

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 1

SEQUENTIAL DATA PROCESSING FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the sequential data processing framelet. This framelet
proposes a design pattern to handle sequential
processing chains. It defines a standard interface for
handling data processing chains and provides an easy
way to combine data processing blocks.

Written By: A. Pasetti

Date: 30 April 2002

Issue: 2.2

Reference: SWE/99/AOCS/006

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 2

TABLE OF CONTENTS

1 REFERENCES.. 4
2 ACRONYMS.. 5
3 INTRODUCTION... 6

3.1 Context ... 6
3.2 Applicability to Java Version .. 7
3.3 Notation ... 7

4 FRAMELET CONSTRUCTS.. 8
5 CONTROL CHANNEL CONCEPT... 10

5.1 Data Propagation through Control Channels .. 11
5.2 Signal Loops .. 12
5.3 The Control Channel Design Pattern... 13
5.4 Recursion ... 15

6 ABSTRACT CONTROL CHANNELS ... 16
6.1 Hold/Release Operations.. 18
6.2 Input Linking .. 18
6.3 Control Channel Outputs .. 19
6.4 The Telemetry Interface ... 19
6.5 The Reset Interface ... 19
6.6 The Configurable Interface .. 19

7 CONTROL CHANNEL BLOCK IMPLEMENTATION.. 21
7.1 Memory Allocation... 23
7.2 Data Propagation .. 23
7.3 Hold\Resume Operations... 24
7.4 State Operations.. 25
7.5 The Telemetry Interface ... 25
7.6 The Reset Interface ... 25
7.7 The Configurable Interface .. 25
7.8 Concrete Control Channel Implementation ... 25
7.9 Interface to Xmath Autocode .. 27
7.10 Handling of %Variables in Autocode Wrappers ... 30

8 SUPER BLOCK IMPLEMENTATION... 32
8.1 Embedding Control Channels into Super Blocks .. 33
8.2 Data Propagation .. 34

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 3

8.3 Hold\Resume Operations... 34
8.4 The Telemetry Interface ... 35
8.5 The Reset Interface ... 35
8.6 The Configurable Interface .. 35

9 FRAMELET HOT-SPOTS .. 36
9.1 Control Block Hot-Spot.. 36
9.2 Recovery Action plug-In for Control Channels ... 36
9.3 Data Input link for Control Channels.. 37
9.4 Control Channel Input link for Control Channels... 37
9.5 Embedding of Control Channels in Super Blocks ... 38
9.6 Hold/Resume Hot Spot... 38
9.7 Xmath UCB Autocode Hot-Spot... 39
9.8 UCB Error Recovery Action Plug-In.. 39

10 FRAMELET FUNCTIONALITIES.. 40
10.1 Conventions... 40
10.2 Functionality List .. 40

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 4

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 A. Pasetti (2000), AOCS Framework – Concept Level Description, AOCS Framework
Document ref. SWE/99/AOCS/004

RD3 A. Pasetti (2000), Inter-Component Communication Framelet – Concept and Architecture
Description, AOCS Framework Document ref. SWE/99/AOCS/005

RD4 Deleted

RD5 MatrixX 6.1.3 On Line Documentation

RD6 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 5

2 ACRONYMS

AAD Attitude Anomaly Detection
AOCS Attitude and Orbit Control Subsystem
AST Autonomous Star Tracker
CSS Coarse Sun Sensor
ES Earth Sensor
FDIR Failure Detection, Isolation and Recovery
FPM Fine Pointing Mode
FSS Fine Sun Sensor
GYR Gyroscope
KF Kalman Filter
IAM Initial Acquisition Mode
OBDH On-Board Data Handling system (aka as OBDS)
NM Normal Mode
NTT Non-Time-Tagged
OCM Orbit Control Mode
OO Object-Oriented
PD Proportional-Derivative controller
PI Proportional-Integral controller
PID Proportional-Integral-Derivative controller
RRM Rate Reaction Mode
RTOS Real-Time Operating System
RW Reaction Wheel
SAS Sun Attitude Sensor
SBM Stand-By Mode
SPS Sun Presence Sensor
STR Star Tracker
SLM Slewing Mode
SM Safe Mode
TC Telecommand
THU Thruster
TM Telemetry
TT Time-Tagged

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 6

3 INTRODUCTION

This document describes the sequential data processing framelet for the AOCS framework.
The framelet is described at both the framelet concept level and at the framelet architectural
level.

This framelet proposes an architectural solution to the problem of processing data in the data
flow subsystem of the AOCS software. It defines a standard interface for processing blocks
and a way to combine individual blocks into nested chains of blocks.

The provision of a standard interface for data processing blocks enhances reusability because
it makes components independent of the data processing algorithms.

3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD1 and in particular with the overview of sequential
processing chains.

RD2 identified three architectural options for sequential data processing chains:

• Data Converters
• Control Channels
• Formal Language-based Solution

The first option was abandoned because it was limited to linear processing chains with a
well-defined first or last stage.

The third option is not considered here as unnecessarily complex. It may be taken up again in
a later iteration of the AOCS framework design.

The second option was retained and is the one that is presented in this document.

In comparing the present document with RD2, readers should bear in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce an
architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 7

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level – in particular its design
patterns – is language-independent and is equally applicable to both the C++ and Java
versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following
address: www.aut.ee.ethz.ch/~pasetti/RealTimeJavaFramework/index.html. Some specific
points to note are:

− The mechanism to link control channels to their inputs and outputs is different. It is no
longer based on the data item concept that was not carried over to the Java version of the
framework. It is instead based on the data sink and data source concept.

− The Java framework has an interface to Matlab autocoded routines as well as to Xmath
autocoded routines.

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

The class diagrams use UML notation generated with the reverse engineering tool of the
Together tool.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 8

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

DATA PROCESSING FRAMELET

Framelet Design Patterns

Control Channel Pattern: pattern to allow uniform treatment of control channel blocks and
superblocks

Framelet Interfaces and Abstract Base Classes

AbstractControlChannel : interface for control channels

ControlChannelBlock : abstract class encapsulating control channel block

XmathUcbBlock : abstract class offering an interface to Xmath autocode

Framelet Core Components

ControlChannelSuperBlock : container component for a control channel super-block

Framelet Default Components

P_Block : control block implementing a proportional transfer function

I_Block : control block implementing an integral transfer function

D_Block : control block implementing a derivative transfer function

AdderBlock : control block to add two inputs

DifferenceBlock : control block to take the difference of its two inputs

LimitBlock : control block to saturate an input

PassThruBlock : control block with unitary transfer function

SplitterBlock : control block to split a single input into several identical outputs

TwoByTwoMatrixBlock : control block implementing a 2x2 matrix multiplication transfer function

XmathUcbBlock : control block embedding a generic UCB routine from the Xmath autocode

XmathUcbPidBlock : control block implementing a PID controller (from Xmath autocode)

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 9

The components listed above are those offered by the prototype version of the AOCS
framework. Later version may offer a richer set of default implementations of the framelet
interfaces. In particular, they may offer a richer set of default control blocks implementing
transfer functions that are useful in AOCS systems.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 10

5 CONTROL CHANNEL CONCEPT

Control channels are the most general type of sequential processing chains. They can
represent any sequential multi-input-multi-output processing chain and allow concatenation
and nesting of individual processing blocks.

A sequential processing chain is made up of inter-connected processing blocks. More
specifically, the term control channel block (or simply block) will be used to designate a
processing block that cannot be further decomposed into lower level processing blocks.

Blocks can be concatenated in chains as shown in the figure:

�������

�������

������	

������

Arrows represent data flow. User input is fed to block 1. User output is taken from block 4.

Blocks chains can be nested within higher-level blocks called superblocks. Superblocks and
blocks can be freely mixed in processing chains as in the example in the figure in the next
page.

The control chain is enclosed in a superblock (superblock 3) with one input and two outputs.
The superblocks contains both two superblocks (superblocks 1 and 2) and one simple block.

Note that the terminology of blocks and superblocks is the same as in Xmath. Blocks and
superblocks as defined here map to the homonymous concepts in Xmath.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 11

�������

�������

������	

������

�����������

������� ������� �������

����������	

�����������

5.1 Data Propagation through Control Channels

In general, a control channel implements a transfer function of the following kind:

),(
),(

ttt

tttt

uxgy
uxfx

=
=∆+

where the usual notation is adopted with u representing the input vector, y the output vector
and x the state vector.

The fundamental operation to be performed on a control channel is the propagation of its
output signal from time (t-∆t) to time t. A propagate(t) operation will be defined on control
channel objects that causes their outputs to be propagated up to time t.

The time t to which the output values are propagated is called the last propagated time of the
control channel. Thus, at any time a variable lastPropagationTime is defined that
specifies the time to which state and output were last propagated. A call to propagate(t)
causes the state and output to be propagated from time lastPropagatedTime to time t.

In order to compute y(t), the control channel needs to know u(t). Thus, if control channels are
arranged in a sequential chain, a propagation request must be passed to upstream blocks.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 12

For example, consider again the control channel chain of the first figure in the previous
section. Suppose propagate(t) is called on block 4. Before this operation can be performed
on this block, it is necessary to update the inputs to the block and this is done by calling the
same operation propagate(t) on blocks 2 and 3. Thus, propagate requests percolate along
the processing chain.

Eventually, they will reach a control channel that takes its inputs from an object that is not
itself a control channel. Such external signals will be assumed to be fed to a control channel
using a zero-order hold. This means that their value will be assumed to be constant across
propagation instants.

To illustrate the zero-order hold concept, consider for instance the situation in the figure:

�������

� �

Suppose that both input and output have the same validity time t. Suppose now that
operation propagate(t+∆t) is called on the control channel. The control channel will
responds by updating its output to y(t+∆t) and it will do so by assuming that the input
remains constant and equal to u(t) throughout the propagation interval.

If a first-order hold were used, then the value of the input signal would be computed by
linear extrapolation from its last two known values. Higher order holding systems are also
possible. Zero-order holding is, however, by far the most commonly used type of holding
mechanism in satellite control systems and is the only one for which the AOCS framework
makes provisions.

5.2 Signal Loops

The mechanism outlined in the previous section cannot cope with signal loops.

Consider the situation shown in the figure:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 13

�������

������	

��������	
�

When the super block receives a propagate request, it will route it to block 1. Before
executing the propagate action, block 1 will try to update its inputs. It will do so by issuing
a propagate request to block 2. This will in turn try to update its inputs and will do so by
issuing a propagate request to block 1. An endless loop will result.

The example shows that signal loops in the control channel connections, either at block or
super block level, will result in an endless loop.

The propagation mechanism could be modified to handle loops (at the cost of some overhead)
but this is judged unnecessary as signal loops should not arise in an on-board control system.

Note that there is no loop detection mechanism. Responsibility for detecting loops rests with
the developer who makes the control channel connections.

5.3 The Control Channel Design Pattern

This design pattern is introduced to model the control channel concept and in particular the
distinction between blocks and super blocks. The control channel design pattern is obtained
by instantiating the composite pattern and it is shown in the following UML diagram:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 14

AbstractControlChannel is a pure interface that exposes the methods that are common to
all control channels, regardless of whether they are blocks or superblocks. Control channels
are always seen by their clients as instances of this class. Since both blocks and superblocks
are derived from AbstractControlChannel, they can be treated in a uniform manner as
instances of abstract control channels. The fundamental operation exposed by
AbstractControlChannel is propagate(t) that propagates the input signals to the output
up to time t as discussed in a previous section. This method gives rise to the control channel
hot-spot through which application developers must define the transfer function to be
implemented by the control channels they use.

Abstract control channels can be implemented either as control blocks or as control super
blocks. ControlChannelBlock is an abstract class that acts as base class for all concrete
control blocks. It provides concrete implementations of methods and data structure to
manage block operations. This class for instance provides data structures to buffer the input
and output signals and operations to reset them. Such data structures and operations are
common to all control channel blocks. This class is abstract because it does not provide any
implementation for method propagate. The implementation of this method defines the
concrete transfer function that is implemented by the control channel. Concrete control blocks
specialize ControlChannelBlock by providing concrete algorithms for the propagation of
the input signals through the control block. The AOCS Framework provides as default

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 15

components concrete implementations of this class that implement common transfer
functions such as PD blocks, PID controllers, integrators, etc.

Super blocks are represented by instances of class ControlChannelSuperBlock which is
derived from AbstractControlChannel. This class defines a default component that
manages a set of interconnected lower-level blocks. The lower-level blocks are seen as
instances of AbstractControlChannel since they can be either control channel blocks or
control channel super blocks.

Since both blocks and superblocks are derived from AbstractControlChannel, they can
be treated in a uniform manner as instances of control channels.

The way this pattern is instantiated in the framework is described in the next sections.

5.4 Recursion

Calls to method propagate() can be recursive since when they are called on a given
component A, they have to be propagated backward to all control channels directly or
indirectly linked to A’s inputs. The maximum depth of the recursion is given by the
maximum length of a chain of connected control blocks.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 16

6 ABSTRACT CONTROL CHANNELS

The AbstractControlChannel class is the interface through which any control channel is
seen by its clients:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 17

The semantics of public operations specific to the AbstractControlChannel class (ie
those not inherited from base classes) are described in the table:

propagate(t)

Propagate state and output equations from the current time (as defined by
lastPropagationTime) to the target time t (see section 5.1).

hold, release

See section 6.1.

linkInput(inputDataItem, i)

Link the i-th input of the control channel to the data item inputDataItem (see
section 6.2). Attempts to link a non-existent input will cause a configuration error
event to be raised.

linkInput(&controlChannel, i, j)

Link the j-th input of the control channel to i-th output of controlChannel (see
section 6.2). Attempts to operate on a non-existent input or output will cause a
configuration error event to be raised.

getOutput(i)

Returns the i-th output of the control channel as a DataItemRead. Attempts to
operate on a non-existent output will cause a configuration error event to be raised.

getEnclosingControlChannel, getEnclosingControlChannel

Control channels that are embedded within other control channels, need to have a
reference to their enclosing control channel. This reference is maintained in a
variable called enclosingControlChannel for which these are the getter and
setter methods. It is the responsibility of the developer to set the enclosing control
channel when the control channels are configured.

getLastPropagatedTime

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 18

Returns the time to which the state and outout were last propagated (see section
5.1). After a reset, this method returns the time when the control channel was reset.

getOutputOrder, getInputOrder

Returns the number of outputs and of inputs in the control channel.

getIllegalTimeRecoveryAction, setIllegalTimeRecoveryAction

If method propagate is called with a target time that is lower than
lastPropagatedTime (see section 5.1), then a failure event is raised. As usual, to
this event a recovery action is associated. These methods are the getter and setter
methods for such recovery action.

getPropagationToken, setPropagationToken

These methods should never be called by the application developers.

Many of the above methods are pure virtual methods since their implementation for control
blocks is difference from their implementation for super blocks.

6.1 Hold/Release Operations

State propagation can be temporarily suspended by putting a control channel in hold mode.
This is effected by calling its hold method. When in hold mode, the only component of a
control channel’s internal state to be updated is its propagation time. This means that the only
effect of a to propagate(t) when the block is in hold mode is to make
lastPropagatedTime=t. The control channel state and outputs remain constant.

Normal operation is resumed by calling method release.

6.2 Input Linking

The main function of a control channel is to process one or more input signals. The input
signals can be taken either from a fixed input source or from the output of another control
channels. The latter mechanism allows control channels to be linked in chains.

Linking to an external input source is done through the read data item mechanism. This
means that the control channel is given a ReadDataItem object that encapsulates a pointer to
the input source variable. This type of input link is set up by calling method

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 19

linkInput(inp, i) which associates the read data item inp to the i-th input of the control
channel.

Alternatively, the input of a control channel can be linked to the output of another control
channel. This is done through method linkInput(&cc, i, j) that associates the j-input
of the control channel to the i-th output of the source control channel cc.

In linking control channels to each other, care must be taken to avoid signal loops (see section
5.2).

6.3 Control Channel Outputs

The outputs of control channels can only be accessed as instances of type DataItemRead by
calling getOutput.

Any number of control channels can be connected to the same output of a certain control
channel. Every time a client of a control channel calls its getOutput method, the control
channel constructs a new DataItemRead giving read-only access to its output.

6.4 The Telemetry Interface

Abstract control channel inherit the telemeterable interface. However, they do not
provide a class-specific implementation for the associated methods. This is because there is no
state information that is associated specifically to abstract control channels and therefore it
does not make sense to define class-specific telemetry methods.

6.5 The Reset Interface

Abstract control channels inherit from AocsObject the resettable interface and must
therefore implement the corresponding method.

Method reset performs the following actions:

• sets the lastPropagatedTime to the current AOCS time.

6.6 The Configurable Interface

Abstract control channels are configurable objects and therefore have a non-trivial
implementation of the Configurable interface which they inherit from their base classes.

Method resetConfiguration performs the following actions:

• resets the embedded control channel pointer to NULL
• resets the pointer to the recovery action associated to the control block to NULL

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 20

There is no class-specific implementation of method isConfigured.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 21

7 CONTROL CHANNEL BLOCK IMPLEMENTATION

The conceptual structure of a control channel block is shown in the figure:

����������
���������

�����

������

�����

As can be seen in the figure, a control channel consists of buffers holding the input and
output signals, a propagation mechanism, and an (optional) set of internal state variables. The
dimension of the input and output buffers is given by the number of input and output
signals. Given that dynamic memory allocation is not allowed, input and output order will be
treated as parameters.

This conceptual structure is encapsulated by the following class:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 22

The public operations specific to the ControlChannelBlock class (ie those not inherited
from base classes) are described in the table:

isOnHold

Returns true is the control block is currently in hold state (see section 6.1).

getState(i), setState(i)

Getter and setter method for the i-th component of the block’s internal state.
Attempts to operate on a non-existent state will cause a configuration error event to
be raised.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 23

getStateOrder

Returns the size of the state buffer.

The most significant operations of the control channel class are presented in the next
subsections.

7.1 Memory Allocation

Control channel blocks maintain arrays to store the input, output and state buffers. The
operations defined at the level of class ControlChannelBlock are parameterized by the
number of inputs, outputs and states. The concrete number of inputs, outputs and states for a
particular control blocks is specified when the concrete control block is initialized.

Class ControlChannelBlock provides a protected method allocateMemory that is used
by concrete control blocks to allocate the input, output and state buffers. This method can
only be called once. Attempts to call it more than once will cause a configuration error event
to be raised.

7.2 Data Propagation

Data propagation is performed by calling propagate(t) which will cause the output
signals to be updated to the target time t.

The implementation of this method for control blocks is:

{
if (t<lastPropagatedTime)
{ . . . \\ raise failure event
}

updateInputs(t);
if ((t>lastPropagatedTime) || (initFlag))
{ if (!isOnHold())

{ propagationAlgorithm(t);
updateOutputBuffer(t);

}
lastPropagatedTime = t;
initFlag = false;

}
}

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 24

The method begins by checking that the target time is after the time to which state and output
where propagated. If this is not so, a failure event is raised.

As explained in section 5.1, before the propagation takes place, it is necessary to update the
inputs. This is done by calling the private operation updateInputs(t). This call essentially
causes propagate(t) to be called on recursively all upstream blocks.

The initFlag is not discussed here as it concerns the implementation of the Xmath interface
(see section 7.9).

Actual state and output propagation is done only if the block is not on hold. If it is, the only
effect of calling propagate(t) is to make lastPropagatedTime equal to t.

The actual propagation algorithm cannot of course be specified at the level of class
ControlChannelBlock since this algorithm is specific to each concrete control block. The
algorithm is encapsulated in method propagationAlgorithm that is the main hot-spot for
this class. Concrete classes must provided an implementation for this method to implement
the state and output propagation equations.

After the propagation algorithm has been implemented, the output buffers are updated.

7.3 Hold\Resume Operations

Control channel blocks inherit from the abstract control channel interface method hold and
resume. A call to method hold essentially freezes the block’s state that is no longer updated
in response to calls to method propagate. When the block is in the hold state, calls to
propagate simply result in an update of the time and have no effect on either the internal
state or the external output.

A call to resume updates the validity time to the current time1 and restores the normal
operation of the control block.

In order to understand the possible use of the hold\resume operations consider a control
block implementing an integrator. A call to hold causes the integrator to stop integrating the
input. Note that this is not equivalent to not calling propagate for the duration of the hold
interval.

1 Note that control blocks have access to the current time through AocsObject.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 25

7.4 State Operations

Control blocks normally maintain internal state variables. The number of state variables can
be obtained by calling getStateOrder. Individual state variables can be read or set as
variables of Real type with methods setState and getState. The first argument of these
methods specifies the state variables.

7.5 The Telemetry Interface

Control channel blocks inherit the telemeterable interface. However, they do not provide
a class-specific implementation for the associated methods. The type and format of telemetry
information for a control block must be defined at the level of concrete control blocks.

Note that the input and output data to a control channel are also available in other parts of
the AOCS software (typically in a data pool) and therefore it does not seem to make sense to
send the internal input, state and outputs of a control blocks to telemetry by default.

7.6 The Reset Interface

Control channel blocks inherit from AocsObject the resettable interface and must
therefore implement the corresponding method.

Method reset performs the following actions:

• resets the input and output buffers and the internal state of the control channel to zero.

7.7 The Configurable Interface

Control channel blocks are configurable objects and therefore have a non-trivial
implementation of the Configurable interface which they inherit from their base classes.

Method resetConfiguration performs the following actions:

• resets all the input links

Method isConfigured returns true if all inputs are connected to external data sources.

7.8 Concrete Control Channel Implementation

Concrete control blocks are implemented as subclasses of ControlChannelBlock.

Concrete control blocks inherit all the methods of ControlChannelBlock. They only need
to provide an implementation for the pure virtual method propagationAlgorithm to

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 26

implement the block-specific propagation algorithm. Normally, they will also provide
implementations for the following methods:

• reset : class-specific actions to reset the propagation algorithm.
• resetConfiguration : class-specific actions to reset the configuration of the

propagation algorithm. Typically this implies resetting all the algorithm parameters.
• telemetry methods : handling of class specific telemetry data.

The prototype framework provides the following concrete general purpose control blocks:

• I_Block

Block implementing an integral transfer function. The integration algorithm is:

y(k+1) = y(k) + G * ∆t * (u(k) + u(k+1))/2

G is a settable gain.

• P_Block

Block implementing a proportional transfer function. The implemented algorithm is:

y(k) = G*u(k)

G is a settable gain.

• D_Block

Block implementing a derivative transfer function. The implemented algorithm is:

y(k) = G*(u(k)-u(k-1))/ ∆t

G is a settable gain. The derivative is saturated not to exceed a settable threshold.

• DifferenceBlock

Block taking the difference of its inputs:

y(k) = u1(k) – u2(k)

• AdderBlock

Block adding together its two inputs:

y(k) = u1(k) + u2(k)

• PassThruBlock

Block implementing a unitary transfer function.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 27

• LimitBlock

Block saturating its input:

y(k) = u(k) if u(k)<L and u(k)>-L

y(k) = L if u(k)>L

y(k) = -L if u(k)<-L

• SplitterBlock

Block splitting its input among n outputs:

yi(k) = u(k) for n=1. . .n

• TwoByTwoMatrixBlock

Block implementing 2-by-2 matrix multiplication. The implemented algorithm is:

y(k) = A*u(k)

A is a 2x2 matrix whose elements are settable.

7.9 Interface to Xmath Autocode

The autocode tool of Xmath can generate code implementing an Xmath procedure
superblock. The AOCS framework offers a hook where such code can be plugged in. This
allows embedding of Xmath super block into framework control channels.

The format of the code generated by the Xmath autocode tool is determined by a template file.
In the interest of simplicity, the hook in the AOCS framework uses code generated using the
default autocode template file.

The autocode template when applied to a procedure block called <procedureblock>
generates a single C source code file that contains the following four subroutines:

• <procedureblock>

Routine implementing the input/output transfer function implemented by the Xmath
procedure superblock

• init_application_data

Routine that initializes any “%variables” used in the Xmath procedure super block

• subsys_1

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 28

Non-reentrant wrapper around <procedureblock>

• <procedureblock>_ucbblock

Reentrant UCB wrapper around <procedureblock>

The AOCS framework offers a component – an instance of class XmathUcbBlock – that acts
as a wrapper for the <procedureblock>_ucbblock routine. To be used in the AOCS
framework, the component must be initialized by specifying the size of the input, output and
state buffers for the procedure superblock and a pointer to routine
<procedureblock>_ucbblock. The latter should obviously be linked with the AOCS
framework.

Thus embedding of a code from Xmath does not require any manual intervention on the
AOCS framework code. All that is needed is the correct initialization of the wrapper
component and the linking in of the routine from autocode.

The UML diagram for class XmathUcbBlock is:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 29

The public operations specific to the ControlChannelBlock class (ie those not inherited
from base classes) are described in the table:

XmathUcbBlock(i,j,k,nR,nI,sT,uH)

Constructor to initialize the component. Its parameters are:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 30

i = number of inputs
j = number of outputs
k = number of states
nR = number of real parameters (should be 0 in the framework)
nI = number of integer parameters (should be 0 in the framework)
sT = sampling time
uH = pointer to the UCB routine generated by the autocode tool

setUcbErrorRecoveryAction, getUcbErrorRecoveryAction

The autocode UCB routine maintains an error flag which it uses to report internal
errors. The framework wrapper checks this error flag and, if it finds it to be set, it
raises a failure event. A recovery action can be associated to this failure event.
These are the setter and getter methods for this recovery action.

setSamplingTime

Setter method for the block’s sampling time. This operation should not be used by
AOCS application developers.

Class XmathUcbBlock is derived from class ControlChannelBlock and therefore
autocode wrapper components can be used like any other control channel with one important
restriction. The state and output propagation on control channel blocks can be done at
arbitrary times. The semantics of operation propagate(t) guarantees that the operation
will propagate the block’s state and output from its lastPropagatedTime to the target time
t. There is no requirement that propagate be called at regular intervals.

Xmath procedure blocks, however, model discrete transfer functions with fixed sampling
times. Their autocode image is therefore designed to be triggered at fixed intervals. Method
propagate on XmathUcbBlock should therefore also be called at fixed intervals. The interval
size (the procedure block sampling time) is one of the initialization parameters for this class.

7.10 Handling of %Variables in Autocode Wrappers

Class XmathUcbBlock does not offer any setter and getter methods for the %variables that
may be present in the Xmath procedure block. If a procedure super block contains such
variables and if it is desired to have access to them from the AOCS framework, it is necessary
to derive a class from XmathUcbBlock that adds getter and setter methods for the
%variables.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 31

The framework prototype offers an example of such a mechanism with class
XmathUcbPidBlock. This class acts as a wrapper for the code generated from an Xmath PID
block. The class diagram for XmathUcbPidBlock is:

ControlChannelBlo

XmathUcbBlock

XmathUcbPidBlock

+XmathUcbPidBlock(samplingTime:AocsTime)

+getTelemetryImageLength():int

+writeToTelemetry(stream:TelemetryStream *):void

+setKp(newKp:Real):void

+getKp():Real

+setKi(newKi:Real):void

+getKi():Real

+setKd(newKd:Real):void

+getKd():Real

Class XmathUcbPidBlock adds to its base getter and setter methods for the three
parameters of the PID controller and provides a new implementation of writeToTelemetry
that sends to the telemetry stream the three PID parameters.

Note that it is not possible to include generic management of %variables in class
XmathUcbBlock because the %variables have to be accessed by their name and these names
are specific to each Xmath procedure block.

It should also be noted that the default values of the %variables are hard-coded in routine
init_application_data. Hence, whenever a control channel embedding code from an
Xmath procedure super block is reset, its %variables are automatically reset to their initial
default values. Moreover, because of the way the initialization is performed by the Xmath
autocode, these initial default values will always be used the first time the propagate
operation is called. Changes to the %variables can only be done after propagate has been
called at least once.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 32

8 SUPER BLOCK IMPLEMENTATION

Super blocks are instances of class ControlSuperBlock. The UML diagram for this class is:

Since they are indirectly derived from AbstractControlChannel, super blocks can also be
treated as control channels.

The public operations specific to the ControlChannelBlock class (ie those not inherited
from base classes) are described in the table:

linkInputInternal(&controlChannel, i, j)

Links the i-th input of ControlChannel to the j-th input of the super channel (see
section 8.1).

linkOutputInternal(&controlChannel, i, j)

Links the i-th output of ControlChannel to the j-th output of the super channel (see

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 33

section 8.1).

8.1 Embedding Control Channels into Super Blocks

Super blocks act as containers for chains of connected control channels (see figure at the end
of section 5). The procedure for embedding control channels into a super block is as follows:

• connect together the control channels that are to be embedded. This is done by calling
operation linkInput on the control channels and results in a chain of control channels
being formed.

• connect the start of the chain to the input of the super block. This is done using operation
linkInputInternal.

• connect the end of the chain to the output of the super block. This is done using operation
linkOutputInternal.

Thus in the case of figure at the end of section 5, one would first connect superblock 2 and
block 6 and then one would connect the input of the outer superblock to the inputs of
superblocks 1 and 2 and the output of the outer superblock to the outputs of superblock 1 and
block 6.

Unlike control blocks (see figure at the beginning of section 7), super blocks do not maintain
internal buffers to store their inputs and outputs. This means that only one control channel
can be internally linked to the same input of the enclosing control channel. If it is desired to
connect more than one control channels to the same input, then a splitter block should be
used as shown in the figure:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 34

�������

�������

������	

 �������������������

���������������
�
�
���
��
��
��
��

A splitter block has one input and a user-defined number of outputs. Each output is identical
to the input. In the configuration in the figure, the splitter block ensures that control channesl
Block_1, Block_2 and Block_3 receive the same copy of the external input of the super
block within which they are embedded.

8.2 Data Propagation

Super blocks do not implement any propagation algorithm. They propagate their outputs by
propagating the outputs of the control channels they contain.

Thus, the method calls propagate on all the control channels connected to the superblock’s
output. The propagate call will then be automatically percolated downstream through the
entire control channel chains contained in the super block.

8.3 Hold\Resume Operations

Control channel super blocks inherit from the abstract control channel interface methods
hold and resume. Calls to these methods are directly propagated to all control blocks in the
super block. Thus, a call to method hold will cause the same method to be called on all
blocks in the super block. Calls to resume are similarly propagated to the blocks in the super
block.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 35

8.4 The Telemetry Interface

The telemetry methods are not implemented in super blocks in the prototype AOCS
framework. In a complete implementation, these methods would simply call their
counterparts on the blocks contained in the super block.

8.5 The Reset Interface

Super blocks inherit from AocsData the resettable interface and must therefore
implement the corresponding method.

Method reset on super blocks does not do anything on the super block itself which has no
internal state but it calls the reset method on the control channels it contains.

8.6 The Configurable Interface

Super blocks are configurable objects and therefore have a non-trivial implementation of the
Configurable interface that they inherit from AocsObject.

Method resetConfiguration resets the links to the embedded control block. Essentially, it
“empties” the super block. It does not, however, reset the configuration of the enclosed
control channels.

Method isConfigured returns true if all inputs and outputs are internally connected to
blocks inputs and outputs and if all enclosed control channels are configured (ie. if their
isConfigured methods return true).

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 36

9 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD6.

9.1 Control Block Hot-Spot

Name: Control Block Hot Spot

Visibility Level: framework-level

Adaptation Time: compile-time

Adaptation Method: derivation from base class ControlChannelBlock

Pre-defined Options: control block components exported by the framelet (see section 4)

Related Hot-Spots: none

Description

The base class ControlChannelBlock implements all the basic mechanisms for a control block
but leaves a hook for the algorithm defining the transfer function of the control block. This algorithm
is basically implemented by method propagationAlgorithm. which is a pure virtual method in
ControlChannelBlock.

Implementation of a concrete control block thus requires derivation of a class from
ControlChannelBlock. The derived class must, at a minimum, provide an implementation for
method propagationAlgorithm. Addtionally, it may be necessary to override methods reset, to
implement any initialization actions for the propagation algorithm, and the telemetry methds to send
some algorithm-specific data to the telemetry stream.

9.2 Recovery Action plug-In for Control Channels

Name: Recovery Action Plug-In for Control Channels

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in AbstractControlChannel class (method
setRecoveryAction)

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 37

Pre-defined Options: none. By default, no recovery action is associated to control channels.

Related Hot-Spots: none

Description

Control channels raise a failure event when method propagate is called with a target time that is
smaller than the current time. This hot-spot allows a recovery action to be associated to this failure.

9.3 Data Input link for Control Channels

Name: Data Input link for Control Channels

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in object in AbstractControlChannel class (method linkInput)

Pre-defined Options: none

Related Hot-Spots: control channel input link for control channels

Description

Control channels can be set up to take their input from an input source defined by a
DataItemRead object. The link is set by calling method linkInput.

9.4 Control Channel Input link for Control Channels

Name: Control Channel Input link for Control Channels

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in AbstractControlChannel class (method linkInput)

Pre-defined Options: none

Related Hot-Spots: data input link for control channels

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 38

Description

Control channels can be set up to take their input from the output of another control channel. The
link with the input control channel is done by calling method linkInput.

9.5 Embedding of Control Channels in Super Blocks

Name: Embedding of Control Channels in Super Blocks

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in components in ControlChannelSuperBlock class

Pre-defined Options: none

Related Hot-Spots: none

Description

Super blocks act as containers for other control channels. The lower level control channels are
embedded in a super block by using methods linkInputInternal and linkOuputInternal.

9.6 Hold/Resume Hot Spot

Name: Hold/Resume Hot Spot

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: feature enable/disable (methods release and resume)

Pre-defined Options: none. By default control channels are in released state.

Related Hot-Spots: none

Description

State propagation in control channels can be dynamically put on hold by calling the hold method
and can be dynamically resumed by calling the resume method.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 39

9.7 Xmath UCB Autocode Hot-Spot

Name: Xmath UCB Autocode Hot-Spot

Visibility Level: framework-level

Adaptation Time: compile-time

Adaptation Method: parameter in constructor for XmathUcbBlock class

Pre-defined Options: none.

Related Hot-Spots: none

Description

Class XmathUcbBlock acts as a wrapper for an UCB autocode routine from the Xmath. The UCB
routine is inserted into the AOCS framework by passing a pointer to it as a parameter to the
constructor for class XmathUcbBlock. The UCB routine must then be linked with the AOCS
framework.

9.8 UCB Error Recovery Action Plug-In

Name: UCB Error Recovery Action Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in XmathUcbBlock class (method setRecoveryAction)

Pre-defined Options: none. By default, no recovery action is associated to UCB errors.

Related Hot-Spots: none

Description

Class XmathUcbBlock acts as a wrapper for an UCB autocode routine from the Xmath. The UCB
routine maintains a flag with which it reports internal errors. The framework wrapper checks this
error flag and, if it finds it to be set, it raises a failure event. A recovery action can be associated to
this failure event.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 40

10 FRAMELET FUNCTIONALITIES

This section defines the functionalities offered by the framelets together with their mutual
relationships and their mappings to framelet architectural constructs. The definition follows
the guidelines of RD6.

10.1 Conventions

The functionality code defines the type of the functionality according to the following
convention:

• CF = can-functionality
• DF = do-functionality
• OF = offer-functionality

The following numbering conventions are used:

• if Fx is a functionality, then the functionalities that are obtained by expanding it are
numbered as Fx.n where n is 1, 2, 3, etc

• if CFx is a can-functionality, then the offer-functionality that implement it are numbered
CFx,n where n is 1, 2, 3, etc

10.2 Functionality List

The functionalities for the sequential data processing framelet are shown in the table below.
Each entry covers one functionality giving its definition, its relationships to other
functionalities (if any) and its mappings to framelets architectural constructs (if any).

The sequential data processing framelet can implement any control channel CF1

expands to DF1.1 and CF1.2

The sequential data processing framelet provides a generic and customizable
control channel super block

DF1.1

is-implemented-by ControlChannelSuperBlock component

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 41

The sequential data processing framelet can implement control channel
blocks implementing an arbitrary transfer function

CF1.2

matches Control Block Hot-Spot

The sequential data processing framelet offers a control block implementing a
proportional transfer function.

OF1.2.1

is-implemented-by P_Block Component

matches Control Block Hot-Spot

The sequential data processing framelet offers a control block implementing a
derivative transfer function.

OF1.2.2

is-implemented-by D_Block Component

matches Control Block Hot-Spot

The sequential data processing framelet offers a control block implementing
an integral transfer function.

OF1.2.3

is-implemented-by I_Block Component

matches Control Block Hot-Spot

The sequential data processing framelet offers a control block implementing a
difference function.

OF1.2.4

is-implemented-by DifferenceBlock Component

matches Control Block Hot-Spot

The sequential data processing framelet offers a control block implementing a
unitary transfer function.

OF1.2.5

is-implemented-by PassThruBlock Component

matches Control Block Hot-Spot

OF1.2.6 The sequential data processing framelet offers a control block implementing a
saturation transfer function.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 42

 is-implemented-by LimitBlock Component

matches Control Block Hot-Spot

The sequential data processing framelet offers a control block implementing
an adder transfer function.

OF1.2.7

is-implemented-by AdderBlock Component

matches Control Block Hot-Spot

The sequential data processing framelet offers a control block implementing a
splitter transfer function that split an input among n identical outputs.

OF1.2.8

is-implemented-by SplitterBlock Component

matches Control Block Hot-Spot

The sequential data processing framelet offers a control block implementing a
2x2 matrix multiplication transfer function.

OF1.2.9

is-implemented-by TwoByTwoMatrixBlock Component

matches Control Block Hot-Spot

The sequential data processing framelet offers a control block implementing a
PID controller.

OF1.2.10

is-implemented-by XmathUcbPidBlock Component

matches Control Block Hot-Spot

The sequential data processing framelet offers a control block that embeds a
generic UCB routine generated by the Xmath autocode tool.

OF1.2.11

is-implemented-by XmathUcbBlock Component

matches Xmath UCB Autocode Hot-Spot

DF1.2.6.1 The Xmath control block of OF1.2.6 reports failures detected by the UCB
routine by the Xmath autocode tool.

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 43

 is-implemented-by XmathUcbBlock Component

uses DFx from component communication framelet (failure reporting service)

Any recovery action can be associated to the failure report of DF1.2.6.1. CF1.2.6.2

matches the UCB Error Recovery Action Plug-In Hot Spot

uses DFx from component communication framelet (association of recovery
actions to failure events)

Control channels are telemeterable. DF1.1.1

is-implemented-by ControlChannelSuperBlock and ControlChannel Block
components

uses CF3 from telemetry framelet

Control channels provides reset and configuration services. DF1.1.2

is-implemented-by ControlChannelSuperBlock and ControlChannel
components

uses CF1 from the system management framelet (reset services)

uses CF2 from the system management framelet (configuration services)

Any non-cyclical chain of linked control channels can be embedded in a
control channel super block.

CF1.1.3

matches Embedding of Control Channels in Super Blocks Hot-Spot

State propagation inside any control channel can be held or resumed
dynamically.

CF2

matches the hold/resume Hot-Spot

The input of a control channel can be dynamically linked to any data item
object.

CF3

matches the data input link Hot-Spot
uses DFx from component communication framelet (data item components)

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Data Processing Framelet
30 April 2002
Issue 2.2
Page 44

The input of a control channel can be dynamically linked to the output of
another control channel provided that the linking operation does not give rise
to any cycles.

CF4

matches the control channel input link Hot-Spot

Control channels check for and report configuration errors occurring during
the input and output linking process.

DF5

is-implemented-by ControlChannelBlock and ControlChannelSuperBlock
components

uses DFx from component communication framelet (configuration error
reporting service)

Control channels check that the target propagation time is greater than the
current time and report a failure if this is not the case.

DF6

is-implemented-by ControlChannelBlock component

uses DFx from component communication framelet (failure reporting service)

Any recovery action can be associated to the failure report of DF6. DF7

matches Recovery Action Plug-In for Control Channels.

uses DFx from component communication framelet (association of recovery
actions to failure events)

