition Pattern : pattern to define properties in objects and the methods to access them

Additional Properties Pattern : pattern to add new properties to a component that is already
packaged as a binary unit

Direct Monitoring Pattern : pattern to directly monitor an object’s property

Monitoring through Change Notification Pattern : pattern to implement a notification mechanism
when a property changes in a specified manner.

Framelet Interfaces

ChangeObject : interface for object encapsulating a type of property change

Framelet Core Components

Property : encapsulation of property objects

Framelet Default Components

SimpleChange : implementation of interface ChangeObject encapsulating a simple change in a
property value

OutOfRangeChange : implementation of interface ChangeObject encapsulating an out-of-range
change in a property value

DeltaChange : implementation of interface ChangeObject encapsulating a delta change in a
property value

SpikeFilteredDeltaChange : implementation of interface ChangeObject encapsulating a
delta change in a property value with spike filtering

The prototype framework implements the following attributes of its predefined components
as properties:

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 14

• the operational mode indicators of mode manager components
• the data items of AOCS data

These properties are built into their host components and hence the pattern to implement
additional properties is not used.

These properties can be monitored using both mechanisms offered by the object monitoring
framelet. Monitoring with change notification is used in follower mode managers. Direct
monitoring is used in monitoring check objects.

Monitoring with property objects and with change notification requires the availability of
change objects. The prototype framework therefore pre-defines components implementing
some basic kinds of change objects.

The next table summarizes the implementation status of the framelet constructs in the
prototype framework:

OBJECT MONITORING FRAMELET

Implemented Design Patterns

Property Definition Pattern : implemented

Additional Properties Pattern : not implemented

Direct Monitoring Pattern : implemented

Monitoring through Change Notification Pattern : implemented

Implemented Framelet Interfaces

ChangeObject : implemented in change object components listed below

Framelet Core Components

Property : implemented

Implemented Framelet Components

SimpleChange : implemented

OutOfRangeChange : implemented

DeltaChange : implemented

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 15

SpikeFilteredDeltaChange : not implemented

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 16

9 INTER-COMPONENT COMMUNICATION FRAMELET

The inter-component framelet defines the following interfaces and components:

INTER-COMPONENT COMMUNICATION FRAMELET

Design Patterns

Shared Data Pattern : pattern to exchange data among components using shared data areas

Shared Event Pattern : pattern to exchange events among components using shared data areas

Framelet Interfaces and Abstract Base Classes

AocsEvent : abstract base class for AOCS events

EventRepository : abstract base class for event repositories

AocsData : abstract base class for all AOCS data

DataPool : abstract base class for AOCS data pools

Framelet Core Components

TelecommandEvent : telecommand event
ModeEvent : mode change event
RecoveryEvent : failure recovery event
FailureEvent : failure event
ManoeuvreEvent : manoeuvre event
ChangeEvent : property change event
ConfigurationEvent : configuration error event
SystemEvent : system event
ReconfigurationEvent : reconfiguration event

TelecommandEventRepository : telecommand events repository
ModeEventRepository : mode change events repository
RecoveryEventRepository : failure recovery events repository
FailureEventRepository : failure events repository
ManoeuvreEventRepository : manoeuvre events repository
ChangeEventRepository : property change events repository
ConfigurationEventRepository : configuration error events repository
SystemEventRepository : system events repository

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 17

ReconfigurationEventRepository : reconfiguration events repository

Scalar : scalar data
TwoEulerAngles : set of two Euler angles
ThreeEulerAngles : set of three Euler angles
Nvector : set of n elements treated as an n-vector

AttitudeDataPool : data pool for attitude data

DataItemRead : component encapsulating a read-only access to a data item

DataItemWrite : component encapsulating a read/write access to a data item

All the constructs exported by the framelet and listed in the above table are implemented in
full in the prototype framework.

The two design patterns are used to construct the data pools and the event repositories.

The abstract base classes and interfaces are implemented by the core components.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 18

10 SEQUENTIAL DATA PROCESSING FRAMELET

The data processing framelet defines the following interfaces and components:

DATA PROCESSING FRAMELET

Framelet Interfaces and Abstract Base Classes

AbstractControlChannel : interface for control channels

ControlChannelBlock : abstract class encapsulating control channel block

XmathUcbBlock : abstract class offering an interface to Xmath autocode

Framelet Core Components

ControlChannelSuperBlock : container component for a control channel super-block

Framelet Default Components

P_Block : control block implementing a proportional transfer function

I_Block : control block implementing an integral transfer function

D_Block : control block implementing a derivative transfer function

AdderBlock : control block to add two inputs

DifferenceBlock : control block to take the difference of its two inputs

LimitBlock : control block to saturate an input

PassThruBlock : control block with unitary transfer function

SplitterBlock : control block to split a single input into several identical outputs

TwoByTwoMatrixBlock : control block implementing a 2x2 matrix multiplication transfer function

XmathUcbBlock : control block embedding a generic UCB routine from the Xmath autocode

XmathUcbPidBlock : control block implementing a PID controller (from Xmath autocode)

All the constructs listed in the table are implemented in full in the AOCS framework
prototype.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 19

The integral and derivative blocks (I_Block and D_Block) use very simplified algorithms to
implement integration and derivation, respectively, and should only be used for testing
purposes.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 20

11 AOCS UNIT FRAMELET

The AOCS unit framelet defines the following architectural constructs:

AOCS UNIT FRAMELET

Design Patterns

Fictitious Unit Pattern : pattern to make objects that process unit data look like units

Framelet Interfaces and Abstract Base Classes

AocsUnitHardware : interface for objects managing low level exchanges with external units.

UnitInstruction : interface structure defining a generic protocol for data exchanges with external
units

AocsUnitFunctional : interface for objects representing the functional exchanges between the
AOCS software and an AOCS unit (either real or fictitious)

AocsUnitHousekeeping : interface for objects representing the housekeeping exchanges
between the AOCS software and a real (ie. non fictitious) AOCS unit

AocsUnit : abstract class serving as base class for all objects representing external unit proxies in
the AOCS software

TriggerList : interface for trigger list objects, namely list of units due to be triggered at the same
time in the AOCS cycle

Framelet Core Components

PollingTrigger : trigger object to perform full data transfer (transaction + refresh cycle) with
polling on registered units

UnitTrigger : trigger object to perform full data transfer (transaction + refresh cycle) without
polling on registered units

RefreshTrigger : trigger object to perform refresh operations on registered units

TrasactionTrigger : trigger object to perform transaction operations on registered units

Framelet Default Components

FullTriggerList : full implementation of interface TriggerList

FunctionalTriggerList : partial implementation of interface TriggerList covering only

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 21

functional units

MacsTcController : implementation of interface AocsUnitHardware for a MACS telecom
controller

FssPrototype : two-axis fine sun sensor AOCS unit for the AOCS prototype

GyrPrototype : single-axis gyro AOCS unit for the AOCS prototype

RwPrototype : reaction wheel AOCS unit for the AOCS prototype

SapPrototype : solar acquisition and propulsion electronics AOCS unit for the AOCS prototype

TorquingThrusters : fictitious AOCS unit to command a set of thrusters directly with the torque
requests around spacecraft axes

The prototype framework provides a limited number of simplified implementations for unit
components. The implementations assume a MACS-based AOCS1.

The prototype framework provides implementations for the units used in the AOCS
prototype (see RD18). The implementation is very simple and does not match the
characteristics of any real AOCS units. It is only provided for testing purposes. Note that this
implementation requires an exact definition of the hardware interfaces to the external units
(see section 4).

Unit triggering in the AOCS prototype is through normal trigger objects (instances of class
UnitTrigger). Accordingly, this is the only type of trigger objects implemented by the
prototype framework.

Only the functional data are modeled in the prototype AOCS and hence
FunctionalTriggerList is the only trigger list used in the prototype AOCS.

Fictitious units are defined to manage the unit reconfiguration (see also section 12 on the
reconfiguration management framelet) and to provide a high-level interface to the thrusters
(class TorquingThrusters) .

The next table summarizes the implementation status of the framelet constructs in the
prototype framework:

1 MACS is the name of a data bus that is widely used on ESA science satellites.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 22

AOCS UNIT FRAMELET

Implemented Design Patterns

Fictitious Unit Pattern : implemented in reconfiguration managers and TorquingThruste component

Implemented Framelet Interfaces and Abstract Base Classes

AocsUnitHardware : implemented in MACS TC hardware unit object

UnitInstruction : implemented to define MACS bus protocol

AocsUnitFunctional : implemented in AOCS unit objects listed below and in reconfiguration
manager components of section 12

AocsUnitHousekeeping : implemented in AOCS unit objects listed below

AocsUnit : implemented in AOCS unit objects listed below

TriggerList : implemented in trigger lists components listed below

Implemented Framelet Components

PollingTrigger : trigger object to perform full data transfer (transaction + refresh cycle) with
polling on registered units

UnitTrigger : trigger object to perform full data transfer (transaction + refresh cycle) without
polling on registered units

RefreshTrigger : trigger object to perform refresh operations on registered units

TrasactionTrigger : trigger object to perform transaction operations on registered units

FullTriggerList : full implementation of interface TriggerList

FunctionalTriggerList : partial implementation of interface TriggerList covering only
functional units

MacsTcController : implementation of interface AocsUnitHardware for a MACS telecom
controller

FssPrototype : two-axis fine sun sensor AOCS unit for the AOCS prototype

GyrPrototype : single-axis gyro AOCS unit for the AOCS prototype

RwPrototype : reaction wheel AOCS unit for the AOCS prototype

SapPrototype : solar acquisition and propulsion electronics AOCS unit for the AOCS prototype

TorquingThrusters : fictitious AOCS unit to command a set of thrusters directly with the torque

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 23

requests around spacecraft axes

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 24

12 RECONFIGURATION MANAGEMENT FRAMELET

The reconfiguration management framelet defines the following architectural constructs:

RECONFIGURATION MANAGEMENT FRAMELET

Design Patterns

Reconfiguration Design Pattern : pattern to make handling of reconfigurable objects independent of
their reconfigurability

Framelet Interfaces

Reconfigurable : interface to be implemented by all reconfiguration managers.

Framelet Core Components

ConfigurationState : encapsulation of the state of a reconfiguration group

Framelet Default Components

ReconfigurerHelper : helper object to handle the management of a reconfiguration group

BasicUnitReconfigurer : reconfiguration manager for a group of identical objects

RwSet : reconfiguration manager for a set of 4 identical reaction wheels

All the constructs listed below are implemented in the AOCS prototype framework.

The prototype AOCS assumes all sensors and actuators to be redundant. In order to facilitate
implementation of the prototype AOCS, the prototype framework provides a basic
reconfiguration manager to manage reconfigurations across a total of N identical units and a
reconfiguration manager to manage reconfigurations across sets of 4 reaction wheels.

Cold redundancy is assumed by all reconfiguration managers predefined in the prototype
framework.

Configuration state objects are provided for simple reconfigurations and for 1-out-4
redundancy management.

The reconfiguration design pattern is implemented by the reconfiguration managers
provided by the framework prototype.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 25

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 26

13 OPERATIONAL MODE MANAGEMENT FRAMELET

The operational mode management framelet defines the following architectural constructs:

OPERATIONAL MODE MANAGEMENT FRAMELET

Framelet Design Pattern

 Mode Management Pattern : pattern to endow components with mode-dependent behaviour

Framelet Core Components

AocsMissionModeManager : AOCS mission mode manager

ModeManager : core mode manager component

ModeChangeAction : encapsulation of a mode change action

Framelet Default Components

CyclingModeManager : cycling mode manager component

FollowerModeManager : follower mode manager component

NullModeChangeAction : default mode change action that does nothing

All the constructs listed above are implemented in the prototype AOCS framework.

Mode dependent behaviour is implemented in the following components in the prototype
framework:

• failure detection manager
• failure recovery manager
• telemetry manager
• unit triggers
• attitude controller

Pre-defined mode managers are provided for each of the above components. Except for the
telemetry manager that uses a cycling mode manager, all other mode-dependent components
use follower mode managers.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 27

Only hard-coded mode change actions are used in the prototype AOCS. Mode change action
objects are not used (except for the default NullModeChangeAction that is used to
configure mode managers).

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 28

14 MANOEUVRE MANAGEMENT FRAMELET

The manoeuvre management framelet defines the following interfaces and components:

MANOEUVRE MANAGEMENT FRAMELET

Framelet Interfaces

Manoeuvre : abstract class serving as base class for all manoeuvre classes

ManoeuvreMonitor : interface to be implemented by objects that need to be notified of changes in
manoeuvre status

Framelet Core Components

ManoeuvreManager : manoeuvre manager component

All the constructs listed above are implemented in the prototype AOCS framework.

TBW

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 29

15 FAILURE DETECTION FRAMELET

The failure detection management framelet defines the following interfaces and components:

FAILURE DETECTION MANAGEMENT FRAMELET

Design Pattern

Failure Detection Pattern: design pattern to separate the management of failure detection tests from
their implementation.

Framelet Interfaces

ConsistencyCheckable : interface for objects that can perform consistency checks on their
internal state.

FailureDetectionModeManager : interface for the operational mode manager for the failure
detection manager.

Framelet Core Components

MonitoringCheck : component encapsulating a monitoring check action

FailureDetectionManager : component encapsulating a failure detection manager

Framelet Default Components

FollowerFailureDetectionModeManager : default mode manager for the failure detection
manager based on the follower mechanism.

All the constructs listed above are implemented in the prototype AOCS framework.

Interface ConsistencyCheckable is implemented by the AOCS data objects and by event
repositories.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 30

16 FAILURE RECOVERY MANAGEMENT FRAMELET

The failure recovery management framelet defines the following interfaces and components:

FAILURE RECOVERY MANAGEMENT FRAMELET

Design Pattern

Failure Recovery Pattern: design pattern to separate the management of failure recovery from the
implementation of failure recovery strategies.

Framelet Interfaces and Base Abstract Classes

RecoveryAction : abstract base class for objects encapsulating recovery actions

RecoveryStrategy: abstract base class for objects encapsulating failure handling strategies

FailureRecoveryModeManager : interface for the operational mode manager for the failure
detection manager.

Framelet Core Components

FailureRecoveryManager : failure recovery manager component (including mode manager)

Framelet Components

SystemReset : recovery action component encapsulating a system reset

SystemReboot : recovery action component encapsulating a system reboot

ObjectReset : recovery action component encapsulating a reset on a specific object

Reconfiguration : recovery action component encapsulating a reconfiguration action

ModeChange : recovery action component encapsulating a mode change action

NullRecoveryAction : null recovery action

SystemResetOnTooManyFailures : failure recovery strategy to command a system reset if too
many failures are found in the failure recovery repository

LocalRecoveryActions : failure recovery strategy to perform the recovery actions associated to
each failure found in the failure recovery repository

FollowerFailureRecoveryModeManager : failure recovery mode manager based on based on
follower mechanism

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 31

The prototype framework includes a full failure recovery manager and the failure recovery
action and failure strategy components that are expected to be needed for the prototype
AOCS.

The next table summarizes the implementation status of the framelet constructs in the
prototype framework:

FAILURE RECOVERY MANAGEMENT FRAMELET

Design Pattern Implementation

Failure Recovery Pattern: implemented in failure recovery manager component.

Framelet Interfaces and Base Abstract Classes

RecoveryAction : implemented in failure recovery action components listed below

RecoveryStrategy: implemented in failure recovery action components listed below

FailureRecoveryModeManager : implemented in default failure recovery mode manager listed
below

Framelet Core Components

FailureRecoveryManager : implemented

Framelet Components

SystemReset : implemented

SystemReboot : not implemented

ObjectReset : implemented

Reconfiguration : implemented

ModeChange : implemented

NullRecoveryAction : implemented

SystemResetOnTooManyFailures : implemented

LocalRecoveryActions : implemented

FollowerFailureRecoveryModeManager : implemented

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 32

17 TELEMETRY MANAGEMENT FRAMELET

The telemetry management framelet defines the following interfaces and components:

TELEMETRY MANAGEMENT FRAMELET

Abstract Interfaces and Abstract Base Classes

TelemetryStream : abstract base class for telemetry streams

Telemeterable : interface for objects that can write their own state to telemetry

TelemetryModeManager : interface for the operational mode manager for the failure detection
manager.

Core Components

TelemetryManager : component encapsulating a telemetry manager (including mode
management)

Default Components

DmaTelemetryStream : implementation of TelemetryStream interface representing a DMA-
based telemetry stream

CyclingTelemetryModeManager : default mode manager for the telemetry manager component
implementing a cycling mode management mechanism.

MemorySection : component encapsulating a range of contiguous memory addresses that are to
be copied to the telemetry stream.

TestTelemetryStream : component simulating a telemetry stream (the telemetry data are sent to
a data file).

Design Patterns

Telemetry Management Pattern : design pattern to make an object a telemeterable object

All the constructs listed above are implemented in the prototype AOCS framework.

The prototype AOCS is based on a telemetry interface where raw telemetry data are collected
in DMA mode by dedicated hardware (see section 4.2). The prototype framework offers pre-
defined components that are intended to facilitate implementation of this type of telemetry

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 33

management. In particular, it offers a telemetry stream component that writes raw telemetry
data to a fixed memory buffer.

The Telemeterable interface foresees several telemetry formats. The prototype framework
implements only the normal and short format.

The Telemeterable interface is inherited by most objects in the AOCS software through
AocsObject. In the prototype framework, however, not-trivial implementations are only
provided for the following objects:

• AOCS data (instances of class AocsData and its subclasses)
• AOCS events (instance of class AocsEvent and its subclasses)
• Event repositories (instances of class EventRepository its subclasses)

The telemetry manager component is provided in full.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 34

18 TELECOMMAND MANAGEMENT FRAMELET

The telecommand management framelet defines the following interfaces and components:

TELECOMMAND MANAGEMENT FRAMELET

Framelet Design Patterns

Telecommand Transaction : design pattern to handle sequences of telecommands as a single entity

Framelet Interfaces

TelecommandLoader : interface for the telecommand loader

Framelet Core Components

Telecommand : base class for telecommands

TelecommandTransaction : base class for transaction telecommands

TelecommandManager : telecommand manager component

Framelet Default Components

ModeChangeTelecommand : simple telecommand to change the mode of a mode manager

ModeChangeTransactionTelecommand : transaction telecommand to change the mode of a
mode manager

TelemetryFormatTelecommand : simple telecommand to change the format of a telemeterable
object

ManoeuvreTelecommand : simple telecommand to load a parameterless manoeuvre in the
manoeuvre manager

AttitudeSlewTelecommand : simple telecommand to configure and load an attitude slew
manoeuvre

TelemetryFormatTransactionTelecommand : transaction telecommand to change the format
of a telemeterable object

ReconfigureTelecommand : simple telecommand to command a reconfiguration to a
reconfiguration manager

ReconfigureTransactionTelecommand : transaction telecommand to command a

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 35

reconfiguration to a reconfiguration manager

VsDmaTelecommandLoader : DMA-based telecommand loader for the Visual Studio environment.

Erc32DmaTelecommandLoader : DMA-based telecommand loader for the ERC32 environment
with the GNU compiler

All the constructs listed above are implemented in the prototype AOCS framework.

The telecommand manager is implemented in full.

The implementation of the telecommand loader assumes a DMA-based telecommand
interface. See section 4.3 for more details.

The loader assumes that the code for the telecommands is already present in the AOCS
software memory space and that only telecommand data are loaded.

University of Constance
Department of Computer Science

Software & Web Engineering Group
Prototype Definition
Issue 2.1
30 April 2002
Page 36

19 CONTROLLER MANAGEMENT FRAMELET

The controller management framelet defines the following interfaces and components:

CONTROLLER MANAGEMENT FRAMELET

Framelet Interfaces

Controllable : interface for controllers

MimoControllable : interface for MIMO controllers

Framelet Components

ControllerComponent : component encapsulating a controller (including mode management)

ControllerManager : component encapsulating a controller manager

The prototype framework only supports SISO controllers. This restriction is justified by the
absence of MIMO controllers in most current AOCS systems and in particular in the
prototype AOCS.

The controller components and the controller manager components are implemented in full.

TBW

