

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

Project IST-004033

ASSERT

Automated proof based System and Software Engineering
for Real-Time Applications

Instrument: IST [FP6-2003-IST-2 4.3.2.5]
Thematic Priority: Embedded Systems
Deliverables D3.2.6-1 Refinement of Model Transformation

Rules from Use Experience in V2 Demonstrator
Work Package: WP3.2
Due date of deliverable: M33

Actual submission date: 22/October/2007

Start date of Project: September 5th 2004 Duration: 3 years

Organisation name of lead

Contractor for this deliverable: UPD

Issue – Revision I1R0

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 1 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

Refinement of Model Transformation
Rules from Use Experience in V2 Demonstrator

Distribution: TSC, DDHRT, all Project, EC

Prepared by: Matteo Bordin, Marco Panunzio (UPD), Silvia Mazzini, Stefano Puri (Intecs)

Checked by: Tullio Vardanega (UPD)

Release type: External Public Release

Status: Passed QPR/IPR

Disclaimer

This document contains material, which is the copyright of certain ASSERT consortium parties, and may not
be reproduced or copied without permission.

• In case of Public (PU): All ASSERT consortium parties have agreed to full publication of this
document.

• In case of Restricted to Programme (PP): All ASSERT consortium parties have agreed to make
this document available on request to other framework programme participants.

• In case of Restricted to Group (RE): All ASSERT consortium parties have agreed to full
publication of this document to a restricted group. However this document is written for being
used by all interested projects, organisations and individuals.

• In case of Consortium confidential (CO): The information contained in this document is the
proprietary confidential information of the ASSERT consortium and may not be disclosed
except in accordance with the consortium agreement.

The commercial use of any information contained in this document may require a license from the proprietor
of that information.

Neither the ASSERT consortium as a whole, nor a certain party of the ASSERT consortium warrant that the
information contained in this document is capable of use, or that use of the information is free from risk, and
accept no liability for loss or damage suffered by any person using this information.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 2 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

Document Change Record

Issue
Revision Date Affected

Section/Paragraph/Page Reason for Change/Brief Description of Change

I0R1 22/Oct/07 All First draft issue

I1R0 14/Nov/07 Abstract, Introduction,
Conclusions Amended to address comments from the QPR/IPR

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 3 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 4 of 23

Table of Contents

1 ABBREVIATIONS ... 6

2 INTRODUCTION... 7

3 MAPPING HRT-UML/RCM TO THE ASSERT PROCESS... 8
3.1 DEFINE LOGICAL ARCHITECTURE AND MODEL DATA .. 8
3.2 MODELLING HARDWARE .. 8
3.3 MAPPING SOFTWARE TO HARDWARE.. 8
3.4 GENERATING VM-LEVEL CONTAINERS .. 8
3.5 FEASIBILITY ANALYSIS... 9
3.6 GENERATION OF APPLICATION CODE .. 9
3.7 SUMMARY .. 9

4 LOGIC AND READINESS OF TRANSFORMATION STEPS... 10
4.1 FOUNDATIONS: THE NATURE OF APLC .. 10
4.2 MODEL TRANSFORMATION... 14
4.3 GENERATION OF VMLC TYPES .. 14
4.4 GENERATION OF VMLC INSTANCES... 16
4.5 MODEL- BASED ROUND-TRIP TIMING ANALYSIS ... 18
4.6 WORK IN PROGRESS.. 20

4.6.1 Support for operation modes .. 20
4.6.2 Automated extraction of WCET estimates... 21
4.6.3 Complete modelling of the communication stack.. 21

5 FEEDBACK EXPECTED FROM THE V3 DEMONSTRATORS.. 22

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

ABSTRACT
This report is one of the M33 products of WP3.2, the work-package in the DDHRT cluster which
focuses on the development of the model transformation infrastructure in support of the property-
preserving model-driven engineering approach proposed by the cluster for ASSERT. This report,
which is produced while work on the V3 demonstrators has only just commenced, has a threefold
purpose: (1) it maps the model transformation logic embedded in the HRT-UML/RCM toolset to
the ASSERT Process as described by the P&S cluster in D2.3-1, which is intrinsically the result of
the consolidation work performed with the V2 demonstration milestone; (2) it shows the level of
maturity of the said model transformation logic as it stands at the start of the V3 demonstration
work, which is itself the product of the consolidation from the lessons learned with the V2
demonstration milestone; (3) it enumerates the feedback and the returns expected from the V3
demonstrators, the culminating moment of the ASSERT project, which may serve to improve the
fitness of the proposed HRT-UML/RCM concept and infrastructure.
Work in WP3.2 is not limited to the development of the HRT-UML/RCM toolset infrastructure.
Parallel work aimed at identical goals is being conducted using AADL as the pivot formalism. It is
therefore expected that a mirror report, along the very same lines as the present one, will be
produced by the AADL team in WP3.2, as soon as the development work to feed the V3
demonstrators will have completed.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 5 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

1 Abbreviations
AADL SAE Architecture Analysis and Design Language
ABB Application Building Block
APLC Application-level container
ASN.1 Abstract Syntax Notation One
ATL Atlas Transformation Language
DDHRT Dependability Distributed and Hard Real Time
HRT Hard Real Time
MPC Multiple Platform Coordination
MTS Message Transfer Service
OBCS Object Control Structure
PI Provided Interface
PP Pilot Project
RCM Ravenscar Computational Model
RI Required Interface
UML Unified Modelling Language
VM Virtual Machine
VMLC VM-level container

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 6 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

2 Introduction
The title of this deliverable report as stipulated in Annex 1 suggests that emphasis should be placed
on the lessons learned on the model transformation logic from the V2 demonstration milestone. In
actual fact, the incremental demonstration logic adopted in Phase II of the ASSERT project, which
was meant to progress from the feasibility-geared V1 demonstrator in September 2006, via the
consolidation-oriented V2 demonstrator in March 2007, to the evaluation-seeking V3 demonstrator
due in December 2007, has translated into in obvious escalation in the relevance and strategic
importance of the demonstrators. On this account, the authors of this report have considered that
discussing (1) whether, (2) to what extent and (3) with what expectations the model transformation
logic at the core of the Model-Driven Engineering approach to the ASSERT development process is
ready to feed the V3 demonstration exercise is more interesting and worthwhile than discussing
lessons learned from a partial and incremental stage in the route to attaining the project objectives.
For this reason, this deliverable report takes stock of the technical situation of the project (seen from
the HRT-UML/RCM side of things) at the end of September 2007, when preparation for the V3
demonstration stage is just beginning and discusses:

1. how the ASSERT process (as currently understood, and thus prior to the consolidation
expectedly attained with the V3 demonstration) is reflected in the HRT-UML/RCM model
transformation logic

2. the level of maturity currently achieved by the model transformation logic as implemented
in the HRT-UML/RCM infrastructure

3. the areas and issues on which feedback from the V3 demonstration exercise is considered
most critical to the final refinement of the HRT-UML/RCM technology infrastructure and
the industrial prospects of the methodological vision it pursues.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 7 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

3 Mapping HRT-UML/RCM to the ASSERT Process
In this section we describe the current support provided by the HRT-UML/RCM Methodology and
the related tool to the applicable software development ASSERT process areas as described in
D2.3-1 (ASSERT Process Definition).

3.1 Define logical architecture and model data
HRT-UML/RCM fully supports the graphical modelling of the logical architecture, including the
modelling of data.
The functional view supports the identification of logical blocks and the definition of the ABB
functional blocks: the ABB detail design is statically defined through the usage of a class and
interface diagrams while the sequential behaviour is modelled using state machine diagrams with
the application of the framework profile developed by ETH in WP4.2.
The data view definition is supported according to the data type definition appearing in the RCM
metamodel. The RCM metamodel is compatible with the ASN.1 data definition: model
transformations from ASN.1 to the RCM metamodel are provided (via a asn2uml bridge).
The interface view supports the definition of Application Level Components (APLC) which embed
the ABB: the non-functional properties of the APLC can be defined and APLC can be
interconnected through their provided and required interfaces. Specific class and instance diagrams
are provided to support these activities.

3.2 Modelling hardware
HRT-UML/RCM fully supports this process through the usage of the deployment diagram where
entities like computational node, processor and memory can be defined.

3.3 Mapping software to hardware
HRT-UML/RCM fully supports the mapping of APLC instances to partitions and computational
nodes: an APLC instance can be mapped to a partition and a partition can be mapped to a
computational node, where the mapping sequence is not relevant and the order can be changed.

3.4 Generating VM-level Containers
HRT-UML/RCM supports automated transformation from APLC to VM-level containers (VMLC).
From the user standpoint this step need not be invoked explicitly; in fact it is automatically
performed by the tool and its results are automatically given as input to the subsequent steps of the
process (that is, feasibility analysis and generation of application code). Those two steps are in fact
the only transformations that the user can explicitly initiate from the graphical user interface of the
tool from the deployment view.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 8 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

3.5 Feasibility analysis
HRT-UML/RCM integrates automated transformations geared for round-trip analysis: the tool
enables the invocation of this process from a model where the interface view and the deployment
view have been modelled completely. The results of the analysis are made visible in the user
defined model (e.g. worst-case response time for APLC cyclic/sporadic services).

3.6 Generation of application code
HRT-UML/RCM integrates automated transformations geared to the generation of Ada 2005 code
which implements the system software model: the tool allows the user to invoke this transformation
process from a model where the functional, interface and deployment view have been modelled
completely (and, ideally, after model feasibility has been ascertained).

3.7 Summary
HRT-UML/RCM integrates the automated RCM transformations and offers dedicated commands
for their invocation, thereby facilitating their use.
Whereas the HRT-UML/RCM tool has been built with the goal to insure that the correctness by
construction principle holds at all times throughout the entire modelling process, some
completeness and consistency preconditions should be verified on the input model in order for the
transformations to be applied safely and correctly.
The required precondition constraints (e.g., all the non-functional attribute values for APLC have to
be specified) need an explicit validation process.
HRT-UML/RCM offers a specific feature to support the check of precondition constraints that have
been identified for the model to hold in the different views: the validation process is automatically
started before any transformation step, such as launching round-trip analysis and code generation,
so as to guarantee that that particular transformation step can be applied safely and successfully.
The toolset User Manual provides a detailed list of the HRT-UML/RCM applicable constraints.
The current validation mechanism could be enhanced. Currently the relevant constraints have been
partitioned among the different modelling views and are always applied in all the different views. In
the future it should be possible to validate each single view independently, according to the view-
specific or user-selected set of constraints. For instance, when performing only functional code
generation any error in the interface view (for instance regarding an incomplete APLC
specification) should not be notified by the user.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 9 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

4 Logic and readiness of transformation steps
This section provides a concise yet detailed summary of the transformation process which
automatically generates the concurrency view from the interface view and the deployment view.
The discussion in this section complements the information on the HRT-UML/RCM toolset
infrastructure presented in D3.1.4-1 (Guide for using AP-level modelling containers).

4.1 Foundations: the nature of APLC
Let us we briefly recapitulate the main concepts in the definitions of APLC. For the purposes of this
discussion, term APLC indicates a type – a class – while term APLC instance indicates an object.
APLC are characterized by three main constituents:

• One or more functional states, which are bound to the (functional) sequential behaviour of
the APLC in response to invocation of any of its provided services. Functional states are
typed elements instantiated inside APLC as true class members; the type of a functional
state is defined as a concrete class in the functional view

• One or more provided port clusters (or interfaces). A port cluster is conceptually similar to
an AADL port group. Each port cluster references a functional state, which represents the
instance of the functional model containing (part of) the implementation of the sequential
behaviour of the APLC. Port clusters are typed elements: the type of the port cluster is the
type of the referenced functional state of one of its super types. Port clusters also contain
provided elementary ports (or provided elementary interfaces), each one representing a
single provided service. Each elementary port is characterized by a concurrent semantics
specified in terms of a declarative notation derived from the RCM grammar. Each contained
elementary port references a method of the functional state referenced by it containing port
cluster. Several port clusters may refer to the very same functional state, as the same
(sub)set of functional operations may be provided through different views. A simple
example of this notion consists in a class MyClass implementing the interface MyInterface:
two port clusters typed to MyClass and MyInterface can both reference the same functional
model – an instance of MyClass (or of a derived type). The main advantage of providing the
same services through different port cluster is a fine-grained visibility control: each port
cluster has its own visibility, meaning that the services accessing the same functional state
may be provided in groups (clusters) of different visibility.

• Zero, one or more required port clusters. Similarly to provided port cluster, a required port
cluster contains a set of elementary ports (or interfaces). The required port clusters emanate
from the functional dependencies present in the functional (sequential) specification of the
APLC behaviour: accordingly, an APLC cannot be completely defined if its functional
(sequential) specification isn’t fully expressed at least in terms of provided services and
functional dependencies. At type level, a required port cluster may possibly be fulfilled by
the same APLC that exposes it; at object (instance) level, a required port cluster may be
fulfilled by a provided port cluster provided by the very same instance requiring the service

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 10 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

or by any other APLC instance within allowable visibility.
Figure 1 shows a simple graphical representation of APLC.

Functional view

MyImpl
Op1

MyInterface
Op1
O 2

I : MyImpl

MyClass
M1

myC

myI

AnotherClass
P1

Interface view

another

C :
MyIClass

Op1
Op2

Op1
Op2
Op3

M1
M2

Functional states

Provided port
cluster

Provided
elementary port

Required port
cluster Self-fulfilled

required ports

Fig. 1 – Constituents of an APLC. The APLC is composed by functional states, provided and required
port cluster. Port cluster are typed and contain elementary port referencing precise methods of the
functional view. Each port cluster references a functional state; several port clusters may reference the
same functional state. Required ports may be fulfilled by the same APLC requiring them.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 11 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

The concurrent semantics of APLC provided elementary port may be decided choosing one of the
following values:

• Cyclic: represents a parameter-less deferred service automatically executed by a dedicated
task released on a constant period by the system clock.

• Sporadic: represents a deferred service whose invocation entails the buffering of the
parameters and the release of a dedicated sporadic task to handle the request. The release
protocol of the sporadic task enforces a minimum interval between subsequent invocations.

• Modifier: represents non-nominal deferred service. Modifiers can be used to map several
operations onto the same physical task: a modifier is indeed always associated to a
Sporadic or Cyclic service, which represent the nominal operation executed by the
underlying task. The Modifier shares its release policy (time-triggered or event triggered)
with its associated nominal service.

• Protected: represent an immediate service offering protection against concurrent access.

• Unprotected: represent an immediate service void of any concurrent semantics.
If any two services access the same (static) variables, a main constraint holds for their concurrent
semantics. Their concurrent semantics must in fact be one of the possible couples (the order is not
important):

• Cyclic, Modifier

• Sporadic, Modifier

• Modifier, Modifier

• Protected, Protected

• Unprotected, Unprotected
Of course the constraint holds for any couple in a set of several services accessing the same (static)
variables. Such a constraint is necessary to guarantee that, in presence of shared data, one single
task can access those data (or execute the underlying state machine) at any time. For example, if
two services share accessed variables they cannot be marked as Cyclic and Sporadic, otherwise
two distinct tasks (the one behind the Cyclic service and the one behind the Sporadic one) would
interfere, potentially causing race condition. Please note that usually not all methods of the same
functional state access the same variables; provided elementary port referencing methods of the
same functional model may indeed well have non-compatible concurrent semantics (see fig. 2). The
constraint is automatically enforced by the HRT-UML/RCM metamodel.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 12 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

MyImpl
- State1 : Type1
- State2 : Type2
+ Op1
+ Op2
+ O 3

Op1 accesses State1;
Op2 accesses State2;

I : MyImpl
<<sporadic>> Op1

<<protected>> Op2

<<sporadic>> Op1
 <<protected>> Op2
 <<protected>> Op3

Fig. 2 – Concurrent semantics of provided elementary port. If two methods of the same functional
model don’t share accessed variables, the concurrent semantics of the referencing elementary provided port
can be non-compatible. Provided elementary port referencing the same method of the same functional state
are forced to declare the same concurrent semantics (for example, Op1 and Op2).

It may happen for several elementary provided ports to reference the same method of the same
functional state: this is the case of the ports providing method m1() in the APLC depicted in figure
1. All provided elementary ports referencing the same method of the same functional state are
bound to declare the very same concurrent semantics: this constraint is necessary to guarantee a
sound access to the functional state (fig. 2); the constraint is automatically enforced by the RCM
metamodel implementation. During the vertical transformation process, all elementary provided
ports referencing the same method of the same functional model are delegated to the same provided
elementary port of a VMLC (fig. 3): this is a natural consequence from the fact that all elementary
provided ports referencing the same method of the same functional model must have the very same
concurrent semantics.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 13 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

<<sporadic>> Op1
<<protected>> Op2

<<sporadic>> Op1
 <<protected>> Op2
 <<protected>> Op3

Fig. 3 – Delegation to VMLC. If two provided elementary ports reference the same method of the same
functional state, then they are delegated to the same provided port of the same VMLC (see for example, the
two provided port providing Op1 and the two providing Op2).

VMLC

VMLC

4.2 Model transformation
Model transformation is comprised of two main steps: the first one generates VMLC types
implementing each APLC on top of a Ravenscar-compliant VM; the second one generates
interconnected VMLC instances starting from interconnected APLC instances.

4.3 Generation of VMLC types
The vertical transformation proceeds per functional state: the presence of multiple functional states
does not affect the transformations: for this reason, our examples from now on mostly encompass
APLC with a single functional state.
During the transformation, each functional state is considered along with all the provided/required
port clusters referencing it; all provided elementary ports referencing the same method of the same
functional state are delegated to the same VMLC provided port. Since all provided elementary port
referencing the same method of the same functional state must present the same concurrent
semantics, we may well initially assume the existence of exactly a single provided port for each
method of the functional state; moving to a more complex model is just a matter of scaling.
VMLC are generated following a set of strict rules, which applies to provided elementary ports
contained in the same provided port cluster:

Cyclicid, Modifier*{variates=id} ::= Cyclic(Cyclic, Modifier*) (1.1)
A provided port marked as Cyclic and all Modifier referencing it generate a single cyclic VMLC
providing all ports.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 14 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

Sporadicid, Modifier*{variates=id} ::= Sporadic(Sporadic, Modifier*) (1.2)
A provided port marked as Sporadic and all Modifier referencing it generate a single sporadic
VMLC providing all ports.

Protected+ ::= Protected(Protected+) (1.3)
All provided ports marked as Protected and contained by the same portcluster generate a single
protected VMLC providing all ports.

Unprotected+ ::= Passive(Unprotected+) (1.4)
All provided ports marked as Unprotected and contained by the same portcluster generate a single
Passive VMLC providing all ports.
The required ports of a VMLC are directly and univocally determined by the functional
requirements expressed (in the functional view) by the methods implementing the functional
behaviour of its provided ports (see figure 4).

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 15 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

Figure 4 shows a simple example of transformation: the example also considers an APLC which has
multiple provided port clusters referencing the same functional state.

I : MyImpl<<sporadic>> Op1
<<protected>>

<<sporadic>> Op1
<<protected>>
<<protected>>

Fig. 4 – Sample vertical transformation. Required ports of VMLC depend on the functional
requirements expressed (in the functional view) by the methods implementing their OPCS.

I Sporadic

I Protected

<<sporadic>> Op1

<<protected>>
<<protected>>

Interface view

Concurrency view

Model-to-model transformation

4.4 Generation of VMLC instances
VMLC instances are generated from APLC instances: as each APLC (type) is transformed into
several VMLC types, an APLC instance is transformed into several VMLC instances, exactly one
for each VMLC (type) required to map the APLC (type). Along with VMLC instances, the
transformations also generates new links connecting the required and provided ports of VMLC
instances: for each link connecting a required port of an APLC instance to the provided port of a
(possibly) different APLC instance, a corresponding link is generated; the generated link connects
the ports of VMLC instance target of a delegation from the ports of the APLC instances connected
by the original link (fig. 5).

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 16 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 17 of 23

I : MyImpl

C : MyClass

<<sporadic>> Op1
<<protected>> Op2

<<sporadic>> M1

<<unprotected>>M2

Interface view

Fig. 5 – Transformation of APLC instances.

Inst1 : APLC1

A : AnotherClass
<<sporadic>> P1
<<modifier>>P2

Inst2 : APLC2

<<sporadic>> Op1
<<protected>> Op2
<<protected>> Op3

I sp : I Sporadic

I pr : I Protected

<<sporadic>> Op1

<<protected>> Op2

<<protected>> Op3

Concurrency view

A sp : I Protected<<sporadic>> Op2

<<modifier>> Op3

C sp : C Sporadic
<<sporadic>> M1

C pa : C Passive
<<unprotected>> M2

Model-to-model transformation

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

4.5 Model- based round-trip timing analysis
The goal of the round-trip timing analysis is to perform timing analysis on a suitable representation
of the system under development and to report back the results directly at model-level. The process
associated to it shall provide seamless support to perform automatically all the required model
transformations and other involved mechanisms and make the results available to the designer as
information that complement the description of the system.
The concurrency view encompasses a faithful representation of the system under development.
VMLC types and instances are a representation of legal run-time entities abiding by the Ravenscar
Computational Model. VMLC are complemented with:

• the description of the hardware of the system;

• the description of the relevant run-time platform mechanism and their cost;

• the (indirect) assignment of VMLC to logical partitions (in the deployment view each APLC
instance is assigned to a single logical partition, hence the VMLC instances generated from
that APLC instance are assigned to that very logical partition);

• the assignment of logical partitions to computational nodes.

The VMLC, the hardware description, the run-time platform description and all deployment
information are an architectural description of the system with all the information required to
perform model-based timing analysis on it.
The round-trip process is comprised of several steps:

1. the vertical transformation generates the concurrency view of the system;
2. the concurrency view is analysed to extract all the information relevant to the timing

analysis;
3. the information are used to create a model-based representation of the system that abides by

the real-time system model of the MAST+ timing analysis tool;
4. the MAST+ tool performs the analysis;
5. the results of the analysis are propagated to the concurrency view and referred to the

relevant entities (VMLC instances, computational nodes, partitions);
6. an additional step propagates backward the results from VMLC instances to the operations

of APLC instances that generated them.
Some details about the input information for the analysis follow.

• The designer establishes the concurrent type of operations on APLC types. A
provided operation of an APLC instance abides by the concurrent type specified on
the respective operation on its APLC type.

• The WCET information is specified in the functional view. The designer specify the
WCET of each operation of each concrete class (abstract class and interfaces are not

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 18 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

considered). The WCET is then the cost to execute the pure sequential code of the
operation (since the functional view is void of any concurrent semantics)1. The
WCET of single operations is used to compute the worst-case execution time of call
chains, basing the calculation on the interconnections between APLC instances.
Thus it is possible to provide the pure functional cost of the execution of an entire
deferred operation of an APLC.

• The designer specifies real-time attributes on provided operations of APLC instances
(period or minimum inter-arrival time, deadline, relative importance between
deferred operations of the same partition).

• The designer specifies a partial order between logical partitions deployed on one and
the same computational node.

• The designer specifies the relevant information about network interconnections
(bandwidth, maximum packet size, maximum propagation time).

• The designer specifies the cost of the relevant run-time mechanisms of the RCM
Virtual Machine (cost to perform context switches, cost to move a task from the
suspended queue to the ready queue, etc..)

A set of analysis are supported by the roundtrip: Classical Response Time Analysis, Sensitivity
Analysis, and Feasibility Analysis for mono-processor systems; RCM Holistic Analysis for
distributed systems.
Feasibility analysis is a response time analysis that can analyse partitioned systems with
heterogeneous local schedulers. The pessimism in the worst-case scenario is higher than classical
response time analysis.
Sensitivity analysis can also report information about the changes required to make feasible an
unfeasible system or to improve the fit of a feasible system.
RCM Holistic analysis is the classical analysis for distributed systems extended to take into account
the metrics of the RCM Virtual Machine, in order to provide more accurate results.
The following results are propagated back to the interface view (and the deployment view) upon
completion of the analysis:

1. For each deferred operation: worst-case response time, maximum blocking time (induced by
the use of synchronization protocols on protected resources), the priority of the thread of
control that executes the operation, the ceiling of the OBCS (for sporadic operations and

1 Several support tools exist which can help determine the WCET of code fragments and/or complete programs for

specific targets. The incorporation of tools to that end in the HRT-UML/RCM infrastructure has of course been
considered but discarded owing to lack of resources. Two concrete tools were regarded as the primary candidates for
integration: Bound-T, developed by Tidorum, Finland, (http://www.tidorum.fi/bound-t/); and RapiTime developed
by Rapita Systems, UK (http://www.rapitasystems.com/rapitime). Those two were considered because they can
analyze code which targets the processors of primary interest to ASSERT partners. Other important WCET analysis
tools exist however, including aiT developed by AbsInt, Germany (http://www.absint.com/).

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 19 of 23

http://www.tidorum.fi/bound-t/
http://www.rapitasystems.com/rapitime
http://www.absint.com/

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

cyclic operations with modifiers associated to them), the maximum feasible WCET of the
entire operation and the minimum feasible period or minimum inter-arrival time (only if
sensitivity analysis is used).

2. For each protected port cluster: the ceiling of the protected object that realise it.
3. Utilization for computational nodes, partitions, APLC instances, provided deferred

operations.

4.6 Work in progress

4.6.1 Support for operation modes
The current release of the HRT-UML/RCM toolset does not allow the user to specify distinct
operational modes for the system.
Since there currently is no information in the model which specifies which calls are executed by the
distinct call chains represented in the system, the analysis engine can only assume that all the
required operations of each provided operations are called in the worst-case scenario to be
accounted for. The analysis is therefore pessimistic in that it considers situations which potentially
(and probably) may never occur at run time.
Work is currently in progress to permit the user to specify a set of scenarios to be considered for the
timing analysis. In each scenario the designer will designate a specific execution flow for each
deferred operation of the system and the timing analysis analyses exclusively those flows.

Fig. 6 – Currently the analysis takes into account all required operation and the maximum amount of time they
may be invoked in a single invocation of Op1.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 20 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

Fig. 7 – The designer specifies a specific call chain that has to be analysed in a specific operational mode. Only
Ri1 and Ri2 are analysed in the example.

4.6.2 Automated extraction of WCET estimates
It may be overly difficult, time-consuming and error-prone for the user to decorate individual
operations with their attributed WCET estimate in models of realistic size and complexity by hand,
without the aid of some automation engine. To remedy this problem, the obvious enhancement to
implement should permit to feed the decoration process with the output of a WCET analysis tool.
Candidate tools for integration in the HRT-UML/RCM toolset include: Bound-T (developed by
Tidorum, Finland, http://www.tidorum.fi/bound-t/) and RapiTime (developed by Rapita Systems,
UK, http://www.rapitasystems.com/rapitime).

4.6.3 Complete modelling of the communication stack
The communication stack embedded in the middleware layer of the ASSERT Virtual Machine
comprises several threaded components whose behaviour has to be accurately accounted for in the
timing feasibility analysis of the system model. To this end, the transformation process that turns
the interface view into the concurrency view (which is the input to the timing feasibility analysis)
should produce a faithful representation of the communication stack in terms of the VMLC
elements that compose it.
At the time this report is being written, only the PolyORB-HI tier is completely modelled. Work is
in progress to include the modelling of the MTS/ SpaceWire driver tiers.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 21 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

5 Feedback expected from the V3 demonstrators
Important feedback and returns are expected from the development of the V3 demonstrators in
different respects.
From the methodological point of view, the issues of interest include:

• How does the designer like working with the different views that are currently available? Is
their modelling well supported? Do they correspond to the user perspective of the problem?
Are there any other suitable points of view that can be addressed and supported by the
methodology?

• Is the separation between the functional and the non-functional views a useful means to
foster the reusability of models?

From the toolset point of view, the issues of interest include:

• Is the tool prototype effective, easy to use, well documented? Did the user experience any
model or diagram corruption?

• Is the diagram support for the different views effective?

• Is the integration with model transformations effective?

• Is the presentation of round-trip analysis results satisfactory for the user?
In more detail, the following issues will be addressed with special care throughout the development
of the V3 demonstrators, which is just starting at the time this report is being edited.
Expressivity of HRT-UML/RCM
HRT-UML/RCM provides the designer with comparatively vast expressive power, mainly by
promoting a declarative specification for concurrent semantics, by taking care of stubs/skeletons via
an automated model transformation and by providing a family of design/transformation patterns:
the latter are particularly useful to give the designer the impression of not being too limited by
Ravenscar constraints. It is however still necessary to investigate on how to provide PIM-level
modelling for the state machine of the protocol agent (the OBCS in RCM jargon)
Separation of concerns
Even if HRT-UML/RCM promotes and pursues complete separation of concerns between the
functional view and the concurrency view, sometimes such separation is impossible to achieve. For
example, the callback pattern (which is used to realize deferred operations with out parameters in an
asynchronous manner, to legally bypass the RCM restriction which prohibits synchronous
communications by disallowing out parameters in deferred invocations) forces the functional
designer to split the specification of a (logically single) method into two distinct operations. Several
other similar examples exist. User feedback is therefore crucial to understand where the intended
separation of concerns may or should be blurred for the greater benefit of the design model.

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 22 of 23

 D3.2.6-1 Refinement of model transformation rules
 Date : 14/Nov/2007
 Author : UPD, Intecs
 Issue : 1 Rev : 0
 ID : 004033.DDHRT.UPD.DVRB.08

004033.DDHRT.UPD.DVRB.08.I1R0.D3.2.6-1 last modified: 14/11/2007 18:11:00 PM page 23 of 23

HRT-UML/RCM and AADL
The current findings indicate that HRT-UML/RCM has proven to be superior to the current version
of AADL for the modeling of the interface view and the functional view, mainly due to its higher-
level semantics (including the support to Ravenscar-compliant design/transformation patterns) and
support for object orientation; AADL however has proven superior in modeling hardware and
hardware-software interactions. User feedback is important in this regard not so much to rank
formalisms but rather to understand the designer needs and determine how they could be better
addressed by each distinct formalism.
Design process
The design process promoted by HRT-UML/RCM leans toward bottom-up, starting from the
functional contract behind the functional specification instead of top-down from system
specification. The most evident limitation with that approach however presently appears to be
caused by limitations with the modeling tools, in particular the contingent requirement that the
functional view be fixed (non-mutable) before the design of the interface view may start. We
postulate that, once modifications on the functional view may be mirrored on the interface view (for
example by adding a provided interface if a new method is created), the bottom-up approach
promoted by HRT-UML/RCM will match industrial needs. Needless to day, user feedback on this
aspect is absolutely crucial to determine whether the direction taken in the very conception of HRT-
UML/RCM is valid or needs rectifying.
Quality of the developed tools
The developed tools are not always as reliable as expected: this problem affects all aspects of the
modeling/analysis process. The sheer size of the developed tools is such that it has become difficult
to keep them synchronized and guarantee that their interaction is bug-free: the whole transformation
chain (including round-trip) is extremely complex to handle and maintain; at the same time, some
development tools (both ATL and MOFscript) sometimes include residual bugs. Since the V3
demonstrators aim at being realistic representations of real-life systems, user feedback on the
perceived quality of the HRT-UML/RCM toolset will be a precious indicator of whether areas of it
exist which need particular attention to robustness and reliability aspects.

	1 Abbreviations
	2 Introduction
	3 Mapping HRT-UML/RCM to the ASSERT Process
	3.1 Define logical architecture and model data
	3.2 Modelling hardware
	3.3 Mapping software to hardware
	3.4 Generating VM-level Containers
	3.5 Feasibility analysis
	3.6 Generation of application code
	3.7 Summary

	4 Logic and readiness of transformation steps
	4.1 Foundations: the nature of APLC
	4.2 Model transformation
	4.3 Generation of VMLC types
	4.4 Generation of VMLC instances
	4.5 Model- based round-trip timing analysis
	4.6 Work in progress
	4.6.1 Support for operation modes
	4.6.2 Automated extraction of WCET estimates
	4.6.3 Complete modelling of the communication stack

	5 Feedback expected from the V3 demonstrators

