EoE University of Constance Software & Web Engineering Group
o Dept. of Computer Science Failure Recovery Framelet
N 30 April 2002
Issue 2.2
i ‘ ‘ Page 1

FAILURE RECOVERY MANAGEMENT FRAMELET

Concept And Architecture Description

Abstract

This document was written as part of the study “Design
and Prototyping of a Software Framework for the AOCS”
done under contract Estec/13776/99/NL/MV for ESA-
Estec. The purpose of the study is the development of a
software framework for the Attitude and Orbit Control
Subsystem (AOCS) of a satellite. The framework will be
built as a collection of framelets. This document describes
the failure recovery management framelet. This framelet
defines an architecture to handle failure recovery tasks.
The framelet enhances reusability because it decouples
the task of managing the failure recovery function from
the task of carrying out the failure recovery actions.

Written By: A. Pasetti
Date: 30 April 2002
Issue: 2.2

Reference: SWE/99/A0CS/011

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
i ‘ ‘ Page 2
|

TABLE OF CONTENTS

L o N = T USSR 4

ACRONYMS ...ttt ettt ettt ettt te et et e see st e neebeee et eeesee e eneeeeseeneeneeeens 5

INTRODUGCTION ...ttt ettt sttt sttt st s e st st e et e tesbes et s teeee st e seabeseeneaseseeneeneanens 6
Nt R O] 01 1= A TRV URR TP 6
3.2 ApPlicability 10 JAVA VEISIONcce ittt 6
TR B N\ Lo =11 T] [OOSR 7

FRAMELET CONSTRUCTS ...ttt ettt ettt sttt e et steneenesse e e enas 8

FAILURE RECOVERY ACTIONS ...ttt sttt sttt 10
5.1 Types 0f RECOVEIY ACHION. ..ottt 12
5.2 System ReSet RECOVEIY ACHION.......cccoiiiiiiiii ittt 12
5.3 System Reb00t RECOVENY ACHION.......cccociiiiiieccc e sttt st re e e nne 13
54 Object RESEL RECOVEIY ACHIONocvviieiicic ettt st e e sresrennea 13
5,5 Reconfiguration RECOVEIY ACLIONcccoiiiiiiieiii et st sre e s snea 14
56 Mode Change RECOVENY ACHION ...ttt 15
5.7 NUIIRECOVEIY ACHION ...ttt ettt sb e 16
5.8 Failures during RECOVEIIES ..o iiii it e ettt st sttt e e s te e e nre e e nne 16
5.9 Recovery Actions With IMEMIOINYcc.cciiiiiiiieciiies e sttt sre e 16
5.10 TelemMetry INTEITACEScviiieieie ettt 17
5.11 The Reset and Configurable INtErfaces............cocoiiiiiiiiiine i 18

FAILURE STRATEGIES ..ottt sttt st v et en e e 20
6.1 Types Of FAIlUIe SIrategiSscccvviiiiice et e e 22
6.2 TelemMetry INTEITACEScccv ittt st e e e e e te e e ee e e nrenneas 23
6.3 The Reset and Configurable INTErfaces...........ccoiiriiciiiiiee e 24

FAILURE RECOVERY EVENT ..ottt ettt sttt 25
7.1 The Telemetry INTEITACE ..o 25
7.2 The Reset and Configurable INterface ..o 26

THE FAILURE RECOVERY DESIGN PATTERNcooiiiiiiiiee e 27
8.1 Instantiation of Failure RecoVery Pattern ... 28
8.2 The Failure RECOVEIY MAEaNAJETccooiiiiiiiieiiitiieiete ettt 29
8.3 Failure Recovery MOde Man@QENcccvivieiieiieiese e eseieie et see st sre e e e sneee s 30
B =TT | €] o] o TSP SSTPR 32

FRAMELET HOT-SPOTS ...ttt sttt sttt s bt aesesne b e 33

9.1 Failure Recovery Mode Manager PIUG-IN ... 33

Efs University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== 30 April 2002
Issue 2.2
i ‘ ‘ Page 3
|
9.2 ReCOVEry ACLION HOT-SPOL.......ccciiiiieiiiiie sttt nne s 33

9.3 Recovery Strategy Hot-Spot

Efs University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== 30 April 2002

Issue 2.2

Page 4

1 REFERENCES

RD1 E. Gamma et al. (1995), Design Patterns — Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley

RD2 W. Pree, A. Pasetti (2000), AOCS Framework — Concept Level Description, AOCS
Framework Document ref. SWE/99/A0CS/004

RD3 W. Pree, A. Pasetti (2000), Operational Mode Management Framelet, AOCS Framework
Document ref. SWE/99/A0OCS/009

RD4 A. Pasetti (2001), Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, To appear in Dec. 2001

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet

30 April 2002

Issue 2.2

Page 5

2 ACRONYMS

AAD
AOCS
AST
CSS
ES
FDIR
FPM
FSS
GYR
KF
IAM
OBDH
NM
NTT
OCM
0]0)
PD

Pl
PID
RRM
RTOS
RW
SAS
SBM
SPS
STR
SLM
SM
TC
THU
™
TT

Attitude Anomaly Detection

Attitude and Orbit Control Subsystem
Autonomous Star Tracker

Coarse Sun Sensor

Earth Sensor

Failure Detection, Isolation and Recovery
Fine Pointing Mode

Fine Sun Sensor

Gyroscope

Kalman Filter

Initial Acquisition Mode

On-Board Data Handling system (aka as OBDS)
Normal Mode

Non-Time-Tagged

Orbit Control Mode

Object-Oriented
Proportional-Derivative controller
Proportional-Integral controller
Proportional-Integral-Derivative controller
Rate Reaction Mode

Real-Time Operating System

Reaction Wheel

Sun Attitude Sensor

Stand-By Mode

Sun Presence Sensor

Star Tracker

Slewing Mode

Safe Mode

Telecommand

Thruster

Telemetry

Time-Tagged

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== 30 April 2002

Issue 2.2

Page 6

3 INTRODUCTION

This document describes the failure recovery management framelet for the AOCS framework.
The framelet is described at both the framelet concept level and at the framelet architectural
level.

This framelet defines an architecture to handle failure recovery tasks.

The framelet enhances reusability because it decouples the task of managing the failure recovery
function from the task of implementing failure recovery algorithms.

3.1 Context

The context for the design of the framelet is described in RD2. The present document assumes
that the reader is familiar with RD2 and in particular with the sections dealing with failure
recovery management and with the overall FDIR approach.

The architecture proposed here follows the concept outlined in RD2.

In comparing the present document with RD2, readers should bear in mind that the class
definitions presented in the latter document are not necessarily entirely consistent with the
class definitions presented here. This is because the main purpose of RD2 was to introduce an
architectural concept whereas the main purpose of the present document is to describe an
architecture. The design presented here therefore should be regarded as an evolution of the
design presented in RD2.

3.2 Applicability to Java Version

The AOCS Framework was first implemented in C++ and then ported to Java. This document
was originally written for the C++ version and is only partially applicable to the Java version.
Generally speaking, the description of the framelet at design level — in particular its design
patterns — is language-independent and is equally applicable to both the C++ and Java
versions whereas the architectural-level description is more tied to the C++ version. For a
detailed description of the architecture of the Java framework, readers should refer to the
JavaDoc documentation generated from it.

The porting of the AOCS Framework to Java was done in the "Real Time Java Project". The
issues that should be borne in mind when using this document for the Java version of the
AOCS framework are presented in the project web site currently located at the following
address: www.aut.ee.ethz.ch/~pasetti/Real TimeJavaFramework/index.html. Some specific
points to note are:

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
i ‘ ‘ Page 7
|

— Events in the Java framework are implemented using the Java event mechanism.

— The recovery event repository hot-spot (section 9.4) is not applicable to the Java
framework. Event repositories are event listeners and can be linked to the mode manager
through the associated addLi st ener methods.

3.3 Notation

The pseudo-code examples in this document use a C++ notation.

The class diagrams use UML notation generated with the reverse engineering tool of the
Together tool.

Efs University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
T Page 8
|

4 FRAMELET CONSTRUCTS

The architectural constructs exported by this framelet are listed in the following table:

FAILURE RECOVERY MANAGEMENT FRAMELET

Design Pattern

Failure Recovery Pattern: design pattern to separate the management of failure recovery from the
implementation of failure recovery strategies.

Framelet Interfaces and Base Abstract Classes

Recover yAct i on : abstract base class for objects encapsulating recovery actions
Recover ySt r at egy: abstract base class for objects encapsulating failure handling strategies

Fai | ur eRecover yModeManager : interface for the operational mode manager for the failure
detection manager.

Framelet Core Components

Fai | ur eRecover yManager : failure recovery manager component (including mode manager)

Framelet Components

Syst emReset : recovery action component encapsulating a system reset

Syst enReboot : recovery action component encapsulating a system reboot

hj ect Reset : recovery action component encapsulating a reset on a specific object
Reconf i gurati on :recovery action component encapsulating a reconfiguration action
ModeChange : recovery action component encapsulating a mode change action

Nul | Recover yActi on : null recovery action

Syst enReset OnTooManyFai | ur es : failure recovery strategy to command a system reset if too
many failures are found in the failure recovery repository

Local Recover yActi ons : failure recovery strategy to perform the recovery actions associated to
each failure found in the failure recovery repository

Fol | ower Fai | ur eRecover yModeManager : failure recovery mode manager based on based on
follower mechanism

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
i ‘ ‘ Page 9
|

The components listed above are those envisaged for the prototype version of the AOCS
framework. Later versions may offer a richer set of default implementations of the framelet
interfaces. In particular, more recovery action and recovery strategy components might be
provided.

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
T Page 10
|

5 FAILURE RECOVERY ACTIONS

In general, the AOCS software can react to a specific failure event by performing one or more
failure recovery actions. A failure recovery action therefore represents a local response to a
failure. The response is said to be local because it is based on a single failure report. A global
response would take account of sets of failure reports.

Failure recovery actions are encapsulated in objects derived from class Recover yAct i on:

Root Obj ec
Reset t abl
Confi gur ablj
Tel emet er abl
Aocshj ect

2]
—

0..

Recover yActi on

+Recover yAction()

+doRecovery():void

+reset Configuration():void

treset():void

+writeToTel emetry(stream Tel enetryStream *): vi
+get Tel emet ryl mageLengt h():i nt

+set Next Recover yActi on(r: RecoveryAction *):voi
+get Next Recover yAction(): RecoveryAction *
+enabl e():void 0.1
+di sabl e():void
+i sEnabl ed() : bool

| [xd

The public methods specific to this class (ie. not inherited from base classes) are described in
the table:

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
T Page 11
|

doRecovery()

Implement the recovery actions encapsulated by the component.

enabl e(), disable(), isEnabled()

Recovery actions can be enabled or disabled. These operations allow the enable
status of the recovery action to be changed and to be queried. Execution of
operation doRecovery on a disabled recovery action is equivalent to a no-op.

get Next RecoveryAction(), setNextRecoveryAction()

Recovery actions can be chained (see below). These are the getter and setter
methods for the next recovery actions in the link chain.

Recovery actions can be linked in a linear chain as shown in the picture:

nextRecoveryAction nextRecoveryAction nextRecoveryAction 41— NULL

\ 4

\ 4

RecoveryAction_1 RecoveryAction_2 RecoveryAction_2

The implementation of doRecovery provided by the base class Recover yAction is as
follows:

i f (nextRecoveryAction !'= NULL)
next Recover yAct i on- >doRecovery();

A typical implementation of doRecovery in a subclass of Recover yActi on would be as
follows:

voi d doRecovery() {
.o /1 performcl ass-specific recovery action
RecoveryAction: : doRecovery();

This means that execution of a recovery action will lead to execution of all recovery actions
that are linked to it. Thus, a single recovery action can in fact represent any number of

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
T Page 12
|

recovery actions to be executed in sequence. In practice, this allows several recovery actions
to be associated to the same failure event.

5.1 Types of Recovery Action

Class Recover yAct i on is the base class for all recovery actions. By itself, it does not define
any concrete action. Concrete recovery actions are defined by subclasses of
Recover yActi on. Typical failure recovery actions would include:

* Reset of the AOCS software

* Reboot of the AOCS software

» Reset of one or more AOCS objects

» Reconfiguration of one or more units
» Fall-back to a lower operational mode

To each type of recovery action there corresponds a concrete class derived from
Recover yAct i on. More details are provided in the next sub-sections.
5.2 System Reset Recovery Action

This recovery action uses the services of the Syst emReset object to perform a system reset of
the AOCS. The UML diagram of this recovery action is:

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== 30 April 2002

Issue 2.2

Page 13

Rootobject
Reszettable

RootChject| 01 Configurahle
SystemManagerﬁ Telemeterahle

—r—
e AocsObject

=]

I:I..l,n

RecoveryAction 0.1
&

SystemBeset

+BvystemReset

+doRecoveryvoid
é

The system reset is performed by using the systenReset service offered by the
Syst emvanager component. The recovery action retrieves the reference to the system
manager using one of the services offered by its parent class AocsChj ect .

5.3 System Reboot Recovery Action

This recovery action performs a system reboot. No default implementation is provided by the
framework since a system reboot requires interfacing to the low-level drivers of the operating
system

5.4 Object Reset Recovery Action

Objects that are derived from AocsCbj ect implement the Reset t abl e interface and can
thus be reset. Reset of a specific object can be a failure recovery action. The UML class
diagram of the corresponding class is:

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
i 30 April 2002
Issue 2.2
i i i Page 14
|
AncsOhject
Recoveryfction 0.1
f_él
ObjectReset . ,[_OblectToBeReset
-ohjectToBeResetAocsChject ™

+hjectResetiohjectToBeReset AocsOhject ™)
+doRecoveryd void

doRecovery §
ohjectToBeReset-reset();

}

The object to be reset is passed as a parameter to the constructor.

If several objects have to be reset in response to the same failure event, their reset recovery
actions can be strung together in a chain.

5.5 Reconfiguration Recovery Action

Reconfigurations are typical responses to failures. The corresponding recovery action object is
shown in the figure:

AncsObject

RecoveryAction 0.1
é

Reconfiguration
Reconfiqurable 0 -objectToBeReconfigured:Reconfigurable *

+Reconfiguration{objectToBeReconfigured:Reconfigurahle =)
+doRecovery()void

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
Page 15
|

The recovery action holds a reference to an object of type Reconfi gur abl e, namely to an
object that can be reconfigured. The implementation of doRecovery calls the reconfi gure
method on it and causes the reconfiguration to be performed.

The object to be reconfigured is passed as a parameter to the constructor.

If several objects need to be reconfigured, this effect can be achieved by stringing together
several reconfiguration actions.

5.6 Mode Change Recovery Action

Operational mode changes — including fall-backs to safe and survival modes — are another
common response to failure events. Mode changes are handled by the following class:

AocsOhject
RecoveryAction 0.1

il

AocsOhject o1 ModeChange
ModeManager . -rmodeManageriodeManager *
-neswehiode:int

+ModeChange(modeManagerModemManager * newhode:int
+doRecovery(void

Mode changes are performed by acting on mode managers. The mode manager to be acted
upon and the target operational mode are passed as parameters to the constructor.

Chaining of recovery actions is again possible to perform several mode changes on several
objects.

Note that in the AOCS framework, operational mode is a property of individual objects rather
than of the AOCS as a whole. If it is desired to effect a mode change throughout the AOCS,
the AOCS mission mode can be changed by acting on the AOCS mission manager object.

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
T Page 16
|

5.7 Null Recovery Action

The failure reporting mechanism requires that to each failure a recovery action be associated.
Failure events that have been created without a recovery action will give rise to a failure
when they are processed by the failure recovery manager.

Sometimes, however, it is not possible for the AOCS developer to associate a specific recovery
action to certain failures. In order to cater for such contingencies, a null failure recovery action is
predefined. This is a recovery action whose implementation of method doRecovery does
nothing and simply hands over to the next recovery action in the chain (if one exists).

Null recovery actions are obtained as instance of class Nul | Recover yAct i on.

5.8 Failures during Recoveries

Method doRecovery may call on other methods offered by other classes to implement its
recovery action. These methods may in turn encounter failure situations that will cause the
generation of failure events. Thus, the execution of recovery from a failure may itself give rise
to the generation of a failure event. The latter may have its own recovery action associated to
it. This situation can arise because the present version of the AOCS framework foresees a
single level of failure detection and recovery and requires some care on the part of the
application developed in the association of recovery actions to failures. See RD2 for a more
detailed discussion of an alternative approach.

5.9 Recovery Actions with Memory

Recovery actions can be endowed with “memory”. Consider for instance the case of a Kalman
Filter to which a recovery action is associated that is triggered when the filter diverges. The
nominal recovery for a filter divergence may be a filer reset. However, the recovery action
object may be made to remember the last time it was called and, if it finds that it is called too
frequently, it can decide that there is a fundamental control failure and may react by
commanding a mode fall-back.

Recovery actions with memory can be derived by extending through inheritance the basic
components provided by the framework. As a simple example, consider the case of the
recovery action for the Kalman filter divergence. An outline implementation could be;

class Obj ect Reset WthCheck : public ObjectReset {

AocsTi ne ti neCf Last Reset ;
AocsTi me threshol d;

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
i ‘ ‘ Page 17
|
public :

voi d doRecovery() {
if ((current time — tinmeOf Last Reset)>threshold)
Cbj ect Rest e: : doRecovery();

el se

{ .o /1l failures were too close together, take
/1 sonme nore drastic recovery action

}

timeCf Last Reset =current tine;

Thus, the implementation of the doRecovery uses the implementation in the base class
under nominal condition but introduces some special action in case two successive failures
occur at too close an interval.

5.10 Telemetry Interfaces

Failure recovery actions may in principle implement complex algorithms. The objects that
represent them are therefore derived from AocsChj ect to make it possible to reset them and
write their state to telemetry.

The data sent to the telemetry stream by an object of the base class Recover yAct i on in each
telemetry mode are summarized in the table:

TM Format TM Data
Short none
Normal enabled status
Long Normal TM + instance ID of next Recover yActi on
Debug same as Long TM

Class Syst enReset does not add any class-specific telemetry data.

Class Obj ect Reset adds the following class-specific telemetry data:

Efs University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=K 30 April 2002
Issue 2.2
(T Page 18
|
TM Format TM Data
Short none
Normal none
Long instance ID of object to be reset
Debug same as Long TM

Class Reconf i gur abl e adds the following class-specific telemetry data:

TM Format TM Data
Short none
Normal none
Long instance ID of object to be reconfigured
Debug same as Long TM

Class ModeChange adds the following class-specific telemetry data:

TM Format TM Data
Short none
Normal none
Long instance ID of mode manager and target mode
Debug same as Long TM

In all cases, calls to telemetry methods are propagated along a chain of linked recovery

actions.

5.11 The Reset and Configurable Interfaces

Recovery actions inherit from AocsCbj ect the Resett abl e and Confi gur abl e interfaces
and must therefore implement the corresponding method.

A call to method r eset on a recovery action causes its enable status to be set to Enabl ed.

Efs University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
T Page 19
|

A call to method r eset Conf i gur ati on unloads the next recovery action in the chain of
linked recovery actions.

EnE University of Constance Software & Web Engineering Group

o Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
i Page 20
|

6 FAILURE STRATEGIES

A failure strategy is a set of coordinated responses to the failure events in the failure event
repository.

Failure strategies are encapsulated in objects instantiated from subclasses of the base class
Fai | ureStrat egy:

Root Obj ec

Reset t abl

Confi gur ablj

Tel emet er abl
Aocsbj ect

2]
—

RecoveryStrat egy

+RecoveryStrategy()
+doRecovery():void

+reset Configuration():void

+i sConfi gured(): bool

treset StaticConfiguration():void

+reset():void

+writeToTel enetry(stream Tel emetryStream *):void

+get Tel enet ryl mageLengt h(): i nt

+set Next RecoveryStrategy(r: RecoveryStrategy *):void

+get Next RecoveryStrategy(): RecoveryStrategy *

+set Recover yEvent Reposi tory(r: RecoveryEvent Repository *)

+get Recover yEvent Repository(): RecoveryEvent Repository * o .1

+enabl e():void
+di sabl e():void
+i sEnabl ed() : bool

| [

The public methods specific to this class (ie. not inherited from base classes) are described in
the table:

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== 30 April 2002

Issue 2.2

Page 21

doRecovery()

Implement the recovery strategy encapsulated by the component.

enabl e(), disable(), isEnabled()

Recovery strategies can be enabled or disabled. These operations allow the enable
status of the recovery strategy to be changed and to be queried. Execution of
operation doRecover y on a disabled recovery strategy is equivalent to a no-op.

get Next RecoveryAction(), setNextRecoveryAction()

Recovery strategies can be chained (see below). These are the getter and setter
methods for the next recovery actions in the link chain.

get Recover yEvent Reposi tory(), setRecoveryEventRepository ()

Recovery strategies can generate recovery events. These are the getter and setter
methods for the recovery event repository.

Recovery strategies can be linked in a linear chain as shown in the picture;

nextRecoveryStrategy. nextRecoveryStrategy. nextRecoveryStrategy » NULL

\ 4

A 4

RecoveryStrategy 1 RecoveryStrategy 2 RecoveryStrategy_3

The implementation of doRecovery provided by the base class Recover yActi on is as
follows:

i f (nextRecoveryAction != NULL)
next Recover yActi on- >doRecovery();

A recovery strategy may or may not hand over to the next recovery strategy in the chain
depending on some internally-determined condition. Thus, for instance, recovery strategy
Syst enReset OnTooManyFai | ures (see section 6.1 below) first checks the number of

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== 30 April 2002

Issue 2.2

Page 22

failure events in the event repository. If this above a certain threshold, it commands a system
reset and then returns. If, however, the number of failure events is below the threshold, then
the failure strategy hands over to the next failure strategy in the chain.

A typical implementation of doRecovery in a subclass of RecoveryStrategy
implementing a hand-over to the next recovery strategy in the chain is as follows:

voi d doRecovery() {

.o /I performclass-specific recovery strategy

if appropriate
RecoveryAction:: doRecovery(); //hand-over to next strategy in chain

}

Thus, a recovery strategy has the option either to hand over to the next strategy in the chain
or to interrupt the recovery process.Note that this means that the order in which recovery
strategies are linked together is significant.

6.1 Types of Failure Strategies

Fai | ureStrat egy is the base class for all recovery strategies. By itself, it does not define
any concrete action. Concrete recovery actions are defined by subclasses of
Recover yAct i on. Typical failure recovery strategies would include:

« Sequence of local recovery actions

This strategy retrieves from the event repository the failure events generated since the last
call to doRecover y and performs the recovery actions associated to each event.

e System reset on too many failures

This strategy checks the number of failure events in the repository generated since the last
call to doRecovery and if it finds that it exceeds a predefined threshold, it commands a
system reset. The system reset is performed as a service request to object Syst enReset .

e System reset on configuration error

This strategy checks the number of configuration events in the repository generated since
the last call to doRecovery and if it finds that any configuration errors have occurred, it
commands a system reset. The system reset is performed as a service request to object
Syst enReset .

The class diagram for these concrete recovery strategies is shown below:

University of Constance
Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet

e h :
= 30 April 2002
Issue 2.2
s Page 23
|
AocsObj ec
RecoveryStrat egy 0.1
&

Syst enReset OnTooManyFai | ur ej

-]

A

-]

Syst emReset OnConf i gur at i onErj

Local Recover yActi ons J
[

When objects instantiated from class Local Recover yAct i ons find a failure event without
its associated recovery action, they generate a failure event. Getter and setter methods for the
associated recovery action are offered by the class.

6.2 Telemetry Interfaces

Failure recovery strategies may in principle implement complex algorithms. The objects that
represent them are therefore derived from AocsChj ect to make it possible to reset them and
write their state to telemetry.

The data sent to the telemetry stream by an object of the base class RecoveryStrat egy in
each telemetry mode are summarized in the table:

TM Format TM Data
Short none
Normal enabled status
Long Normal TM + instance ID of next Recover yStr at egy
Debug same as Long TM

Class Local Recover yAct i ons adds the following class-specific telemetry data:

T™M Format

TM Data

Short

none

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== 30 April 2002

Issue 2.2

Page 24

Normal none
Long instance ID of recovery action
Debug Long TM + failure event counter

Class Syst enReset OnTooManyFai | ur es adds the following class-specific telemetry data:

TM Format TM Data
Short none
Normal none
Long Threshold for the number of failure events triggering a system reset
Debug Long TM + failure event counter

In all cases, calls to telemetry methods are propagated along a chain of linked recovery
strategies.

6.3 The Reset and Configurable Interfaces

Recovery strategies inherit from AocsObj ect the Resettable and Confi gurabl e
interfaces and must therefore implement the corresponding method.

A call to method r eset on a recovery strategy causes its enable status to be set to Enabl ed.

The recovery strategies defined in section 6.1 act on the number of failure events generates
since the last time doRecovery was called. They therefore need to keep track of the failure
events counter across activations of doRecovery (variable | ast Event Count er). Calls to
their methods r eset causes this variable to be set to the current value of the failure event
counter.

A call to method reset Confi gurati on on class RecoveryStrat egy unloads the next
recovery strategy in the chain of linked recovery strategies.

A call to method reset Configurati on on class SystenmReset OnTooManyFai | ures
causes the failure event threshold to be reset to zero.

A call to method reset Configuration on class Local RecoveryActi ons causes the
recovery action associated to this class to be unloaded.

EnE University of Constance Software & Web Engineering Group

o Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
i Page 25
|

7 FAILURE RECOVERY EVENT

The execution of a failure recovery action or of a failure strategy strategy triggers the creation
of an event of type Recover yEvent . The class diagram for its class is:

AocsObj e
AocsEvent

[}

Recover yEvent

+RecoveryEvent ()

+initialize(creator: AocsObject *,evtType: Event Type, recoveryActi on: RecoveryAction *,
+get RecoveryStrategy(): RecoveryStrategy *

+get RecoveryActi on(): RecoveryAction *

+reset Configuration():void

+i sConfigured(): bool

+writeToTel emetry(stream Tel emetryStream *):void

+get Tel enetryl mageLength():int

&l

Thus, recovery events add the following attributes to those defined by the base class
AocsEvent:

e recoveryStrategy: pointer to recovery strategy object.
e recoveryActi on; pointer to recovery action object

The creation of the recovery events is the responsibilities of the recovery strategies. Neither
the recovery actions nor the recovery manager create any recovery events.
7.1 The Telemetry Interface

Recovery events are telemetry objects because they (indirectly, through AocsEvent) inherit
from AocsDat a thet el enet er abl e interface.

The data sent to the telemetry stream by a recovery event in each telemetry mode are
summarized in the table:

T™ Format TM Data

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== i—— 30 April 2002
Issue 2.2
T Page 26
|
Short none
Normal none
Long instance identifier of recovery strategy and recovery action
Debug same as long T™M

7.2 The Reset and Configurable Interface

Recovery event objects inherit from AocsCbj ect the Resettabl e and Confi gurabl e
interfaces and must therefore implement the corresponding method.

Recovery events have no dynamic state associated to them and therefore they do not define a
class-specificr eset method.

Recovery events define a class-specific r eset Conf i gur ati on method that resets all event
attributes to zero. Method i sConfi gured returns true if the reference to the recovery
strategy is non-NULL.

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
I ‘ ‘ Page 27
|

8 THE FAILURE RECOVERY DESIGN PATTERN

This design pattern is introduced to address the problem of separating the management of
failure recovery from the implementation of failure recovery actions and strategies. The
design pattern is illustrated in the figure:

FailureRecoveryiManager L 1 RecoveryStrategy
+activatevoid recoveryStrategy | *OOFECOVEVOIT
+setMexRecoveryStrateayvoid 0.1
I
: next
I
I
1
activated { ConcreteRecoveryStrateqy
recoveryStrateny-=doRecovenyd;
1 +doRecovernwoid

The failure recovery manager is essentially based on the chain of responsibility design pattern
from RD1 but it can also be seen as an instance of the manager meta-pattern of RD2 where the
list of functionality implementers only contains one element.

In the classical version of the chain of responsibility pattern, the client’s request (in this case,
the request to perform a recovery) is passed along the chain of handlers (the recovery
strategies) until one is found who is able to handle it. Each request is intended to be handled
by only one handler. In the application of the pattern to failure recovery, however, a recovery
strategy when it receives a recovery requests performs the following actions:

it handles the recovery request, and

_ it checks whether the recovery request should be passed on to the next recovery strategy
or whether recovery processing should terminate.

The recovery strategies are therefore executed in sequence but every recovery strategy has the
chance to interrupt the chain. This incidentally means that the order in which the recovery
strategies are linked in the list is important.

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== 30 April 2002

Issue 2.2

Page 28

It would have been possible to implement failure recovery using a more straightforward
version of the manager meta-pattern where the recovery strategies are arranged in a list and
the recovery manager, when it is activated, goes through the list and executes each strategy in
sequence. This architecture, however, would have made it more awkward to give each a
recovery strategy the option to interrupt the recovery process.

8.1 Instantiation of Failure Recovery Pattern

The failure recovery pattern is instantiated as follows for the framework:

the failure recovery manager is an active object and its acti vat e method is the run
method declared by interface Runnabl e.

Recovery events are created for each recovery strategy and recovery action that is
executed.

In most cases, the recovery strategy to be executed depends on operational conditions.
This is taken into account by making the failure recovery manager mode-dependent (see
section 8.3). The failure recovery mode manager then manages a single strategy
corresponding to the recovery strategy to be supplied to the recovery manager.

The resulting class diagram is:

RootOhject
Resettable
Canfigurahle
Telemeterable Runnabie
AocsObject &

"

FailureRecoveryianager
&

0.1 FailureRacoverylfodelfanager

1

1

RecoveryEventRepository RecoveryStrateqy 1
0.1

ConcreteModeManager

next

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
T Page 29
|

The mode manager is characterized by a dedicated abstract interface as discussed in section
8.3.

8.2 The Failure Recovery Manager

The failure recovery manager is the active component that is responsible for processing the
events in the failure event repository and responding to them with appropriate failure
recovery strategies.

The failure recovery manager only sees recovery strategies. Failure recovery actions are,
where required, managed and implemented by the recovery strategies.

The failure recovery manager is instantiated from class Fai | ur eRecover yManager shown
in the next figure:

RootCOhject
Rezettable
Configurahle
Telemeterable Runnahie

AocsOhject &
é

FailureRecoveryManager

-tmimagelengthcint [MTMFORMATS]
-modedanagerFailureRecoveryModeManager ™

-localResetConfigurationd:void

+FailureRecoveryanagern

+runi{deadline:AocsTimevaid

+resetConfiguration(void

+isConfigured(:bool

+wirite ToTelemetne(stream: TelemetryStrearm *)void
+getTelemetrvlmagelLengthd:int
+setFailureRecoveryilodeanagertmm:FailureRecoveryiodeManager *ivoid
+getFailureRecovernyModemanager FailureRecoveryiodeManager

The failure recovery manager is derived from AocsObj ect and implements interface
Runnabl e to signify that it is an active object.

The failure recovery manager sees the recovery strategy base class but, behind it, there may
be a string of concrete failure recovery strategies.

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== 30 April 2002

Issue 2.2

Page 30

As discussed in section 8.3, the failure recovery manager obtains the failure recovery strategy
appropriate to current operating conditions from a failure recovery mode manager.

The public methods specific to this class (ie. not inherited from base classes) are described in
the table:

set Fai | ur eRecover yModeManager, get Fail ur eRecover yModeManager

Setter and getter methods for the failure recovery mode manager.

The basic implementation of method r un (the entry point for the task associated to the failure
recovery manager) is very simple and is outlined in the pseudo-code below:

voi d Fai |l ureRecoveryManager: :run(AocsTi me deadline)

{
/1 Load the recovery strategy
RecoveryStrategy* recStr = nodeManager - >get RecoveryStrat egy();
/1 I'nmplement the recovery strategy
recStr->doRecovery();
}

Thus, the recovery manager gets the recovery strategy from its mode manager and then
executes it. Obviously, the failure recovery strategy may actually consist of a string of linked
recovery strategies.

8.3 Failure Recovery Mode Manager

The type of failure recovery strategy may depend on operational conditions. This dependency
is modelled by endowing the failure recovery manager with operational mode.

The mode manager is constructed in accordance with the mode management pattern
prescribed in RD3 as an interface and a concrete class.

The failure detection mode manager must be able to supply to the failure recovery manager
the failure recovery strategy. It is accordingly characterized by the following interface:

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== 30 April 2002

Issue 2.2

Page 31

FailureRecoveryWodelfanager

+logoRecoven/Strategrimode. int recovensstrategy: RecovensStrategy =1 voic!
+petfecovensSirateq) Recoven Stratogy *

The semantics of the operations defined by this interface are summarized in the following
table:

get RecoveryStrat egy()

This method is called by the failure recovery manager to retrieve the currently valid
recovery strategy.

| oadRecoveryStrategy (int i, RecoveryStrategy* recStr)

This method is used to configure the failure recovery mode manager. It associates
the recovery strategy r ecSt r to operational mode i.

Concrete failure recovery mode managers are defined by the mechanism that they use to
decide which particular recovery strategy should be returned at any given point in time.

The prototype framework provides a default failure detection mode manager that is based on
the follower mode manager. This default failure detection mode manager is instantiated from
the following class Fol | ower Fai | ur eRecover yModeManager :

ModeManagy
PropertyMonit]
FailureRecoveryModeManage FollowerModeManager

a a

FollowerFailureRecoveryModeManager
-oldRecoveryStrategy:RecoveryStrategy *
+FollowerFailureRecoveryModeManager(numberOfModes:int, maxNumberOfMonitors:int, masterModeManager:Mo
+loadRecoveryStrategy(mode:int,r:RecoveryStrategy *):void
+getRecoveryStrategy():RecoveryStrategy *

Thus, the default failure recovery mode manager uses the services offered by the generic
follower mode manager component exported by the operational mode framelet.

EnE University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
T Page 32
|

8.4 Recursion

Use of the chain of responsibility design pattern introduces the possibility of recursion. A call
to method RecoveryStrategy::doRecovery can be recursive if several recovery
strategies are linked together. The maximum depth of the recursion is given by the maximum
number of recovery strategies that are linked together.

Recursion can also arise because of the way recovery actions are linked together. A call to
method Recover yActi on: : doRecovery can be recursive if several recovery strategies are
linked together. The maximum depth of the recursion is given by the maximum number of
recovery actions that are linked together.

Efs University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
== 30 April 2002

Issue 2.2

Page 33

9 FRAMELET HOT-SPOTS

This section classifies the framelet hot-spots defined in the previous sections of this
document. The classification is as described in RD4.

9.1 Failure Recovery Mode Manager Plug-In

Name: Failure Recovery Mode Manager Plug-In

Visibility Level: framework-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Fail ureRecoveryManager class (method
set Fai | ureRecover yModeManager)

Pre-defined Options: Fol | ower Fai | ureRecover yModeManager component exported by this
framelet.

Related Hot-Spots: none

Description

Failure recovery managers need a mode manager to supply them with a recovery strategy. This
hot-spot allows the failure recovery mode manager to be loaded in the failure recovery manager.

9.2 Recovery Action Hot-Spot

Name: Recovery Action Hot-Spot

Visibility Level: framework -level

Adaptation Time: compile-time

Adaptation Method: overriding of method doRecovery in class Recover yActi on

Pre-defined Options: recovery action components exported by this framelet

Related Hot-Spots: none

Description

Responses to individual failure events are encapsulated in instance of subclasses of

Efs University of Constance Software & Web Engineering Group
e Dept. of Computer Science Failure Recovery Framelet
=N 0 30 April 2002
Issue 2.2
T Page 34
|

Recover yAction with each subclass representing one type of response. Derivation of new
subclasses usually requires on method doRecover y to be overridden.

9.3 Recovery Strategy Hot-Spot

Name: Recovery Strategy Hot-Spot

Visibility Level: framework -level

Adaptation Time: compile-time

Adaptation Method: overriding of method doRecovery in class Recover yStrat egy

Pre-defined Options: recovery strategy components exported by this framelet

Related Hot-Spots: none

Description

Responses to the set of failure events in the failure event repository are encapsulated in instance of
subclasses of RecoveryStrategy with each subclass representing one type of response.
Derivation of new subclasses usually requires on method doRecovery to be overridden.

9.4 Recovery Event Repository Plug-In

Name: Recovery Event Repository Plug-In

Visibility Level: framelet-level

Adaptation Time: run-time

Adaptation Method: plug-in component in Recover ySt r at egy class (method
set Recover yEvent Reposi t ory)

Pre-defined Options: RecoveryEvent Repository component exported by inter-component
communication framelet.

Related Hot-Spots: none

Description

Recovery strategy objects log execution of their strategies as events stored in the recovery event

University of Constance

S
),AAAJ_I

o Dept. of Computer Science

Software & Web Engineering Group
Failure Recovery Framelet

30 April 2002

Issue 2.2

Page 35

repository. This hot-spot allows the recovery event repository component to be loaded. Note that

this component is loaded as a st at i ¢ reference.

