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Abstract

The goal that was set for this document in Annex 1 was to provide a "guide to using AP-level 
modelling containers". In order that this goal can be accomplished more comprehensively, this 
document contains an informal introduction to HRT-UML/RCM, the methodology based on the 
Ravenscar Computational Model (RCM) defined in the context of the ASSERT project, where the 
notion of AP-level (modelling) container was first defined, promoted and pursued. The document is 
edited in the form of a tutorial addressed to ASSERT system designers, with the objective to ease their 
familiarization with the HRT-UML/RCM toolset across all modelling views which are traversed as 
part of the proposed development process. The view in which AP-level (modelling) containers are 
used is in fact a key pivot element to the entire modelling approach. The reader of this document is 
expected to be familiar with the basic notions of UML modelling as well as with the foundations of 
Model-Driven Engineering. The document does intentionally refrains from duplicating information 
which may be found in the User Guide to the HRT-UML/RCM toolset: this document is therefore best 
understood by relating the provided information to the actual features, capabilities and actions of the 
HRT-UML/RCM toolset.

This document is tagged � Part 1�  because, on account of the existence of a parallel development of the 
concepts and vision pursued by HRT-UML/RCM, centred on the use of AADL. Accordingly, a � Part 
2�  to contractual deliverable report D3.1.4-1 has been produced separately by the DDHRT team that 
follows the AADL line of work.
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Abbreviations

• APLC Application-level container

• CbyC Correctness by construction

• GNC Guidance Navigation and Control

• MDA Model-driven architecture

• MDE Model-driven engineering

• NA Network access

• OMG Object Management Group

• PI Provided Interface

• PIM Platform-independent model

• POS Position (store)

• PRO Propulsion (manager)

• PSM Platform-specific model

• RCM Ravenscar Computational Model

• RI Required Interface

• TC Telecommand

• TM Telemetry

• TMTC Telemetry and telecommand (handler)

• UML Unified modeling language

• VM Virtual machine

• VMLC Virtual machine level container

• WCET Worst-case execution time
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1 Overview of the Methodology
Over the last few years OMG has actively promoted the use of models to design software through the 
Model Driven Architecture (MDA) initiative [OMG03] more recently evolved into Model-Driven 
Engineering (MDE). MDA models are characterized by both different semantic specialization and 
different levels of abstraction, from a higher to a lower level of abstraction closer to implementation 
and execution. In the MDA approach, first a platform-independent model (PIM) is developed, which 
describes the business and application logic, and then a series of transformations take place to map 
elements in the PIM to elements in a platform-specific model (PSM) which contains details that are 
specific to the target platform. Model transformation may be defined by rules and may thus be 
automated [OMG03]. (Cf. Figure 1.1.): in ASSERT and in the HRT-UML/RCM both features apply.

Figure 1.1: The MDA approach

ASSERT follows the MDA approach and so does the HRT-UML/RCM methodology. MDA models 
describe the system from different points of views, which are partial representations of the unique 
underlying model, from the perspective of a related set of user concerns, which are of consequence to 
the system development. HRT-UML/RCM decomposes the model into six views: three of them 
characterize the PIM and the other ones specify the PSM. The designer only specifies the three views 
which reside in the PIM space, whereas the PSM views are all automatically generated.

 

Figure 1.2: The PIM views

The PIM views are:

● The Functional View, which specifies the functional services provided by system components 
and expresses their sequential behaviour in terms of state machines, classes and interfaces. 

● The Interface View, which characterizes the provided and required services of components and 
declares their intended concurrent behaviour. In this view, a provided service can be specified 
to execute, for example, as a cyclic operation. 
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● The Deployment View,  which specifies the physical architecture of the system and the way in 
which software application(s) are to be deployed on it. 

Figure 1.3: The PSM views

The PSM views are:

● The Concurrency View, which specifies (in actual fact, calculates) the concurrent architecture 
of the system needed to implement the PIM specification of it; this view is designed to be 
compliant with the Ravenscar Computational Model by construction. 

● The Analysis View, which statically determines whether the current implementation of the 
system is able, under worst-case conditions, to meet all commitments as specified in the 
interfaces of the systems components. 

● The Code, which currently is realized as the Ada 2005 source code representation of the system 
implementation, destined for execution on an RCM Virtual Machine. 

Figure 1.4: Methodology overview

Once the designer has specified the PIM views, fully automatic model transformations allow the user 
to move from PIM to PSM, and backwards. Within HRT-UML/RCM, the transformation from the 
Interface View (PIM) to the Concurrency View (PSM) is also known as vertical transformation to 
denote its taking the system down from PIM , under user control, to PSM, supported by automated 
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rules. (A notable feature of HRT-UML/RCM is that the PSM view is placed outside the direct control 
of the user.) Off-line schedulability analysis may be performed on the system model (as well as any 
other form of static analysis of interest), whose results are propagated from the Analysis View (PSM) 
back to the Interface and Deployment View (PIM) through the round-trip engineering model-
transformation. Finally, the Code View is generated from the Concurrency View. 

The HRT-UML/RCM methodological approach exhibits the following properties:

● Preservation of semantic consistency across views. 

● Fully automatic PIM to PSM model transformation, with no need for the designer to directly 
operate on the PSM. 

● Correctness by construction (CbyC) of the whole process. 

● Round-trip engineering, whereby values measured in the PSM space are promoted to 
match/update the corresponding values in the PIM space in order that the designer may 
determine whether the system specifications are met satisfactorily or changes are required. 
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2 RCM Virtual Machine
The RCM Virtual Machine (VM) is an abstraction of the execution platform on which ASSERT 
applications run and it is a central concept to the entire HRT-UML/RCM methodology. Figure 2.1 
illustrates the layered architecture of an ASSERT software system.

Figure 2.1: Overview of an ASSERT software system

(Some explanatory words are in order to discuss the intended meaning of the illustration in Figure 2.1. 
The attentive reader may notice that the functional component of the software system depicted in 
Figure 2.1 reaches down to the hardware directly. The intent of this representation is very innocent 
and simply wants to reflect the fact that some elements of the hardware platform may be directly 
visible to functional models for reasons that trade transparency and portability for speed of access. The 
general philosophy used in ASSERT does indeed discourage, but not prohibits, the recourse to direct 
access of functional models to hardware. A further observation is in order with regard to the 
Middleware box in Figure 2.1, which is shown to be external to the RCM VM, which in fact it is, and 
below the VMLC layer. In actual fact, the Middleware part of the ASSERT software system is realized 
in terms of "primitive" VMLC components which run like any other VMLC on top the RCM VM and 
use the support of Network Access, NA, components to cater for distribution-transparent 
communications to the application components included in the Functional component of the system. 
VMLC, otherwise known as Virtual Machine level containers, are the sole run-time entities allowed to 
operate on the RCM Virtual Machine. As a result of a complex transformation process VMLC )

A system modelled with HRT-UML/RCM encompasses multiple layers: the whole stack of layers is 
described here for the reader to get some insight on the mechanism of the run-time structures on which 
the methodology rests. In fact, the designer need not to be aware of all the layers and all the related 
run-time mechanisms to benefit from the methodology, since all those details are (intentionally) 
hidden away from her/him at design time.

The bottom layer is the physical layer, comprised of a network of interconnected computational nodes. 
On top of the physical layer lies the RCM Virtual Machine, which provides run-time mechanisms 
required to implement the Ravenscar Computational Model (for instance, run-time enforcement and 
consistency checks, resource locking, synchronization and scheduling). The physical layer is accessed 
by the RCM Virtual Machine (in so far as local physical resources are concerned) and by the Network 
Access module, termed "NA" in the figure. The role of the NA module is to implement the protocol 
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stack which allows applications to transparently communicate across the network. Although the NA 
module provides the basic communication services, in HRT-UML/RCM the application software is 
not allowed to access the network directly: in order to cater for distribution transparency, 
communication across remote nodes is is always mediated by a "Middleware" layer. The discussion of 
the operation of the Middleware presently falls outside the scope of this tutorial. Suffice it to say for 
the moment that all of the internal components of that layer are designed and implemented in full 
compliance with the RCM; add no semantics to the node-bound computation and handle remote 
communication in a form which can be regarded as a "distributed RCM". The RCM Virtual Machine 
is inflexible (as opposed to permissive) in hosting, executing and actively policing the run-time 
behaviour of the entities that may legally exist and operate in it. 

HRT-UML/RCM guarantees valuable software properties by controlling all distributed and concurrent 
behaviour through the RCM Virtual Machine and the Middleware. Application-level software is build 
in compliance with specific rules; in particular, all functional code and data must be encapsulated into 
VMLC. We shall see below that VMLC are automatically built out from transformations of the PIM. 

The RCM Virtual Machine concept entails the following features: 

1. it is a run-time environment that only accepts and supports "legal" entities; the sole legal 
entities that may run on it are VMLC, described in section 8; no other run-time entity is 
permitted to exist and no other can thus be assumed in the model; 

2. it provides run-time services that assist VMLC in actively preserving their stipulated 
properties; mechanisms and services of interest may for instance enable one to: 

3. accurately measure the actual execution time consumed by individual threads of control over a 
given span of activity 

4. attach and replenish a monitored execution-time budget to a thread, and then raise an exception 
when a budget violation should occur; 

5. segregate threads into distinct groups, attaching a monitored execution-time budget to 
individual groups, to be handled in the same way as for threads; 

6. enforce the minimum inter-arrival time stipulated for sporadic threads; 

7. build fault containment regions around individual threads and groups thereof; 

8. attain distribution and replication transparency in inter-thread communication; 

9. it is bound to a compilation system that only produces executable code for "legal" entities and 
rejects the non-conforming ones; run-time checks provided by the Virtual Machine shall cover 
the extent of enforcement that cannot be exhaustively achieved at compile and link time; the 
details of the checks to be performed to warrant preservation of the computational model 
constraints, whether statically or at run time, are given in [BDV03]; 

10.the number of threads within the system is fixed at design time, and thus no thread may be 
created at run-time; 

11.dynamic allocation of memory is not permitted; 

12.it realizes a concurrent computational model provably amenable to static analysis; the model 
must permit threads to interact with one another (by some form of synchronization mediated by 
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intermediary non-threaded entities) in ways that do not incur non determinism. 

2.1 Computational Model
The computational model entailed by the Virtual Machine directly stems from the Ravenscar Profile 
[BDV03]. It assumes concurrent threads of execution, scheduled by pre-emptive priority-based 
dispatching policy, which can intercommunicate - for data-oriented synchronization purposes - by 
means of monitor-like structures with access protocols based on priority ceiling emulation [GS88] and 
with support for both exclusion and avoidance synchronization1. The system is made of a finite, 
statically-defined number of non-terminating threads, which infinitely repeat the following execution 
behaviour: 

Threads do not have internal (data) state of their own. Instead, they access data that may be embedded 
in the same container as the thread's or else global to the system. At step (2.1.1) of execution a thread 
(logically) draws input from the system state while in step (2.1.2) it may read from and / or write to 
any particular (data) state, whether local or global. Owing to the effect of priority ceiling emulation 
any write access performed by a thread to a shared resource fully takes effect (i.e. commits) before any 
other thread may get to it. The execution stage at step 2.1.2 must only include non-blocking operations 
(i.e. operations that do not perform self-suspension and / or invocations that may involve conditional 
wait in access to resource protected by avoidance synchronization). As a direct consequence of this 
restriction, step 2.1.1 represents the single blocking invocation that may be made by threads.

2.2 Execution Timing
Threads issue jobs (i.e., instances of execution) at either a fixed rate (in which case the issuing thread 
is called "Periodic" or "Cyclic") or sporadically, with a stipulated minimum time separation between 
subsequent activations (in which case the issuing thread is termed "Sporadic"). Therefore, threads are 
either Cyclic or Sporadic in accordance with the nature of the source of the activation events. The 
source may be attached to the system clock for a periodic event or else to some other system activity 
for a sporadic event. Cyclic threads inherit a "Period" attribute from the rate attribute specified for the 
relevant source. Sporadic threads inherit a "Minimum Separation" attribute from the corresponding 
attribute specified for the designated source of it. During execution the Virtual Machine polices that 
the timing behaviour of all threads proceeds in keeping with their respective specification. 
Consequently no threads may issue jobs more frequently than specified and no Cyclic thread may fail 
to issue a job at the next period short of a failure of the system clock. 

1 Exclusion synchronization is the basic run-time mechanism that warrants mutual exclusion (in either read-lock 
or write-lock mode) in the face of concurrent access. Avoidance synchronization is the complementary run-time 
mechanism that withholds granting mutually-exclusive access until specific logical conditions �  which typically 
depend on the functional state of the shared resource �  are satisfied.
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A Deadline attribute may be attached to execution step 2.1.2 of a thread's specification. This attribute 
requires that every single activation of that thread must complete within the specified time interval. A 
thread is fully characterized by the functional contents of execution step 2.1.2, by the nature and 
arrival rate of its activation event and by the deadline that applies to the completion of every job of it.
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3 Toy Examples
In this tutorial, we discuss a modelling example that addresses issues of distribution added on top of 
the original requirements specified in a well-known case study which has come to be known within the 
project as the "Toy Example" [Les06], to cover as broad a spectrum as possible of the use of the HRT-
UML/RCM methodology. 

3.1 Statement of the Problem
Following the definition given in [Les06], the POS (Position store) is a data resource shared by two 
processes: GNC (Guidance, Navigation and Control) and TMTC (Telecommand/Telemetry): 

● TMTC either writes to POS the data values uploaded from ground by a dedicated telecommand 
(TC in the sequel) or sends a "BOOST_ORDER" command to the PRO (Propulsion Manager) 
component.

● GNC performs a feedback-control loop on POS, by first reading the current value, computing 
any necessary adjustments and then updating the initial value accordingly. 

● PRO (Propulsion manager) periodically executes its default operation unless it receives the 
"BOOST_ORDER" command, in which case PRO executes the "BOOST_ORDER" operation 
once, in place of the default one and then resumes nominal execution. 

In the regard of the potential interaction between the two distinct update operations on POS, the 
problem specification stipulates that "If TC [command] occurs when GNC is active, the update of POS 
has to be delayed [i.e., deferred] until the termination of GNC". To meet this requirement, the system 
must guarantee transactional access (with atomicity, consistency and isolation: "ACI" properties) to 
POS specifically for use by GNC. The difference between mutually exclusive and transactional access 
is described in detail in Appendix 3. Transactional access implies mutual exclusion access, but the 
converse does not hold.

3.2 The Partitioned Toy Example
As shown in Figure 3.1, for the purposes of this discussion, the Toy Example is deployed on one 
computational node and three logical partitions residing on it. This configuration enables us to 
illustrate a broader spectrum of issues in the generation of the PSM views of the system. 

● Partition P1: POS and GNC 

● Partition P2: TMTC 

● Partition P3: PRO 
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Figure 3.1: The Toy Example deployed on processor and three partitions

3.3 The Distributed Toy Example
As shown in Figure 3.2, the physical graph (that is, the system interconnect) on which the Toy 
Example is deployed includes three distinct computational nodes. In keeping with the ASSERT 
assumptions, the network interconnect is point-to-point. We assume that one distinct instance of 
logical partition P3 (which includes one instance of PRO process) resides on each of the three physical 

nodes. This configuration allows us to illustrate issues of interest in the modeling of the PIM views. 

Figure 3.2: 
Computational nodes and their physical point-to-point interconnect 

(Legend: The numbers that tag the interconnection links between nodes denote the maximum 
bandwidth capacity of the relevant link expressed in terms of a configurable predefined unit.)
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4 The Functional View

Figure 4.1: The Functional View

The Functional View provides the functional specification of the methods that are to operate within 
designate containers in the Interface View. The Functional View describes the system using UML 
notions and notations such as Class Diagrams and State Machine Diagrams. (Cf. figure 4.2) The 
Functional View allows the designer to model the object-oriented structure of the system and its 
sequential behaviour only. The concurrent behaviour is specified in the Interface View and realized in 
the Concurrency View. In order to represent the Functional View, the HRT-UML/RCM tool provides 
editing capabilities for both Class Diagrams and State Machine Diagrams. 

At present, the Functional View can be imported, in XMI format, from a UML model to which the 
ETH FWProfile [CEPV06] was applied to ensure that the underlying metamodel is compatible with 
that of HRT-UML/RCM which in turn warrants that the imported model abides by the RCM 
constraints. In principle any other UML2 Profile which provably ensures the required level of 
compliance with the RCM metamodel could be used to produce a legal Functional Model.

An RCM-compliant functional model can only express and imply (1) time-free and (2) sequential 
execution semantics and (3) must make no reliance on actions that may incur blocking semantics at 
run time.

● The prescription that the functional model semantics shall be time free prohibits the use of
time-related suspensions (sleep, delay, wait, time-out) 

● The prescription that the functional model semantics shall be strictly sequential prohibits the 
use of constructs which may require the spawning of threads of control, whether directly or 
indirectly

● The prescription that the functional model shall not include constructs that may incur blocking 
semantics at run time prohibits the use of invocations which require interventions from outside 
the application space (dynamic memory allocation is an action that can only be performed 
outside the application space and, as such, it is forbidden in the RCM functional model).
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The Functional View supports the modelling of classes which define operations and attributes with the 
proper visibility and also interfaces and realization relations between classes and provided interfaces 
(PI).

An attribute for a given class can also be typed with an interface or with another class: in HRT-
UML/RCM this is currently the way to model required services (i.e. the required interfaces, RI) for a 
given functional class. The PI specifies what the component may do for the environment. The RI 
specifies what the component may need from the environment to carry out its own tasks. 

Figure 4.2: Modelling Provided and Required Interfaces using a Class Diagram 

Figure 4.2 is a schema of a class used in the Functional View. As part of functional modeling, the 
designer also needs to specify how many times a provided method uses a required method (a worst-
case bound is given when multiple execution paths are possible). This information is crucial for 
system analysis.

4.1 The Distributed Toy Example: Functional View
Figure 4.3 is the representation of the original toy example in the Functional View; Figure 4.4 shows 
the Dispatcher component we use instead of the original one.
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Figure 4.3: Modelling the original Toy Example in the Functional View 

Figure 4.4: The Dispatcher for the distributed Toy Example

POS is a data resource shared by two processes: GNC and TMTC. POS exhibits three service 
methods, Read, Write and Read_X_Write, each of which must warrant that its caller shall hold 

004033.DDHRT.UPD.DVRB.07.I1R0.D3.1.4-1.odt last modified on:  14/11/2007 01:02:45 PM page 19 of 51



 D3.1.4-1 (Part 1) 
 Date : 14/Nov/07
 Author : UPD
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.07

mutually exclusive access on the functional state of the component. Read_X_Write invokes  Compute 
on the RI typed Computer just once per execution. As we shall see, this solution successfully captures 
the scenario depicted in the original problem specification, but it fails to be a sound object-oriented 
design in the way it introduces unneeded mutual dependency between POS and GNC. A simpler 
design would not have POS depend on Computer, in that POS is a mere data wrapper. The role of 
GNC, as specified in the original problem, is to read the value, compute some adjustments and 
eventually write the computed value on POS: there is no obvious need for POS to actively take part 
into this process. This unusual design is part of the solution currently provided in HRT-UML/RCM to 
obtain transactional access control. We shall return to this issue in section 5, while a more detailed 
discussion is provided in Appendix 3.

GNC performs a feedback-control loop on POS, by first reading the current value, computing any 
necessary adjustments and then updating the initial value accordingly. In order to overcome the 
potential interaction between the two distinct update operations on POS, GNC accesses to POS with 
transactional access rights. As a result, GNC exhibits two operations: one default operation, which is 
periodically executed, and a public Compute operation, which is used to perform the local adjustment 
computation on the value read from POS. The problem specification requires that the default operation 
should be granted transactional access to the POS. Consequently, GNC exhibits one RI typed 
Reader_X_Writer. When default operation GNC_op() is executed, it invokes RI Read_X_Write 
operation exactly once. 

TMTC either writes to POS the data values uploaded from ground by a dedicated TC or sends to PRO 
the "BOOST_ORDER" command sent from ground by a TC. TMTC is then functionally decomposed 
into: 

● a Dispatcher element, with a single Dispatch operation, which receives a TC, checks its 
contents and dispatches it to the appropriate destination for servicing via one of the Send 
operations included in its RI. If the TC is an update on POS, the dispatcher invokes a Send 
operation typed Write_Sender, else it chooses one of the three Boost_Order operations on the 
RI typed PRO_Boost, depending on the physical location of the destination PRO component 
specified in the incoming TC. 

● a Write_Sender element which performs the write on POS via a Write operation on the RI 
typed POS_Writer 

PRO is a process that periodically executes its default operation (PRO_op in figure). PRO also 
provides the Boost_Order service. 

4.2 Open Issues
Visibility attributes over elementary interfaces (or groups thereof), which range: public (to any user); 
private (to the container which exposes that interface); and restricted (to a specific set of users), are 
currently only specified in the Interface View. The setting of visibility attributes in the Functional 
View is only limited to the classical UML semantics (for example, the editor forbids that an operation 
of an object X which is marked as "private" may appear as "required" in the specification of another 
object distinct from X). We are currently investigating how the expected finer-grained level of support 
could be provided.
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5 The Interface View

5.1 What the Interface View Provides for
The Interface View

● attaches execution-semantics attributes to the containers that populate this model view and to 
their provided and required interfaces 

● embeds the Functional View into the containers that populate this model view 

● delivers the designer from the need to specify details of both hard-real time concurrency 
(addressed by the automatically-generated platform-specific Concurrency View) and execution 
platform (which is addressed by the Deployment View) 

● traces information flows in relation to the Deployment View, so that the interconnection of 
provided and required interfaces follows permission, capability and access rules defined at 
system level 

● permits consistent and fully automated mapping to the platform-specific model and to source 
code with binding to the RCM Virtual Machine (the whole of this mechanic being named 
"vertical transformation") 

In the Interface View the designer only needs to specify some details while others are automatically 
derived from the specification by the model transformation logic.

1. The designer creates the Interface View by specifying AP-level containers (APLC in the 
sequel). One essential part of this specification is the inclusion of specific functional 
components from the Functional View into designated APLC. The criteria for inclusion of 
functional components in APLC may follow those used for designing UML components (in 
particular via the UML2 Component Diagram). As we noted in chapter 4, however, not all 
UML models can be imported in the Interface View, but only those which proceed from a 
UML Profile compliant with the RCM metamodel (hence with the restrictions and constraints 
that the RCM imposes on Functional models off that profile).

2. After this inclusion, the HRT-UML/RCM tool automatically generates port clusters within 
APLC, that is, homogeneous groups of either elementary PI or RI. (See for example Figure 
5.3: TMTC.) 

3. The designer decorates all PI and RI with semantic decorations, which specify the concurrent 
behaviour to occur upon invocation of the relevant elementary interface and then sets the 
desired visibility attribute for port clusters (and thus not on elementary interfaces individually). 

4. The designer creates the desired instances of the APLC classes just specified and completes the 
specification of the interface attributes by setting instance-specific values such as criticality 
(per APLC) and worst-case execution time, WCET (per elementary interface). 

5. The designer interconnects APLC instances in order that RI are bound to PI which are 
semantically and contractually compatible with one another. Semantic compatibility follows 
from type matching whereas contractual compatibility is based on value matching (for 
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example, the WCET set on a PI must not exceed the WCET set on the interconnected RI, 
where the latter is a contractual specification). 

Expected values are attribute values set by the designer on APLC types or RI types or instances, such 
as Memory Size, WCET, etc. The final system may not fully conform to those values: it is for the 
designer to decide whether compliance should be warranted for all values mandatorily or else some 
required values could only be taken to steer the design process in a non-prescriptive manner. Every 
expected value will eventually be matched by a measured value when the PSM corresponding to the 
designer-specified PIM will be available from model transformation for various forms of static 
analyses to be performed. 

5.2 What We Mean by Interface View
A model in the Interface View is composed by interconnected APLC. The following table summarizes 
the set of APLC attributes. 

APLC = {P-Identifier, AP-Identifier, Provided Interfaces, Required Interfaces, State}

P-Identifier: Any identifier type, whether string or integer, in a system-wide enumeration, which 
denotes the partition of residence of the APLC. The enumeration of partitions is defined in the 
Deployment View of the system and it is referred to in the AP-level model. 

AP-Identifier: Any identifier type, whether string or integer, in a system-wide enumeration, which 
warrants that no two APLC may have the same AP-identifier. 

Provided Interface: The set of methods provided (i.e., services supported) by the corresponding 
APLC. 

Required Interface: The set of methods required (i.e., services invoked) by the APLC in the execution 
of a provided service. The set may be empty, in which case the APLC is said to be self-sufficient to 
the discharge of its provided interface. 

State: The set of functional states, local to the container, which are operated upon by the PI of the 
APLC. 

An elementary port wraps a single method and decorates it with execution semantics. An elementary 
port and an elementary interface thus designate the same concept. In the literature, both names are 
used interchangeably: which name to use in a given context depends on the chosen point of view. The 
term "elementary interface" is used when discussing the methodology from a theoretical point of view, 
as opposed to the term "elementary port". This term belongs to UML2 terminology and has been 
borrowed together with the concept it describes in order to realize in practice the "elementary 
interface" concept. 

In the Interface View an elementary port is decorated with concurrent semantic. In the Interface View 
an elementary port is decorated with concurrent semantics. The following table explains some of the 
allowable attributes. 

immediate: an immediate elementary PI provides a service whose execution is to be carried on by the 
calling thread. It may be either protected or unprotected. 

unprotected:  an unprotected elementary PI provides an immediate service with no mutual exclusion 
guarantees. 
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protected: a protected elementary PI provides an immediate service with mutual exclusion guarantees. 
Mutual exclusion is guaranteed only on the data accessed by the operation and encapsulated within the 
APLC providing the port. 

deferred: a deferred elementary PI provides a service whose execution is carried on by a dedicated 
thread. It may be either nominal or modifier. 

nominal: a nominal elementary PI is a deferred elementary PI. It may be either cyclic or sporadic. 

modifier: a modifier elementary PI is a deferred elementary PI which represents an alternative 
behaviour of the thread designated to the carry on the execution of a specific nominal PI. 

cyclic: a cyclic elementary PI is a nominal PI. The operation associated with the PI is periodically 
executed by a dedicated thread. Whenever a modifier of the cyclic PI is invoked, the next time the 
cyclic PI is executed, the thread carries on the operation associated with the modifier PI instead, 
subsequently the thread resumes its nominal behaviour. 

sporadic: a sporadic elementary PI is a nominal PI. The operation associated with the PI is executed 
by the dedicated thread whenever the PI is invoked. The operation associated with a modifier of the 
sporadic PI is executed by the same dedicated thread whenever the modifier PI is invoked.

5.3 The Distributed Toy Example: Interface View
Figures 5.2 and 5.3 show the Interface View for the Distributed Toy Example.

Figure 5.2: The APLC for PRO, POS and GNC
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5.3.1 PRO_AP 
PRO_AP is an APLC which encapsulates the data and the functional behaviour of a PRO. All the 
methods of PRO are provided by the PRO_AP APLC through a port cluster which has "private" 
visibility. Since the visibility of that port cluster is private, the tool editor shows it inside the PRO_AP 
APLC box. The Boost_Order port is also provided within a public port cluster and consequently it is 
shown outside the PRO_AP, too. Private port clusters are shown inside their container APLC, attached 
to the state that provides data and functionality. Nevertheless, methods within private port clusters are 
delegated to the APLC just like all other methods of every encapsulated functional entity. 

PRO implements the PRO_Boost interface: all the methods declared by this interface are also provided 
by the PRO_AP through an other port cluster which instead has "public" visibility. The only port 
accessible outside the APLC is Boost_Order, since it is the only port contained inside a public port 
cluster. 

All the ports of an APLC must be decorated with concurrent semantics. PRO_op is declared as 
"cyclic", i.e. PRO_AP executes operation PRO_op at a fixed rate specified as an attribute of the 
corresponding port. The PI of PRO also includes the Boost_Order elementary port, which is declared 
in PRO_AP as a behaviour modifier: the modifier attribute can be set on a port only in conjunction 
with another elementary PI in the same APLC which is tagged cyclic or sporadic. The modifier 
attribute specifies that when the corresponding elementary interface is invoked, it is executed once in 
place of the nominal operation. 

5.3.2 POS_AP 
POS_AP encapsulates the data and the functional behaviour of a POS. It provides three port clusters, 
one of them private. All the ports of POS_AP are "protected", since POS has to be accessed in mutual 
exclusion. (The HRT-UML/RCM editor does not allow yet the designer to distinguish between read-
mode and write-mode mutual exclusion attributes.) POS_AP also features a RI which requires a 
Compute method from a Computer interface. The problem specification requires GNC to have 
transactional access on POS to perform Read, Compute and Write. HRT-UML/RCM currently 
addresses this need at the supplier side and not (as it should conceptually be) at the client side. In the 
example, POS exhibits a PI (Read_X_Write) which requires Read, Compute and Write: marking 
Read_X_Write as "protected" grants that every invocation of Read_X_Write (which actually operates 
as an "envelope" operation) shall execute the Read, Compute and Write operations sequence 
continually holding mutually exclusive access on POS. More details on this issue appear in Appendix 
3.

5.3.3 GNC_AP 
GNC_AP encapsulates the data and the functional behaviour of a GNC defined in the Functional 
View. GNC_AP provides two ports: one for the Compute operation and one for the GNC_op 
operation, grouped together in a private cluster. GNC_AP provides an unprotected Compute port 
through a port cluster with the Computer interface. In the Functional View, GNC_op requires a 
Read_X_Write operation on a POS_Reader_X_Writer, which is provided by POS with transactional 
access rights. An RI has therefore been created to this effect for GNC_AP inside a required port 
cluster attached to it.
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5.3.4 TMTC_AP
TMTC_AP encapsulates the Dispatcher functional state together with a POS_Sender functional state. 
The only public port cluster of TMTC_AP is the one for Dispatcher, which provides the Dispatch 
elementary PI. In the example both the Dispatch and the Send PI within Write_Sender have been 
marked as sporadic. Since the execution of Write on POS is computationally intensive, modelling the 
Send port as immediate would cause Dispatcher to delay the dispatching of subsequent commands 
until competition of the whole Read-Compute-Write procedure. Conversely, the execution of Send in 
POS_Sender is computationally intensive, since it involves the execution of Read, Compute and 
Write. Dispatching a Boost_Order command received from a TC is far less expensive, since 
Boost_Order is provided as a deferred service: for this reason Boost_Order is immediately invoked by 
Dispatch.

Figure 5.3: The APLC for TMTC

In Figures 5.2 and 5.3 lots of boxes are used which seem to clutter the design space. However, when 
we consider realistic systems, all these boxes will arguably simplify the system. For example, 
elementary ports are grouped in port clusters which mirror the structure of the classes defined in the 
Functional View.
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6 The Deployment View

Figure 6.1: Deployment

The designer uses the Deployment View to specify the physical architecture of the system target, to 
command the mapping between that and the logical architecture of the system and to assess the size, 
time and communication performance of the assignment. 

The unit of allocation on a physical computation node is the logical partition, which is a user-defined 
aggregate of APLC. A single physical node however may host multiple logical partitions. A partition 
is a fault containment region: the APLC within a partition are isolated in space and time from all the 
other partitions in the system. (Cf. Figure 6.4.) 

In the Deployment View, we consider partitions as "black-boxes" whereas in the weaving process we 
consider partitions as "white-boxes" and consequently treat their software contents as APLC. In the 
black-box interpretation of the Deployment View instead we are only interested in a specific attributes 
of partitions, for example memory size bounds and criticality level. A list of some of the attributes of a 
partition follows.

Min priority: the minimum priority assignable to a thread within this partition. This is a derived 
attribute. 

Max priority:  the maximum priority assignable to a thread within this partition. This is an 
automatically derived information. 

Criticality: a human-readable value which drives the derivation of the min and max priority values. 
Higher criticality generally translates into higher priority. 

Criticality sub-order: whenever more partitions are modelled with the same criticality value this 
attribute allows to order them nevertheless. 

Storage budget: the amount of memory this partition is expected to require.

Time budget: the amount of computational time per time unit this partition is expected to require. 

Effective time budget: the amount of computational time per time unit this partition actually requires. 

Local scheduling policy: the policy used to schedule threads within this partition. Presently, only 
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Fixed-Priority Pre-emptive scheduling is available. 

Figure 6.2 shows four partitions: P1, P2, P3, P4 and their assignment to three physical nodes: N1, N2, 

N3.

Figure 6.2: Partitions deployed on a physical graph

Table 6.1 below reports the values of some attributes of some logical and physical components of this 
Deployment View.

Node Memory Capacity Partition Storage Budget
Criticality /

Criticality sub-
order 

Interconnection Bandwidth

N1 MN1 P1 MP1 CP1 N1 �  N2 B(N1 �  N2)

N2 MN2 P2 MP2 CP2 N2 �  N3 B(N2 �  N3)

N3 MN3 P3 MP3 CP3

P4 MP4 CP4

Table 6.1: Attributes setting on physical nodes, interconnections and logical partitions

Once partitions are assigned to nodes, the HRT-UML/RCM tool automatically checks whether 
individual nodes have sufficient memory capacity for hosting the partitions to be deployed on them. 
For example, this check on node N2 would assess whether the following condition holds and warn the 

designer in case it did not. 

In addition to checking the memory required by a partition against the memory available on the host 
node, the HRT-UML/RCM tool checks whether the physical communication channels provide enough 
bandwidth to support the communication between APLC deployed in different nodes. Whenever the 
amount of data exchanged between two nodes exceeds the available bandwidth, as specified in the 
Deployment View, a warning is raised to the user. 

MN2  M≥ P2 + MP3

At present the tool does not support the capture of the actual memory size of logical partitions, the 
relevant values must be therefore input by the designer. The incorporation of this feature is currently 
in progress.
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7 Weaving

Figure 7.1: Weaving of views

The weaving is the process that merges the specification information provided in the Interface and 
Deployment Views. The weaving starts by associating each APLC to one partition and the result of it 
is a merge between logical and physical architecture as illustrated in figure 7.2. The figure has three 
parts. In the first part, the designer creates APLC in the Interface View and partitions, computational 
nodes and interconnects in the Deployment View.

Figure 7.2: An overview of the weaving process

In the second part, APLC are assigned to partitions. The designer has just to drag every instance which 
composes the system and drop it inside a partition. This assignment is straightforward since the HRT-
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UML/RCM tool displays in the Interface View all the partitions defined in the Deployment View. 
Once the assignment is performed, the model is updated with logical communications between 
partitions and with memory and bandwidth usage estimates, and the weaving process is completed. 
Communications among partitions are graphically displayed as assemblies between APLC which 
belong to them. If a communication between any two partitions result from some APLC assemblies, 
then the Deployment View shows a logical interconnection between the relevant partitions, directed 
from the caller to the callee.

A logical interconnection between partitions is considered feasible if it can be mapped (in terms of 
capacity, capability and rights) on a physical interconnect between the node of residence of the 
concerned partitions.

Once the Interface and Deployment Views are woven together, the model is further automatically 
decorated with the information needed to check on the following crucial properties:

● the safety property: a logical communication is allowed if the caller partition has a criticality 
level greater then or equal to the criticality of the callee partition. 
In case the safety property was violated, that is, the caller partition had a criticality level lower 
than that of the callee partition, some additional protection mechanisms designated to preserve 
the system safety have to be provided and/or considered by the analysis; else the weaving 
process yields a warning which the designer can only remove by changing either the 
assignment of APLC to partitions or the criticality level attribute of partitions. 

● the bandwidth property: a physical interconnection must have enough bandwidth to support all 
logical communications deployed on it. 

BN1, N2  B≥ P1, P2 + BP1, P 

The current release of the HRT-UML/RCM tool does not support the analysis of the communication 
bandwidth. Work is in progress to include this feature.
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Figure 7.3: Placing instances of APLC into partitions

 Figure 7.4: Output of the weaving process seen from the Deployment View 
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8 The Concurrency View

Figure 8.1: The Concurrency View

The Concurrency View describes the concurrent infrastructure of the system realized in compliance 
with the RCM [BDV03, VZd05]. In ASSERT-related publications the Concurrency View is also 
referred to as "Timing View" (cf., e.g., [CEPV06]). The Concurrency View describes the components 
that realize the provided interfaces specified by the designer in the Interface View. Those components 
are termed VMLC, which we have introduced in section 2. VMLC are the sole run-time entities 
supported by the RCM Virtual Machine and thus the sole entities that may populate a legal ASSERT 
system. The VMLC are typed and their legal types are as follows. 

Figure 8.2: Passive VMLC

Passive VMLC (see figure 8.2): It realizes the services specified in its provided interface by 
warranting no access protection to its local functional state. The execution of the PI services of a 
passive VMLC is performed by the caller. The passive VMLC is defined by: PI; RI (which may be 
empty); OPCS.
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Figure 8.3: Protected VMLC

Protected VMLC (see figure 8.3): It realizes the services specified in its provided interface by 
warranting access protection (whether mutually exclusive or transactional) to its local functional state. 
The execution of the PI services of a protected VMLC is performed by the caller. The protected 
VMLC is defined by: PI; RI (which may be empty); OBCS (which provides access protection); OPCS. 

Figure 8.4: Threaded VMLC

Threaded VMLC (see figure 8.4): It realizes the services specified in its provided interface and has 
an internal thread of control execute them on behalf of the caller. The thread of control is released by 
either the arrival of an external invocation of a PI service or, with a fixed rate, by the system clock. In 
the former case the threaded VMLC is called sporadic (and a minimum inter-arrival time attribute is to 
be specified in order for the RCM VM to enforce it at run time) whereas cyclic in the latter case. 

The PI attributed to a VMLC by model transformation from a source APLC determines the RI 
exhibited by that same VMLC.

8.1 Model Transformation
The model transformation supported by the HRT-UML/RCM tool (which is also known as � vertical 
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transformation�  in the ASSERT-related literature) transforms the PIM in the PSM. It is a fully 
automated process that takes individual APLC and generates all the VMLC and the interconnections 
between them which are necessary to realize the source APLC. 

Every APLC is transformed independently from other APLC. Elementary interfaces are grouped and 
every single group is transformed into a single VMLC following a set of production and semantic 
rules (the operation of which is briefly illustrated in section 3).

The model transformation preserves the interconnection between APLC so that some of the VMLC 
which result from the transformation of the interconnected APLC are themselves interconnected. Port 
clusters, which we have discussed in the Functional View where they have been introduced to simplify 
the design space, do not add any other semantics to the system model than visibility attributes. Since 
every elementary PI inherits the visibility attribute of the port cluster it belongs to then model 
transformation only considers the visibility attribute of port clusters. The model transformation 
engines embedded by HRT-UML/RCM are realized on the basis of a mathematical formalization 
which provably guarantees that no semantics distortion may occur in the PIM to PSM transformation.

Model transformation starts from the output of the Weaving stage of the HRT-UML/RCM 
development process. In the present version of the tutorial, we omit the description of the 
transformation rules and their mechanics; we give instead a single example of application, on the 
Partitioned Toy Example (see Appendix 1) as well as on the Distributed Toy Example (see Appendix 
2).
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9 Analysis and Round-Trip Engineering

Figure 9.1: Analysis and Round-Trip Engineering

Static analysis: it statically determines whether the current implementation of the system is capable of 
meeting the space, time and communication requirements (e.g. memory space, bandwidth, deadlines) 
as set in the model specification when executed on the target platform. 

Feasibility analysis: the classical forms of feasibility analysis concern timeliness and check whether 
the threads comprised in the system can execute within the stipulated deadlines. 

Sensitivity analysis: it determines the margins by which the timing parameters of the model can be 
changed while keeping the system feasible or to make the system feasible. 

In the current release of the HRT-UML/RCM tool-set feasibility analysis and sensitivity analysis are 
performed by MAST+, an enhancement of the MAST analysis utility developed at the University of 
Cantabria, Spain [UCA04]. In order to integrate MAST+ in the HRT-UML/RCM tool-set, we had to 
transform the Concurrency View to a model view which could be accepted by MAST+ (in fact by 
plain MAST since the MAST+ upgrade did not modify the input/output components of the original 
utility): what happens in practice is that a further instance of model transformation takes place from 
the RCM metamodel (which underpins HRT-UML/RCM) to the MAST+ metamodel and backwards.

The Analysis View is the place where the system model is described in terms of the MAST+ 
formalism. Although the model represented in the Analysis View need not be transformed into source 
code targeted for any particular platform, the information used to build it is platform-specific, and thus 
the Analysis View is part of PSM. The Analysis view abstracts away the details which are not relevant 
to its intent and purpose. For example, the system model is reduced to the instance level. Accordingly, 
the results of the analysis are reported back to the individual instances of the system, in every 
applicable view.

Once the relevant information is imported from the Concurrency View and the MAST+ model is 
constructed, the analysis is performed, and the Analysis View is decorated with its results and the new 
information automatically propagates throughout the entire model, thereby decorating the 
Concurrency, Interface and Deployment Views. This back propagation is part of the essential 
mechanisms of round-trip engineering. Some results of the analysis are placed back on individual 
ports and on the port clusters which are attached to VMLC instances (and then to the originating 
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APLC); others are attached to partitions and logical connections. In the following we enumerate a few 
examples of the information reported back from the Analysis View:

● For a cyclic task (as in the PRO threaded VMLC): maximum blocking time, maximum feasible 
WCET, minimum feasible period, OBCS ceiling, priority, task ceiling, worst-case response 
time 

● For a sporadic task (for the Dispatcher threaded VMLC that realizes the Dispatch operation of 
the TMTC APLC): maximum blocking time, maximum feasible WCET, minimum feasible 
inter-arrival time, minimum inter-arrival time, OBCS ceiling priority, thread priority, worst-
case response time 

● For a protected resource (e.g. POS): ceiling priority 

● For a passive resource (e.g. GNC): no return information.

9.1 The Partitioned Toy Example: Round Trip
In its current release MAST+ does not fully support distributed analysis as yet (but work is in progress 
to incorporate this feature). Accordingly this Tutorial cannot show and discuss the proceedings of the 
analysis of the Distributed Toy Example. We shall therefore limit ourselves to presenting the analysis 
of the Partitioned Toy Example. The Tutorial will be completed with the missing information before 
the end of the project. 

Figure 9.2: Sample of results from the feasibility analysis

Figure 9.2 shows the results of the analysis performed on the TMTC APLC of the Partitioned Toy 
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Example. The top of the figure shows an instance of TMTC APLC, whereas the bottom part of the 
figure reports the results of the timing analysis performed on port Send (which is typed Sporadic). The 
designer has set those values pointed to by the side arrows: the criticality level to 1; the deadline to 
2,000; and the minimum inter-arrival time between any two subsequent activations of the deferred 
operation Send, to 10,000 units of time. The other values represent the results of the analysis. A 
simplified description of the measured attributes follows: 

Maximum blocking time: the maximum time during which a task Ti can be blocked because of the 

priority inversion incurred on application of the priority ceiling emulation protocol. 

Maximum feasible WCET: threshold of the maximum duration that the execution of the provided 
operation may take including the cost of any immediate operations invoked by the RI exposed by that 
operation. The system is feasible (timely) as long as the time cost of that provided operation does not 
exceed the reported threshold. 

Minimum feasible inter-arrival time: the minimum time span that must occur between any two 
subsequent activations of the thread that execute the designated set of deferred services.l 

OBCS ceiling [priority]: attribute of the synchronization agent used by the RCM Virtual Machine for 
managing asynchronous communication and synchronization between threads. 

Priority: attribute used for FPPS scheduling (Fixed-Priority Pre-emptive Scheduling). The value of 
this attribute is automatically set by the analysis tool, on account of the criticality attribute set by the 
designer on the corresponding APLC. 

Task ceiling [priority]: attribute that reflects the preemption level assigned to threads of control 
subject to EDF (Earliest Deadline First) scheduling. 

WCET RI closure: maximum duration that the execution of the provided operation may take including 
the cost of any immediate operations invoked by the RI exposed by that operation. 

Worst-case response time: maximum time it may take for a thread to complete a job under worst-case 
activation conditions. 

9.2 Ongoing work
At the time this report is being written some planned features of the MAST+ analysis tool are not 
completed as yet. In particular:

1. Analysis is not available for distributed systems. 

2. Analysis of communication bandwidth and memory usage is not available as it needs 
information specified in the Data View, which is still under development at present.
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10 The Code View

Figure 10.1: The Code View

Although the Concurrency View is a platform-specific model which fully specifies the system in terms 
of the run-time entities supported by the RCM Virtual Machine, some further transformation steps 
have to be taken to obtain code ready for deployment: first source code generation and then 
compilation. All of the source code generated from the Concurrency View is currently in Ada 2005. In 
this tutorial, we chose to consider the source code as yet another instance of a platform-specific view, 
at the same level as the Concurrency and the Analysis View. This conceptual decision places emphasis 
on the following facts:

● the generated code is not intended for the inspection and editing of the designer (only the 
classes that feed the Functional View are; cf. Section 10.1 Architecture) 

● n an MDA approach, the more specialized models ought to contain all the information of all  
the "higher level" models, but at a low level of subject-matter abstraction[Mel05]; the Code 
View is no exception and thus it should be expected to contain all of the information specified 
by the designer in the PIM with no omission and/or distortion: if the transformation logic is 
considered trustworthy, the designer can satisfy themselves with the PIM 

● once the code is generated from the Interface View (via the required extent of weaving with the 
Deployment View) and the system is ready for use, not much else should be required to the 
designer in the way of system validation. Since the run-time preservation of the temporal, 
spatial, communication (and, prospectively, dependability) properties stipulated in the model is 
guaranteed by the HRT-UML/RCM methodology by construction, the final product of the 
transformation process should not need to be qualified by observing operational behaviour in 
test runs. This vision however assumes that the code which proceeds from the Functional View 
has been subject to prior verification so that the designer (and the transformation process) can 
place justified trust on its ability to compute the correct values. 

10.1Architecture
The code is automatically generated in the Ada 2005 programming language in conformance to the 
Ravenscar Profile restrictions. The extent of automation is 100% for the Interface View and the 
Concurrency View, while the code from the Functional Model may be either generated, in part, for 
models produced with the ETH FWProfile or else incorporated in the form of prefabricated code 
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components which however need to be asserted to comply with the RCM restrictions and must also 
have an Interface View description of them.

Figure 10.2 shows a Threaded VMLC, The OPCS represents its functional code. The OBCS and the 
thread represent its structural, or concurrent, side. The thread and the OBCS can be factored out in 
artefacts (called "archetypes") reusable across all VMLC instances of that type.

Figure 10.2: Breakdown of a threaded VMLC with archetype and OPCS

Consider the Distributed Toy Example discussed in the Concurrency View. Figure 10.3 below shows 
the architecture of the generated code for that example.

Figure 10.3: Architecture of the generated source code 

The source code is (currently) placed under three directories respectively named: Common, Lib, N1 
(for the 1st node in the system topology), as follows:

Common:  it encloses the code which implements all the types specified in the model and all of their 
instances:
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● the primitive types which have been specified in the Functional View, with the generated 
source code located in common/basic_types.ads; 

● the Classes which have been specified in the Functional View, with the generated source code 
located in Common/Classes; 

● the APLC and their instances as specified in the Interface View, with the generated source 
code located in Common/Containers/APLC; 

● the VMLC and their instances as specified in the Concurrency View (produced off fully 
automated transformation, with the generated source code located in 
Common/Containers/VMLC. 

In the absence of fully-automated code generation capabilities from the Functional View, the designer 
needs to implement all the methods specified in the Functional View by directly editing the source 
code in Common/Classes. The HRT-UML/RCM methodology forbids modifications in any other 
directories. 

Lib: it encloses the prefabricated archetypes which the HRT-UML/RCM transformation and code 
generation engines need to build up the VMLC which populate the Concurrency View The generated 
code which is recurrent across implementations is factored into reusable basic entities like Request 
Descriptor, Thread and OBCS: VMLC are formed from suitable aggregations of those archetypal 
components.

N1: it represents the product of the automated generation of the application-specific parts of the 
software system (targeted for node N1 as identified in the Deployment View) and encloses

● identifiers for every software entity composing the system, i.e. for every computational node, 
for every partition, for every APLC and VMLC instance; 

● all the deployment information, e.g., which APLC and VMLC instances are deployed in which 
partition; 

● the initialization procedures, which bind instances to their designated node, following the 
specification of the Concurrency View.
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10.2The Partitioned Toy Example: Source Code 

01   procedure Read_And_Write (This : in out POS) is
02      --Invoked required interfaces--
03      --+ This.Read : 1 invocation
04      --+ This.Write : 1 invocation
05      --+ C.Compute : 1 invocation
06      Res : Boolean := False;
07   begin
08      --#BlockStart number=3
09      --id=RCMoperation@eb77b0{file:/path_to_my_model/
10      --my_model.rcm#//@rootPackage/@ownedMember.11/@ownedOperation.2
11      -- User-defined code here --
12      declare
13         R : Integer := This.Read;
14      begin
15         This.C.Compute (R);
16         This.Write (R);
17      end;
18      --#BlockEnd number=3
19   end Read_And_Write;

Code fragment 10.1: The code for the Read_And_Write operation in common/classes/poss.adb

Code fragment 10.1 is a sample implementation for the method Read_And_Write found in 
Common/Classes/poss.adb. The generated code includes comments which help the user provide an 
implementation conformant with the functional specification. By way of example, the comments on 
lines 2-5 advise the designer that Read_And_Write was designed to invoke methods Read, Write and 
Compute exactly once. The other comments are needed by the generation facility to preserve the user-
defined implementation when the code is regenerated. 

The final source code is generated in such a way that the designer need not concern themselves about 
the infrastructure which realizes the concurrent behaviour to be obtained at run time. Three abstraction 
levels are crossed in the generation of the final source code: the Functional View (the most abstract); 
the Interface and the Concurrency Views (more specialized). Consider method Compute: it is specified 
by the designer in the Functional View as a provided method. In the Interface View, it is designated as 
a provided method of the GNC APLC. In the Concurrency View it appears as a provided method of 
the GNC VMLC. In all those views method Compute always provide one and the same signature, but 
with different semantic specializations. For this reason, the designer may content themselves with 
assuming that the command at line 15 in code fragment 10.1 should be a direct invocation of the 
Compute method specified in the Functional View while in actual fact, before getting there, the 
execution of it will first travel across the overriding layers added up by the code generation process to 
realize the concurrency semantics specified in the Interface View for that method.

The final version of this Tutorial (to be released by the end of the project) will contain, in annex, a 
representative sample of the source code automatically generated from the model for the examples 
discussed in this document.
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12 Appendix 1: The Partitioned Toy Example: 
Concurrency View

This part of the tutorial describes the application of the model transformation to the Partitioned Toy 
Example, introduced in section 3 and recalled in Figure A1-1. Note that this example is different from 
the Distributed Toy Example which has been used in the previous sections. The main difference is that 
the system modelled in the Partitioned Toy Example is not distributed. The application of model 
transformation to the Distributed Toy Example is slightly more complex, and it is discussed separately 
in Appendix 2.

● Partition P1: POS and GNC; 

● Partition P2: TMTC; 

● Partition P3: PRO. 

Figure A1-1: The Partitioned Toy Example 

12.1Partition P1: POS, GNC

POS APLC: As shown in Figure 5.2, the POS APLC has three elementary PI which are all of type 
immediate: 

● Read is private (in that in the Functional View it is not included in any public port cluster) and 
provides read-protected access rights to the functional state of POS. 

● Write provides mutual-exclusive access to the functional state of POS. 

● Read_X_Write is a composite operation (that is, one whose execution entails the invocation of 
at least one RI) with transactional access and thus holds mutually-exclusive access rights over 
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the functional state of POS during its entire execution. 

POS also has an elementary RI typed to the Compute operation of the GNC APLC. That elementary 
RI is attached to the Read_X_Write operation and it is thus attributed to the VMLC product of the 
transformation that includes Read_X_Write in its PI. The model transformation of POS places all 
elementary PI in one and the same group since all of them use the same set of variables. This group 
generates a single protected VMLC (shown in Figure A1-2) which thus realizes the whole POS APLC. 
The type of the resulting VMLC is determined by the grammar rules presented in [Var06, CV06].

Figure A1-2: The POS VMLC

GNC APLC: The GNC APLC has two elementary PI as follows:

● GNC_op, which is private and cyclic 

● Compute, which is public and unprotected 

and one elementary RI which requires the Read_X_Write operation. Model transformation places 
those two elementary PI in two groups since their respective attributes make them incompatible. 

Model transformation places those two elementary PI of in two distinct groups since their respective 
attributes make them incompatible. Each group (which in this case includes a single elementary PI) 
generates one VMLC. A cyclic threaded VMLC realizes the GNC op operation, whereas a passive 
VMLC realizes the Compute operation. Since the GNC op operation exhibits a requirement for the 
Read_X_Write RI, that elementary RI is attributed to the cyclic threaded VMLC which provides the 
GNC_op operation. The result of the transformation is shown in Figure A1-3.
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Figure A1-3: The GNC VMLC

12.2Partition P2: TMTC

The TMTC APLC has two elementary PI as follows:

● Dispatch, which is public and sporadic

● Send, which is public and sporadic, too

and four elementary RI, typed POS_Writer and PRO_Boost, which emanate from the implementation 
of the Send and Dispatch operations, respectively. The RCM grammar states that an interface group 
can contain only one deferred elementary PI which is set to denote the nominal operation. Model 
transformation of the TMTC APLC places each individual elementary PI in a single interface group, 
which maps to a sporadic threaded VMLC where they denote the nominal operation of the thread 
embedded in the VMLC. As we have seen earlier, the PI of every VMLC that results from the 
transformation determines the RI of that VMLC in accord with what specified in the Functional View 
(and reflected in the Interface View). Figure A1-4 shows the sporadic threaded VMLC that results 
from the model transformation of the TMTC APLC for the part which realizes the Dispatch operation.

Figure A1-4: The threaded VMLC that realizes the Dispatch operation of the TMTC APLC

Figure A1-5 zooms in the sporadic threaded VMLC which realizes the Send operation.
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Figure A1-5: The threaded VMLC that realizes the Send operation of the TMTC APLC

12.3Partition P3: PRO

The PRO APLC exhibits two elementary PI as follows:

● Pro_OP, which is private and deferred, tagged nominal and cyclic 

● Boost_Order, which is public and deferred, tagged modifier to the nominal deferred behaviour 
of the component. 

The RCM grammar states that an interface group can contain only one nominal elementary PI and that 
group must also contain all of the modifiers specified to it. Therefore, model transformation of the 
PRO APLC places all elementary PI in one and the same interface group where Boost_Order is the 
modifier of the nominal cyclic elementary PI PRO_op. The PRO APLC is thus realized by a single 
cyclic threaded VMLC as shown in Figure A1-6.

Figure A1-6: The PRO VMLC
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13Appendix 2: The Distributed Toy Example: 
Concurrency View

In this section, we apply the model transformation to the Distributed Toy Example.

13.1Node N1, Partition P1: POS, GNC, TMTC, Stub

The generation of POS, GNC and TMTC has already been discussed in Appendix 1. Here we turn our 
attention only to the generation of the stub called for in the distributed transformation of the Toy 
Example Model.

The generation of a stub is required by the calling VMLC involved in a distributed communication and 
provided by the corresponding remote VMLC. In the case of the Distributed Toy Example the 
Boost_Order operation become distributed. The stub VMLC is created to be the access point to the 
network communication middleware: to limit the overhead induced on the timing and sizing behaviour 
of the system at run time, the PI of the stub VMLC are always immediate.

Figure A2-1: The stub VMLC for a PRO VMLC

13.2Node N2, Partitions P2 and P3: PRO instances, Skeleton

We have already discussed the generation of the PRO APLC. We now show the generation of its 
skeleton components.

Model transformation generates one partition with one VMLC that acts as a skeleton, that is to say, as 
the local proxy of the remote caller of the designated component. The partition that contains the 
skeleton VMLC is attributed the same criticality level as the partition of residence of the remote caller. 
Generating a distinct partition on the destination node eases the representation of the criticality 
attribute of the calling component on the remote node. Simple optimization permits to merge that 
partition with any other partition on the target node which has equivalent criticality attributes. In this 
particular case, model transformation generates only one skeleton partition since one is the remote 
calling partition. The skeleton VMLC is threaded and typed sporadic; it provides an elementary PI 
which is invoked by the network communication middleware, and an elementary RI connected to the 
target elementary PI of the callee. 
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Figure A2-2: The skeleton VMLC for a TMTC VMLC

13.3Node N3, Partition P4: PRO instance, Skeleton

The treatment of this case produces a VMLC similar to the one discussed in Appendix 1 for the 
Partitioned Toy Example.
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14Appendix 3: Mutual Exclusion and Transactional 
Access

Mutually-exclusive access to a resource ensures that only one process at a time may be granted write-
mode access to that resource while any other process requiring it be denied reading or writing access 
[Tan01]. (Conversely, read-only access permissions can be granted to multiple processes 
simultaneously.) 

Example 1 (Mutually-exclusive access)

Consider a railway system that interconnects three stations: Venice, Vienna, Berlin. (Cf. figure) A 
passenger wants to buy a ticket from Venice to Vienna. When the counter staff contacted by the 
passenger commences the ticket issue procedure procedure, no other counter staff anywhere in the 
railway system may begin to issue tickets on the Venice-Vienna line until the ticket issue procedure in 
progress on that line completes. In this example the shared resource is the passenger seat on a single 
railway line, the exclusive right to which is represented by a ticket.

Figure A3-1: Mutual Exclusion and Transactional Access

Notice that if a passenger wants to buy a ticket from Venice to Berlin, the mutual exclusion access 
guaranteed alone could cause the following situation: the passenger may actually acquire a ticket from 
Venice to Vienna only to discover that all tickets from Vienna to Berlin (in the time window of 
interest) have already been sold out.

Transactional access to a resource ensures that only one process at a time may be granted access to 
that resource until completion of a designated set of operations; not all the operations in the set need to 
operate on one and the same the shared resource, as for example in set: read from resource; process 
value outside the resource; write to resource. Any other process that requires access to a resource 
locked with transactional access will be denied access until the resource has been released (and thus 
the entire set of operations has completed) [SG03]. It follows from this definition that a single 
transactional-access operation set may involve multiple mutually-exclusive-access resources and lock 
them all for the entire duration of the operation set. 
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Example 2 (Transactional Access)

Consider the system depicted in Figure A3-1. A passenger wants to buy a ticket from Venice to Berlin. 
When the counter staff contacted by the passenger commences the ticket issue procedure, no other 
counter staff in the system may issue tickets until the current procedure completes. In this example the 
transactional-access operation involves two mutually-exclusive-access resources and locking both of 
them in effect locks the entire system.

14.1Transactional Access in HRT-UML/RCM
At present the HRT-UML/RCM methodology provides partial support for node-local transactions.

In the Toy Example, the original problem specification requires the read-compute-update sequence to 
be performed while holding exclusive access rights on the POS resource. In HRT-UML/RCM, one 
way to obtain this behaviour is to define an additional operation, which we named Read_X_Write, 
whose only purpose is to execute the sequence of operations requiring transactional access on POS. 
Marking Read_X_Write as protected caters for access to POS to be locked during the execution of the 
three required operations. In fact, the ceiling assigned to the protected resource associated with 
Read_X_Write will reflect the ceiling of POS to ensure that, when the execution of Read_X_Write 
commences, no local competition could ever arise on access to POS. For the same reason, should POS 
require additional protected data resources for the execution of Read or Write, mutual exclusion access 
to those resources would automatically be acquired at the beginning of the execution of the 
transactional operation.

 
Figure A3-2: Providing transactional access using an additional protected PI

Figure A3-2 shows how the mechanism could be automated: in an ideal scenario, whenever a designer 
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wished to perform a transaction on a single resource, s/he would simply mark the operations required 
within that transaction as transactional RI, Read, Compute and Write in the example. The tool would 
then automatically and transparently copy the transactional operation GNC_op to a separate resource, 
marking it "protected". In Figure A3-2, this copy is named Read_X_Write, and the resource is named 
GNC_POS_T. The original APLC (GNC) is transformed to substitute the original RI of GNC_op with 
a single RI connected to the new PI (Read_X_Write). RI of GNC_POS_T are eventually connected to 
the PI the designer originally intended to use.

To optimize the solution, the new PI (Read_X_Write) could be placed into the called APLC (POS), in 
order to bypass access control structures (OBCS) of the called APLC. Otherwise, the copy could be 
placed into the caller APLC (GNC) in order to avoid additional dependencies between the callee 
(POS) and the caller (GNC).
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