

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Project IST-004033

ASSERT

 Automated proof based System and Software Engineering
for Real-Time Applications

Instrument: IST [FP6-2003-IST-2 4.3.2.5]
Thematic Priority: Embedded Systems

 Deliverable D4.2.1-3 Software Design Tool Prototype
(Final Version)

Work Package: WP4.2
Due date of deliverable: M27
Actual submission date: 16/November/2007
Start date of Project: September 5Th 2004 Duration: 3 years

 Organisation name of lead con­
tractor for this deliverable

INTECS

Issue- Revision I1R1

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination Level
PU Public
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services) X
CO Confidential, only for members of the consortium (including the Commission Services)

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 1 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

SOFTWARE DESIGN TOOL PROTOTYPE

(FINAL VERSION)

Distribution: DVT Cluster

Prepared by: Stefano Puri (INTECS), Thanaële Preuss (INTECS), Marco Trevisan (UPD), Sue
Maurizio(UPD), Matteo Bordin (UPD), Marco Panunzio (UPD)

Checked by: Silvia Mazzini (INTECS)

Release type: Internal Public Release

Status Passed QPR/IPR

Disclaimer

This document contains material, which is the copyright of certain ASSERT consortium parties, and
may not be reproduced or copied without permission.

• In case of Public (PU): All ASSERT consortium parties have agreed to full publication of this
document.

• In case of Restricted to Programme (PP): All ASSERT consortium parties have agreed to make
this document available on request to other framework programme participants.

• In case of Restricted to Group (RE): All ASSERT consortium parties have agreed to full
publication of this document to a restricted group. However this document is written for being
used by all interested projects, organisations and individuals.

• In case of Consortium confidential (CO): The information contained in this document is the
proprietary confidential information of the ASSERT consortium and may not be disclosed
except in accordance with the consortium agreement.

The commercial use of any information contained in this document may require a license from the
proprietor of that information.

Neither the ASSERT consortium as a whole, nor a certain party of the ASSERT consortium warrant
that the information contained in this document is capable of use, or that use of the information is
free from risk, and accept no liability for loss or damage suffered by any person using this
information

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 2 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Document Change Record

Issue
Revision

Date Affected
Section/Paragraph/Page

Reason for Change/Brief Description of
Change

I1R0 05/11/07 All First issue for IPR

I1R1 14/01/08 Appendix A2, A3.1.1, A8.3,
A.4. IPR comments have been integrated.

 ISTORY

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 3 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Table of Contents
1. Glossary..8
2. Introduction.. 10

2.1. Purpose of the document...11
2.2. How to read this document... 11
2.3. Acknowledgments.. 11

3. HRT-UML2: the HRT-UML/RCM toolset Eclipse plug-in...12
3.1. HRT-UML2 Status... 12
3.2. The HRT-UML2 Process..12
3.3. HRT-UML2 Plug-in Environment and Distribution.. 12

 3.3.1 HRT-UML2 requirements...13
 3.3.2 HRT-UML2 distribution and installation... 14

3.4. The HRT-UML2 workbench.. 15
3.5. Diagrams as resources.. 17

 3.5.1 Printing, Saving a diagram (as an image file)...20
3.6. Multiple editors...20
3.7. Multiple models.. 22

Appendix A Detail description on How to Work with the Toolset..24
A.1 Working With Packages... 24
A.2 Data View Modeling..25
A.3 Functional Modeling..25

 A.3.1 Class Diagram for Functional Modeling..25
 A.3.1.1 RCMfunctionalContainer (Class)..26
 A.3.1.2 Interface...27
 A.3.1.3 DataType, Primitive Type and Enumeration.. 28
 A.3.1.4 Properties...29
 A.3.1.5 RCMoperation...29
 A.3.1.5.1 FwNominalOperation...30
 A.3.1.5.2 RequiredOperation... 30
 A.3.1.5.3 WorksOn... 32
 A.3.1.5.4 WCET descriptor.. 32
 A.3.1.6 Classifier relations...33

A.3.2 State Machine diagram... 34
A.3.3 Importing a functional model..36
A.4 Interface View Modeling... 37

 A.4.1 Class Diagram.. 37
 A.4.1.1 AP-level container ..37
 A.4.1.2 AP-level container state (State Reference)..38
 A.4.1.3 Provided Ports and Port Clusters...40
 A.4.1.4 Required Ports and Port Clusters.. 40
 A.4.1.5 Port Cluster Connectors.. 41
 A.4.1.6 Managing port cluster visibility on diagram... 41

A.4.2 Instance Diagram.. 43

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 4 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

 A.4.2.1 APLcontainer instance.. 44
 A.4.2.2 Port instance and HRT attributes.. 45
 A.4.2.3 AP instance Link... 47
 A.4.2.4 A view on the logical deployment.. 48

A.4.2.4.1 Partition and LogicalCommunication...49
A.5 Working with HRT-UML/RCM patterns.. 50
A.5.1 WCET overrun handling ..51
A.5.2 Deferred services with write-mode parameters (and optional time-out)............................ 52
A.5.3 Reactivity links... 61
A.5.4 Sporadic operations with bursty activation...68
A.6 Deployment view Modelling .. 71
A.6.1 Deployment Diagram..71

 A.6.1.1 Computational Node... 72
 A.6.1.2 Partitions... 73
 A.6.1.3 Logical Communication..74
 A.6.1.4 Logical Communication constraints... 75
 A.6.1.5 Visible attributes of a Node...75
 A.6.1.6 Interconnection constraints... 75

A.7 Model validation.. 76
A.8 Model transformation...77

 A.8.1 Round-trip analysis.. 77
 A.8.2 Generating Ada2005 code..78
 A.8.3 Code Generation for modelling tools integration (SCADE, SDL..)............................ 79
 A.8.4 Interface View to Concurrent View... 79

Appendix B Current Version Limitations... 82
Appendix C RCM constraints... 84
Appendix D The ASSERT builder Launcher plug-in... 97
 Bibliography.. 99

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 5 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Illustration Index
Figure 1: Eclipse plug-in configuration..13
Figure 2: HRT-UML2 Eclipse plug-in workbench.. 16
Figure 3: initializing a diagram.. 19
Figure 4: Navigating the diagram file structure with the Package Explorer view............................. 20
Figure 5: the dialog window telling about differences between current diagram and the model.......22
Figure 6: Package expanded presentation.. 24
Figure 7: Example of diagram showing functional entities..26
Figure 8: RCMfunctionalContainer representation.. 26
Figure 9: Interface representation...27
Figure 10: Interface View Dependencies List.. 27
Figure 11: DataType and Enumeration representation...28
Figure 12: Operation Parameters editor... 29
Figure 13: Required Operation editor...30
Figure 14: WCET descriptors editor.. 32
Figure 15: State Machine diagram... 34
Figure 16: RCM from UML wizard... 35
Figure 17: RCMcomponent presentation... 37
Figure 18: An APLcontainer with state and port clusters.. 39
Figure 19: RCMpiPortCluster and RCMpiPorts.. 40
Figure 20: RCMriPortCluster and RCMriPorts..40
Figure 21: Managing PortClusterVisibility attribute: internal restricted case....................................42
Figure 22: Working with APLcontainer instances... 43
Figure 23: Untyped instance representation... 44
Figure 24: Typing the instance... 44
Figure 25: two CyclicSlots resolving to the same operation-state.. 45
Figure 26: Invalid connection report.. 47
Figure 27: Partition representation in instance diagram...48
Figure 28: Logical deployment in the instance diagram.. 49
Figure 29: safe-mode instance..51
Figure 30: deferred with write mode parameters, step 1.. 52
Figure 31: deferred with write mode parameters, step 2.. 53
Figure 32: deferred with write mode parameters, step 3.. 54
Figure 33: deferred with write mode parameters, step 4.. 55
Figure 34: deferred with write mode parameters, step 5.. 56
Figure 35: deferred with write mode parameters, step 6.. 56
Figure 36: deferred with write mode parameters, step 7.. 57
Figure 37: time-out handler.. 58
Figure 38: time-out interval..59
Figure 39: reactivity links, step1.. 60
Figure 40: reactivity links, step2.. 61
Figure 41: reactivity links, step3.. 62
Figure 42: reactivity links, step4.. 63

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 6 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Figure 43: reactivity links, step 5... 64
Figure 44: reactivity links, step 6... 65
Figure 45: reactivity links, step 7... 66
Figure 46: Setting sporadic as bursty... 67
Figure 47: Setting the burst interval... 68
Figure 48: The deployment view editor... 69
Figure 49: Deployment View Palette... 70
Figure 50: Computational Node representation... 71
Figure 51: Partition with APLContainer Instance.. 71
Figure 52: Selecting a partition for a node.. 72
Figure 53: validating the class diagram..75
Figure 54: generating Concurrent View... 78
Figure 55: Generating Concurrent View dialogue window... 79
Figure 56: Run dialog...95
Figure 57: ASSERT Builder run configuration..96

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 7 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

1.1. GlossaryGlossary

• ASN : Abstract Syntax Notation

• ASSERT : Automated proof based System and Software Engineering for Real-Time Applic­
ations

• APLC : Application Level Container

• ATL : Atlas Transformation Language

• DVT : Development and Verification Tools (ASSERT cluster)

• Eclipse : www.eclipse.org

• Ecore : meta model defined in the EMF framework

• EMF : Eclipse Modeling Framework

• GMF : Graphical Modeling Framework

• HRT : Hard Real Time

• MDA : Model-Driven Architecture

• MOF : Meta Object Facility

• MOFscript : Eclipse plug-in for model to text transformations

• OCL : Object Constraint Language

• OMG : Object Management Group

• OPCS : Operation Control Structure

• RCM : Ravenscar Computational Model

• RcmCiv : identifies a class diagram in the context of HT-UML2 plug-in

• RcmDeplo : identifies a deployment diagram in the context of HT-UML2 plug-in

• RcmInstance: identifies an instance diagram in the context of HT-UML2 plug-in

• RcmSm : identifies a state-machine diagram in the context of the HT-UML2 plug-in

• UML : Unified Modeling Language

• VM : Virtual Machine

• VMLC : Virtual Machine Level Container

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 8 of 99

http://www.eclipse.org/

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

• WCET : Worst-Case Execution Time

• XMI : XML Metadata Interchange

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 9 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

2.2. IntroductionIntroduction

In the context of the ASSERT project a new methodological approach has been devised that per­
mits to express at model level non-functional properties of interest to a system design and to pre­
serve them throughout the entire development process, from specification to deployment in the exe­
cution environment.

The new methodology is described in [CVHN06].

In order to achieve the above described goal, the system model to be produced in the design phase
includes the following complementary views:

• the deployment view [UEE07] of the system, which specifies the system physical compon­
ents in terms of nodes (processors, memory, devices), partitions, communication links and
protocols and their properties and relations to software components;

• the data view, which describes data type components that can be exchanged across system
software components;

• the functional view, which describes the application layer static and dynamic functional
behaviour, in terms of class and statechart diagrams respectively;

• the interface view [UEE07]of the system, which specifies the individual software compon­
ents of the application layer, in terms of application level containers (APLC), embedding
the functional view elements. APLCs fully specify the interfaces of the system software
component instances, by the addition of hard real-time attributes and the definition of their
mutual relationships;

• the concurrency view [UEE07], which determines the concurrent architecture of the
threads of control that populate the system model and their synchronization points and pro­
tocols in a form structurally (i.e. by construction).

The system modeling language is described by the HRT-UML/RCM meta-model [BT07].

The HRT-UML/RCM meta-model, is compliant with the OMG Meta Object Facility meta-
model, the standard base language for defining modeling languages in the Eclipse environment and
has to be considered as UML2 restriction to adhere to the new ASSERT methodology.

The HRT-UML/RCM toolset, also named HRT-UML2, has been developed as an Eclipse plug-in
in order to support graphical editing of the HRT-UML/RCM meta-model, to enforce the HRT-
UML/RCM grammar rules as described in [CVHN06] and to integrate feasibility analysis and
MDA model transformations, such as the vertical transformation to the VM level (concurrency
view) and code generation.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 10 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

2.1. Purpose of the document

The purpose of this document is to provide a comprehensive guide for the use of the HRT-
UML/RCM toolset HRT-UML2. The current version of this guide is related to the toolset version
0.6.x.

2.2. How to read this document

It is assumed that the reader is familiar with the UML2 and the document describing the RCM
meta-model [BT07].

Moreover a base knowledge about the Eclipse environment is assumed, in particular about the
management and the use of the standard Eclipse views.

In the text the following icons can appear at the start of a paragraph:

 the associated paragraph owns some hint

the associated paragraph has important information that need to be read carefully

In this document a simple example, concerning the modeling of a controller and actuator case is
considered as example and illustrated in the screen shots appearing in the figures.

Moreover the Toy Example is used, that is an RCM model developed in the ASSERT project.

2.3. Acknowledgments

Intecs wish to thank for their contribution and support all the UPD team people involved in the
specification of the toolset and the related meta-model. In particular, they wish to thank Tullio
Vardanega, Daniela Cancila, Matteo Bordin, Marco Panunzio, Sue Maurizio and Enrico Mezzetti.

Special thanks to Marco Trevisan, Sue Maurizio, Marco Panunzio and Matteo Bordin from UPD
for their textual contribution about HRT-UML/RCM patterns which has been integrated in this user
manual.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 11 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

3.3. HRT-UML2: The HRT-UML/RCM ToolsetHRT-UML2: The HRT-UML/RCM Toolset
Eclipse Plug-inEclipse Plug-in

3.1. HRT-UML2 Status

The toolset current version is the preliminary version 0.6.x.

It currently supports full graphical editing of the functional view, interface view and deployment
view, the automated transformation into the concurrent view, round-trip analysis and Ada05 code
generation.

Functional models can be imported from other functional modeling tools, in particular UML2
tools applying the Framework Profile [CP05] and compliant to the XMI 2.0 standard interchange
format. Import of models from Rational Software Modeler by IBM has been verified in the context
of the ASSERT project demos.

3.2. The HRT-UML2 Process

The current (possibly iterative) process that is assumed when working with the editor is:

1) definition of the functional model (classifiers and state machines)

2) definition of the class model of the interface view model, referring the functional model

3) definition of the instance model of the interface view and partitions (logical deployment)

The definition of the deployment model, physical and/or logical, can be done independently from
steps 1) and 2) while some information, i.e. the logical part, is in common with 3).

3.3. HRT-UML2 Plug-in Environment and Distribution

In this paragraph the details concerning the Eclipse environment and installation are provided.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 12 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

3.3.1 HRT-UML2 requirements

Java1.5 is required to run the round-trip analysis. The following Eclipse environment is recom­
mended:

– Eclipse 3.3 Europa

– GMF 2.0

– ATL, release build February 16, 2007 (http://www.eclipse.org/m2m/atl/download/)

– UML2 2.1.0

– MOFScript 1.2.4 (http://www.eclipse.org/gmt/mofscript/download/)

When a required plug-in is installed manually please refer to its installation instructions to be
sure to install also all the needed plug-in.

Figure 1 illustrates how the Eclipse configuration should appear once installed the required
plug-in; to open the window select Help –> Software Updates –> Manage Configuration from
the Eclipse main toolbar.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 13 of 99

Figure 1: Eclipse plug-in configuration

http://www.eclipse.org/gmt/mofscript/download/

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

3.3.2 HRT-UML2 distribution and installation

The HRT-UML2 plug-in is composed by the the following plug-in's:

– hrtuml2_<version>

– hrtuml2.edit_<version>

– hrtuml2.editor_<version>

– hrtuml2.diagram.piv_<version>

– hrtuml2.diagram.civ_<version>

– hrtuml2.diagram.sm_<version>

– hrtuml2.diagram.instance_<version>

– hrtuml2.diagram.deploy_<version>

– hrtuml2.transformation_<version>

– hrtuml2.validation_<version>

– ch-ethz.fwprofile.RCMvalidation_<version>

hrtuml2, hrtuml2.edit and hrtuml2.editor implement the RCM Ecore (meta)model end the corres­
ponding EMF tree editor.

hrtuml2.diagram.civ, hrtuml2.diagram.piv, hrtuml2.diagram.sm, hrtuml2.diagram.instance and hr­
tuml2.diagram.deploy implement the diagram editor.

hrtuml2.transformation implements the model transformations.

hrtuml2.validation implements RCM model validation.

ch-ethz.fwprofile.RCMvalidation implements the Fw Action Language parser. This plug.in was
originally developed by ETH to validate UML models; it has been adapted to validate state ma­
chines actions/guards defined in RCM models.

To install the HRT-UML2 plug-in copy these elementary plug-in's into the plugins directory of
the Eclipse installation.

Moreover the following partial installations of the HRT-UML2 plug-in are still possible:

1. hrtuml2 + hrtuml2.edit + hrtuml2.editor + hrtuml2.transformation + hrtuml2.validation:
this allows to work with the RCM metamodel (i.e. to manage RCM models), with the
EFM tree editor and with the model transformations.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 14 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

2. hrtuml2.diagram.piv + hrtuml2.diagram.civ + hrtuml2.diagram.sm + ch-ethz.fwprofile.R­
CMvalidation + hrtuml2.diagram.instance + hrtuml2.diagram.deploy + 1. : this allows to
use diagrams editor for RCM models.

In order to launch the transformations (i.e. round-trip analysis and Ada code generation) the
Ecore metamodel files rcm.ecore and mast.ecore have to be copied in the MOFscript plug-in re­
pository folder located at:

plugins/org.sintef.mofscript.editor_x.y.z/repository/metamodels

The rcm.ecore and mast.ecore files are available in the hrtuml2.transformation plugin in the
following path:

hrtuml2.transformation/metamodels

Also in order to execute the Round-trip analysis the MAST+ tool for the target operating
system has to be copied in the following folder.

hrtuml2.transformation/MAST+

3.4. The HRT-UML2 workbench

The HRT-UML/RCM toolset is integrated in the Eclipse platform. Figure 2 illustrates the main
editor components, as listed in the following:

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 15 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

● Project Explorer View: it shows the contents of the workspace and the HRT-UML2 dia­
gram file in a tree style.

● Outline View: when the focus is on a diagram editor, it shows a bird-eye view of the dia­
gram itself

● Palette: it is associated to a diagram editor. It allows tool selection and performing of cor­
responding actions on the associated diagram. Tools in the Palette are grouped according to
their semantics.

● Properties View: it shows the available properties and associated current values in rela­
tion with the entity focused in the diagram editor. Depending on the property, you can edit
the associated value.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 16 of 99

Figure 2: HRT-UML2 Eclipse plug-in workbench

Project
Explorer
View

Outline
View

Palette

Properties
View

Palette
group

Diagram
editor

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

3.5. Diagrams as resources

The HRT-UML/RCM editor implements diagram editors on top of the RCM meta-model. Cur­
rently the following kinds of diagrams are supported:

• UML2 class diagrams,

• UML2 state charts,

• UML2 instance diagrams

• UML2 deployment diagrams.

These different kind of diagrams are identified in the plug-in with different tags, as described in
the following:

• class diagram: RcmCiv (class-interface view)

• state chart diagram: RcmSm (state machine)

• instance diagram: RcmInstance

• deployment diagram : RcmDeploy

Each diagram has an RCM root entity associated. The association rules are described in the fol­
lowing:

• a RcmCiv diagram may have a Package RCM entity as root

• a RcmSm diagram may have an RCMfunctionalContainer RCM entity as root

• a RcmInstance diagram may have the InstanceSet RCM entity as root

• a RcmDeploy diagram may have the PhysicalArchitecture RCM entity as root.

 Each diagram shows the contents of its associated root entity (an HRT-UML2 predefined filter
selects visible entities).

A diagram is synchronized with the related model, i.e. if you modify the model externally, for in­
stance through another diagram or the EFM editor, changes are automatically loaded and the corres­
ponding entities modified in the diagram.

The repository for a HRT-UML2 design model (or project) includes the following files:

1) one or more *.rcm file, representing the ecore RCM model

2) zero or many diagrams files: RcmCiv files have rcm_civ_diagram as extension, RcmIn­
stance files have rcm_instance_diagram as extension, RcmSm files have rcm_sm_diagram
while RcmDeploy files have rcm_deploy_diagram as extension.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 17 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

You may create a class or a deployment HRT-UML2 diagram with a new RCM model associated;
you may also create a new diagram starting from an existing RCM model, in particular starting
from a valid root entity: a Package (RcmCiv), from the InstanceSet (RcmInstance), from an RCM­
functionalContainer (RcmSm) or from the PhysicalArchitecture (RcmDeploy). So doing the dia­
gram just created is automatically populated, accordingly to the synchronized nature of the diagram.

To create a diagram with an new empty RCM model associated:

● select the File -> New -> Other -> HRT-UML2 menu from the Eclipse workbench

● select “RCM Class Diagram” to create a class diagram or “RCM Deployment Dia­
gram” to create a deployment diagram.

To create a diagram starting from an existing model:

● right click the *.rcm model file

● select “initialize rcm_civ_diagram diagram file”: a Package has to be selected as diagram
root element

● “initialize rcm_instance_diagram diagram file”: the InstanceSet has to be selected as dia­
gram root element

● or “initialize rcm_sm_diagram diagram file”: a RCMfunctionalContainer has to be selec­
ted as diagram root element

● or “initialize rcm_deploy_diagram diagram file”: the PhysicalArchitecture has to be selec­
ted as diagram root element

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 18 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

To open a diagram editor

● double click the diagram file.

 You can use the Eclipse Project explorer view to navigate diagram or model file structure
and select its owned entities in the open editors, as illustrated in figure 4.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 19 of 99

Figure 3: initializing a diagram

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

3.5.1 Printing, Saving a diagram (as an image file)

It is possible to save a diagram or just the current selected figures as an image file: just right click
on the diagram area or on the current selected figures and select File -> Save as Image File... com­
mand.

Also you can print diagrams using the File->Print... command.

3.6. Multiple editors

Working with the HRT-UML2 plug in, the following editors can be used for RCM models:

• the EMF editor tree,

• the RcmCiv diagram,

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 20 of 99

Figure 4: Navigating the diagram file structure with the Package Explorer view

Button for synchronization
with open editors .

Expanded diagram
file.

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

• the RcmInstance diagram,

• the RcmSm diagram,

• the RcmDeploy diagram.

The EMF editor tree is associated to the *.rcm model file.

You can have multiple diagram files, one for each of the different diagrams defined in the same
model, attached to the specific root entities.

The HRT-UML2 editor allows also multiple diagram navigation, while having all the diagrams
contained just in one diagram file.

To create another diagram associated with a Package or RCMfunctionalContainer, starting from
an RcmCiv diagram,

● double click the entity for which the new diagram has to be created.

For a Package double click on the top left rectangle of the figure representing the folder, while for
an RCMfunctionalContainer double click on the compartment name of the figure.

 It is safe to save a diagram before switching to another one.

Different diagrams and the EMF editor tree don't share the same editing domain, so, for in­
stance, in order to see a change made in a diagram file on the EMF editor tree and/or in another
diagram, you need to save the change.

Particular attention has to be put while doing modification on different diagrams at the same
time while working on the same model; this in order to avoid lost of pending information on a
diagram when saving (possible incompatible) modification on a different diagram.

For instance, when using the multiple diagram editor feature on the same diagram file, you may
have more than one diagram with pending modifications. In this case, when modification are
saved in one diagram, switching to another diagram, a dialog window appears, as illustrated in
Figure 5. In this case the answer “Yes” means that all the local modification will be lost! You
may answer “No” to avoid lost of the local modification and then save the local changes: in this
case modification saved before via another diagram will be lost.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 21 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

3.7. Multiple models

HRT-UML2 plug-in supports working with RCM models stored in different .rcm files; in partic­
ular from an RCM model A it is possible to refer to another model B stored in a separated .rcm file.

Working with multiple models is not currently supported by the ATL model transforma­
tions (i.e. the ones used to perform round-trip analysis and code generation). If you have
several models to work with, a possible workaround to this current limitation is to merge
their content into a single model: you can easily do it by using the copy and paste feature
which is available from the tree editor. For instance you can copy an entire package of
one model and then paste it into another one.

From the current RcmCiv diagram you can:

• right click on the diagram background, choose LoadResource... command and select
the target .rcm model file you want to refer; so doing the elements defined in the tar­
get model can be referred from the entities defined in the current model, e.g. through
property values.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 22 of 99

Figure 5: the dialog window telling about differences between current diagram and
the model

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

• right click on the diagram background, choose Create Shortcut... command, retrieve
the target .rcm model file with the given browser and navigate it to select the element
to show in the current diagram.

Note that the deletion of an imported figure (also called shortcut) doesn't have any
impact on the target model, i.e it is only a graphical deletion.

In the property editor, for a label associated to a type, it is possible to have as prefix the name of
the resource owning that type (for instance for the type of a property). This can be useful while
working with multiple model files, in fact the models could have the same name and it could be
difficult from the property editor to identify an element of a particular model. To activate/deac­
tivate this feature:

• select Window-> Preferences->Run/Debug->String Substitution from the Eclipse menu
and set to true/false the boolean variable named UseResourceNameForTypePath.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 23 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Appendix A Appendix A Detail Description On How To Detail Description On How To
Work With The ToolsetWork With The Toolset

A.1 Working With Packages

An RCM model comes with a default top level structure of stereotyped Package to separate and
better organize class, instance and deployment modelling. This hierarchy is the following:

– Model: it is the root Package for an RCM model

– Model.Package: it is the root Package for functional and interface class model

– Model.InstanceSet: it is the root Package for instance model

– Model.DeploymentInformation: it is the root Package for deployment model.

During the design of the class model for functional and interface view you are able to create and
use Package like in standard UML2 models. For the entities defined in these Packages the visibility
rules defined in UML2 apply.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 24 of 99

Figure 6: Package expanded presentation

Owned member
compartment

Compartment
scrollbar

Double click
here to open

a separate diagram.

Package name

Owned
member

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Its presentation in a diagram comes with an owned member compartment, where entities can be
directly created and manipulated.

In HRT-UML2 a Package can be the root for an RcmCiv diagram, so you may edit the Package
contents in a separate and dedicated diagram.

Through the HRT-UML2 class diagram editor, you may model functional entities and RCM in­
terface entities. You may structure such entities in some package hierarchy or they can be resid­
ent on a single root package at the same level.

Compartments for Packages are collapsible, i.e. you may show/hide compartment contents by
double clicking the top left part of the compartment itself.

Note that when a compartment is collapsed the outgoing or incoming links are automatically hid­
den.

For a compartment you can use the Arrange All command in order to perform an auto­
matic layout of the contained figures: this is particularly useful when a diagram is initial­
ized starting from an existing model.

A.2 Data View Modeling

The Data View is supported by the RCM metamodel and can be designed with the toolset by us­
ing the Package and DataType entities available in the functional view diagram (see appendix A.3).

 Currently the import from ASN.1 Data View definition into an RCM model can be performed ex­
ternally with the asn2uml tool developed by Semantix.

A.3 Functional Modeling

The HRT-UML2 plug-in allows to create RCM functional entities using an RcmCiv diagram (i.e.
the equivalent of an RCM dedicated UML class diagram).

A.3.1 Class Diagram for Functional Modeling

The functional entities can be created on the diagram using the commands available on the
Palette-Functional command group.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 25 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.3.1.1 RCMfunctionalContainer (Class)

For the RCMFunctionalContainer the standard UML notation for Class is provided.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 26 of 99

Figure 8: RCMfunctionalContainer representation

Attributes
compartment Operations

compartment

Name
compartment

Figure 7: Example of diagram showing functional entities

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Standard UML class properties are available through the property editor associated to the RCM­
functionalContainer (e.g. isAbstract, isLeaf etc). Moreover the RCMfunctionalContainer comes
with the enumerated property Implementation Language, by default set to Ada, which can be used
to specify the language (i.e. Lustre, SDL, C++) that will implement the functionalities specified by
the current RCMfunctionalContainer (see Appendix A.8.3).

A.3.1.2 Interface

For the RCM Interface the standard UML notation for Interface is provided.

When you select a class or an interface you can see in a dedicated property editor tab all
the entities in the interface view that are depending on that functional entity.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 27 of 99

Figure 9: Interface representation

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.3.1.3 DataType, Primitive Type and Enumeration

For the RCM Datatype, PrimitiveType and Enumeration elements the standard UML notation for
the analogous elements is provided.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 28 of 99

Figure 10: Interface View Dependencies List

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.3.1.4 Properties

For a Classifier (e.g. RCMfunctionalContainer, Interface) you may create Properties, i.e. typed at­
tributes. The type can be a data type, an enumeration, or another functional Classifier. When as­
signing the type of a Property the property editor shows the available entities accordingly to the
visibility rules.

Attributes for a classifier are listed on the middle compartment of the classifier presentation.

Currently the only way to specify UML-like use relations/association between a func­
tional containers and/or interface is to create attributes typed with the target classifier, on
the source container.

A.3.1.5 RCMoperation

The list of RCMoperation for a classifier are showed on the bottom compartment of the classifier
presentation.

A specialized tab property named “Operation Parameters” has been implemented to edit
the operation signature.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 29 of 99

Figure 11: DataType and Enumeration
representation

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.3.1.5.1 FwNominalOperation

The tool supports FwNominalOperation creation according to the EthFwProfile [CP05].

A.3.1.5.2 RequiredOperation

Given an RCMoperation (FwNominalOperation) it is possible to specify which are the required
operations it call: this can be done using the RCM RequiredOperation entity defined in the RCM
meta-model.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 30 of 99

Figure 12: Operation Parameters editor

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

 The information about the required operations is necessary because it is used by the tool in
 the Interface View to build the required elementary ports.

Currently, given an RCMoperation, RequiredOperation relations have to be specified by the user
through a dedicated property editor named “Required Operations”; this editor is available in the
Properties view when an operation is selected.

Currently it is up to the user to maintain consistency between RequiredOperation's spe­
cification and the actions specified in the StateMachine. No automatic creation or checks
are currently supported.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 31 of 99

Figure 13: Required Operation editor

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Figure 13 illustrates the Required Operations tab editor: you can click Add or Delete button to
create or remove RequiredOperation entity for the current RCMoperation.

For a RequiredOperation entity appearing in the table it is possible to set the following fields:

• Instance: represents the target element on which the operation will be invoked. This field
is editable through a combo box which shows the attributes currently defined or inherited
for the given class. It is possible to use the “this” predefined instance to specify self calls.

• Required Operation: it is the called operation. This field is editable through a combo box
that shows only the operations which are invocable for the selected instance.

• Invocations: it is an integer field which specify the maximum number of invocations of
the target operation during an invocation of the current RCMoperation.

A.3.1.5.3 WorksOn

An operation comes with the worksOn relation: this relation allows to specify the state , i.e. the set
of properties, on which the operation acts. You can specify this information through the property
editor.

Note that this information is particular relevant for the interface view and for the concurrent
view transformation.

A.3.1.5.4 WCET descriptor

WCET descriptors for an operation can be edited thought the dedicated property editor tab avail­
able when the operation is selected.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 32 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.3.1.6 Classifier relations

The editor supports the definition of interface implementation relations and classifier extension re­
lations.

To create an interface implementation relation:

● select the Implements tool from the Fuctional palette group

● draw a line starting from the class and ending on the interface.

 When an interface implementation is created the tool checks and creates all the operations
defined in the interface that are missing in the class.

To create a classifier extension relation:

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 33 of 99

Figure 14: WCET descriptors editor

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

● select the Extends tool from the Functional palette group

● draw a line starting from the derived classifier and ending on the base classifier.

A.3.2 State Machine diagram

 The RCM meta-model and the HRT-UML2 state machine diagram editor have been defined and
implemented accordingly to the EthFwProfile UML profile. Please refer to [CP05] for the specifica­
tion of the EthFwProfile stereotypes and constraints.

 Given a RCMfunctionalContainer it is possible to open its state machine from the class diagram
by double clicking the name compartment of the figure; another possibility is to initialize a new
RcmSm diagram from the RCM model file selecting the RCMfunctionalContainer as the diagram
root entity.
 When a state machine diagram is opened for the first time the StateMachine entity and the owned
region appear. States (FwState) and transitions (FwTransition) can be created inside the state
machine region.

 By defnition FwState can own a region, so you can have nesting of state.
 Transition has a dedicated property tab that allows to edit triggers, guard and effect. State entry
and exit actions, transition guard and effect are features of type string: these string should be
expressed using the FwActionLanguage ([CP05]) language syntax.

 The hrtuml2 plug-in integrates the Fw Action Language parser developed by ETH to parse and
validate the modified state action, transition guard/effect string.

 You can enable/disable the Fw Action Language parser check; to do this you have to se­
lect Window-> Preferences->Run/Debug->String Substitution from the Eclipse menu and
set to true/false the boolean variable named ActionLanguageParser.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 34 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 35 of 99

Figure 15: State Machine diagram

StateMachine

StateMachine's
region

State's actions
compartment

State's
region
compartmen

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.3.3 Importing a functional model

You may populate a new RCM model from an UML model that applies the ETH Framework Pro­
file [CP05].

NOTE: integration of functional models can be also achieved at code generation level (see A.8.3).

To create an RCM model from an existing UML functional model

● open the File -> New -> Other -> HRT-UML2 -> RCM from UML wizard:

The wizard come with the following fields to be filled:

-Container is the folder where the .rcm model as to be created

-File name is the name of the .rcm file to create.

-UML-EthFwProfile model Directory: use the navigator to select the UML model from which
load the functional model. The model file (.uml or .uml2) has to be on the current workspace.

The result of the import phase is a new RCM model populated with all the model entities (Class,
Interface, StateMachine...) stereotyped according to the EthFwProfile. You can navigate the model
and extend it for instance by initializing a new RcmCiv editor.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 36 of 99

Figure 16: RCM from UML wizard

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.4 Interface View Modeling

HRT-UML2 diagram editor supports the interface view [UEE07]design by offering two kind of
diagrams:

● class diagrams (RcmCiv), rooted on a RCM.Package model entity,

● instance diagrams (RcmInstance), rooted on the RCM.InstanceSet model entity.

The rationale behind the usage of these diagrams is the following:

● one or several RcmCiv has to be used to define the AP-level container, as classifiers, of
the interface view

● one instance diagram as to be used to model the collaboration of AP-level container in­
stances, to specify the HRT attributes and to map instances to deployment partitions.

The interface view depends on the functional view, as explained in the following
chapters; most of the modification actions on the functional view are automatically re­
flected by the tool in the interface class and instance view. See chapter 10 for more in­
formation about the status of this feature.

A.4.1 Class Diagram

In the following are the Interface View entities that you can manipulate through the HRT-UML2
class diagram.

A.4.1.1 AP-level container

Use APLcontainer tool in the InterfaceView palette to create an AP-level container classifier
(APLcontainer in the RCM metamodel) on the current diagram.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 37 of 99

Figure 17: RCMcomponent presentation

Compartment
for APLcontainerState
owned entities

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

An AP-level container is represented as an UML stereotyped component; it can have a state, i.e. It
can own specialized RCM Property entities called APLcontainerState. An AP-level container may
not define operations.

A.4.1.2 AP-level container state (State Reference)

An APLcontainer is a structured classifier so its diagram presentation comes with a dedicated
compartment to show the parts (StateReference in the RCM metamodel) it owns; a part represent
the state of an APLcontainer. A part of an APLcontainer can only be typed with RCMfunctional­
Container.

To add parts to an APLcontainer:

● select the APLcontainer State palette command

● click inside the APLcontainer parts compartment.

You may create more than one part inside an APLcontainer.

A type has to be defined for a functional state. It is possible to select the type of the part through
the properties view; note that for the selected part the editor shows as available types only function­
al containers which are visible to the current APLcontainer.

When the type is selected the the tool automatically performs the following actions on the current
APLcontainer:

● creates one or more provided port cluster (RCMpiPortCluster) owning provided element­
ary ports (RCMpiPort): a provided port cluster is created for each type provided by the func­
tional container typing the APLcontainer state.

● creates zero or more required port clusters (RCMriPortCluster) owning elementary re­
quired ports (RCMriPort). Required ports are created according with the RequiredOperation
relations specified in the functional view.

The diagram shows the delegation of the created ports to the current internal functional part.

The relation behind the creation of these entities is explained in the following.

 The provided port clusters allow the APLcontainer to expose the services provided by the internal
declared parts. The APLcontainer provides such services through elementary ports (RCMpiPort),
one elementary port for each elementary service; these provided services are grouped into port
clusters according to the definition of the types implemented by the functional container typing the
APLcontainer state.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 38 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

There can be the case where a given service is shared among different provided port clusters
associated to the same APLcontainer state. In this case, for the related elementary ports, the
value for some attributes have to be the same: in particular the tool currently perform check
about port kind consistency for all the elementary ports referring the same service imple
mented by the same APLcontainer state.

So a port cluster aggregates elementary ports, each elementary port refers to a service provided by
the functional container part to which the port cluster is delegated.

An elementary port refers a functional service that can be called through it, moreover it comes
with concurrent attributes which are the relevant attributes of the interface view as defined in
[CVHN06]: these attributes determine the protocol to use when the related service is invoked.
Please refer to [BT07] for an exhaustive explanation of elementary port concurrent attributes and
their relations with the attribute defined in [CVHN06].

The required port cluster represents a type that is requested by the functional part to which the
port itself is delegated. Currently a required port cluster is created for each attribute, typed RCM­
functionalContainer or Interface, declared in the functional container typing the current part:
moreover this attribute has to appear in the “Instance” field of a RequiredOperation relation associ­
ated to a owned operation. The operation invoked on this property, defined in the functional view
through the RequiredOperation's definition, will determine the elementary RCMriPort's.

As for the provided services, each required services in a port cluster is actually requested through
an elementary port, an elementary port for each required service. An elementary port has concurrent
attributes associated.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 39 of 99

Figure 18: An APLcontainer with state and port clusters

Functional part

Provided port
cluster

Required port
cluster

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Note that the association of concurrent attributes to ports allows to reuse the same functional ser­
vice in different concurrent context.

So you may use the same functional container as part more than once in the same or in different
APLcontainers. Moreover you may set different concurrent attributes values for the services
offered and required by each of these parts.

A.4.1.3 Provided Ports and Port Clusters

For each RCMcomponent, the editor displays on its borders in an identifiable way the set of con­
tained RCMpiPortCluster(s).

For each RCMpiPortCluster, the editor lists the static set of owned RCMpiPorts.

You can resize and move the port cluster figure around the APLcontainer border. Moreover the
compartment listing the owned elementary ports can be collapsed.

The creation/deletion of these entities is automatically performed by the tool, for instance
when the user edits the type of a StateReference (creation/deletion of port cluster) or, from
the functional view, when he/she add/remove an operation in the provided type
(creation/deletion of RCM port).

The full path of the provided type is available in the port cluster property editor

A.4.1.4 Required Ports and Port Clusters

For each RCMcomponent, the editor displays on its borders in an identifiable way the set of con­
tained RCMriPortCluster(s).

For each RCMriPortGroup, the editor displays the static set of owned RCMriPorts.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 40 of 99

Figure 19: RCMpiPortCluster and RCMpiPorts

RCMpiPort kind
attribute

RCMpiPort

RCMpiPort's operation
name

The provided type

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

You can resize and move the port cluster figure around the APLcontainer border. Moreover the
compartment listing the owned elementary ports can be collapsed.

The creation/deletion of these entities is automatically performed by the tool, for instance
when the user edits the type of a StateReference (creation/deletion of port cluster) or, from
the functional view, when he/she adds/removes an operation in the provided type
(creation/deletion of RCM port).

The full path of the required type is available in the port cluster property editor

A.4.1.5 Port Cluster Connectors

In HRT-UML2 connections between required and provided ports are only allowed to be de­
signed at port cluster level through the PortClusterConnector element.

A PortClusterConnector represents a connector between an RCMriPortCluster and an RCMpi­
PortCluster. Such connector does not exist in the RCM meta-model, it is a pure graphical ele­
ment which identifies, the existence of RCMassembly's between the ports owned by the RCMri­
PortCluster and RCMpiPortCluster.

In the class diagram it is possible to connect port clusters only for the same APLcontainer class: in
order to do this:

1) select the PortClusterConnction command from the palette and trace a link from the re­
quired port to the provided one.

Automatically all the RCMassembly's between the elementary compatible ports will be created in
the model.

The connection can not be started or ended if the cursor is placed on top of an elementary
port. See chapter 5.4.3 for more information about port clusters compatibility checks.

A.4.1.6 Managing port cluster visibility on diagram

In RCM, port clusters comes with the PortClusterVisibility enumerated attribute which allows
you to have some control on the visibility of the services exposed and required by an APLcontainer.

Some graphical features are provided around this visibility attribute.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 41 of 99

Figure 20: RCMriPortCluster and RCMriPorts

The type of the
delegated state

The required type

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

It is possible to right click an APLcontainer and select one of the following actions:

• show all port clusters

• show public port clusters

• show external restricted port clusters

If the PortClusterVisibility attribute of a provided port cluster is set to InternalRestricted then
the port cluster appears as a port of the APLcontainer state which has generated the port cluster.

For example consider the APLcontainer appearing in figure 21: in this case the provided ser­
vices related to the internal states s1:POS_Sender and s2:PRO_Sender have been set to Intern­
alRestricted. This makes Dispatcher the unique service provided by the TMTC_AP which can
be used by the external environment. Note that the required port cluster related to d:Dispatcher
have been set to internal restricted also.

Other graphical features for provided port cluster:

- right click a provided port cluster and select “show related port clusters”; this action hides all
the port clusters that are not in a given relation with the selected one, i.e. it shows only:

1) the required port clusters used by the current provided port

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 42 of 99

Figure 21: Managing PortClusterVisibility attribute: internal restricted case

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

2) the provided port clusters which satisfy the required ports in the previous point

- right click a provide d port cluster and select “Hide Port Cluster” to hide the current port: this
can be particularly useful when the port originated by the functional state it is not intended to be
used. To make the port appear again a “show al Port cluster” action on the owning APLcontainer
has to be performed.

A.4.2 Instance Diagram

According to the RCM metamodel definition, APLcontainer instances are allowed to be defined in
a dedicated RCM container entity: the InstanceSet. The HRT-UML2 tool implements the instance
diagram editor on top of this entity and allow you to create APLcontainer instances and connect
them together. Also a view on the logical deployment is supported.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 43 of 99

Figure 22: Working with APLcontainer instances

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Figure 22 shows a part of the instance diagram for the ToyExample.

A.4.2.1 APLcontainer instance

Through the Object palette it is possible to create APLcontainer instances: once an instance has
been created you have to specify the Classifier attribute through the property editor to type the cur­
rent instance to an existing APLcontainer classifier.

When you set the Classifier attribute the tool creates the instance's structure according to the
structure of the typing classifier; the graphical result of this action is that instances of port clusters
and instances of state references appear for the current APLcontainer instance. Also if port cluster
connections are defined at class level, the tool automatically creates links for the corresponding port
cluster instances; figure 24 illustrates this scenario for an instance typed to TMTC_AP.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 44 of 99

Figure 23: Untyped instance representation

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.4.2.2 Port instance and HRT attributes

Port cluster and elementary port instances (i.e. RCM.PiSlot and RCM.RiSlot entities) are automat­
ically created when the Classifier attribute of an APLcontainer instance is set.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 45 of 99

Figure 24: Typing the instance

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

According to the RCM metamodel definition (and to UML2 metamodel definition for instances),
port cluster instances and port instances are not connected together trough composition relations as
in the case of port cluster and elementary ports. However the composite structure of port cluster into
elementary ports has been graphically reproduced in the instance diagram to help the user to better
manage port instances editing and connections.

Each port cluster instance comes with a label: this label shows the type provided or required (in
the upper side) and the delegating state reference instance (in the lower side).

Port instances can not be created or deleted by hand.

Port cluster instances and port instances allow to specify HRT attributes.

The following ports have HRT attributes that can be set at instance level only:

1) RCMpiPortCluster with at least one elementary port having protected kind,

2) RCMpiPort with cyclic concurrent kind,

3) RCMpiPort with sporadic kind.

See [BT07] for an exhaustive explanation of the available HRT attributes, also which are editable
from the user and which are derived from the analysis.

The attribute wcet_ri_closure for provided port instances is automatically derived.

It is worth noting that, given an APLcontainer instance, provided port instances appearing in dif­
ferent provided PortCluster instances can refer to the same operation implementation. In this case
the HRT attributes of these port instances have to be the same; the tool manages these synchroniza­
tions. For instance, look at figure 25: slots Boost_Order in port cluster slots :PRO and :PRO_Boost
resolve to the same operation of state instance pro:PRO; in this case they will share the same values
for the owned HRT attributes.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 46 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.4.2.3 AP instance Link

The editor allows to edit the APInstanceLink between the RCMriPort instances of an RCMriPort­
Cluster instance and the RCMpiPort instances of an RCMriPortCluster instance through the editing
of a single link between the two port cluster instance.

To create a port cluster instances link

● select the Link tool on the palette

● draw a connection from the required port cluster to the provided port cluster.

The connection can not be started or ended if the cursor is placed on top of an owned
elementary port instance.

According to the “correctness by construction” approach, the tool prevent the creation of port
cluster instances connections when they would invalidate the model.

In particular it is possible to create a link between two port cluster instance if:

1) the provided port cluster instance is visible to the required one

2) the two port clusters referred have compatible types (i.e. the type of the provided port
cluster is a subtype of the type of the required port cluster): this ensure that a required
service has a corresponding compatible target provided services. These two services
identify two corresponding, possibly incompatible, elementary ports.

3) matching provided-required referred elementary ports have compatible concurrent kind
(see [BT07])

4) for each matching provided-required elementary port instances (piPort -> riPort) the
following condition has to be true:

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 47 of 99

Figure 25: two CyclicSlots resolving to the same
operation-state

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

piPort.Wcet_ri_closure <= riPort.Maximum_allowed_execution_time()

where riPort.Maximum_allowed_execution_time = 0 means no restriction.

 When trying to create an invalid link an information window appears showing the list of
incompatibilities founded.

In its default configuration the instance diagram only shows port cluster instances connections;
RCMassembly links, i.e. links among elementary port instances, are not graphically displayed, even
if they exists and managed in the model.

A.4.2.4 A view on the logical deployment

The instance diagram can be used as a view to the logical deployment. In RCM the logical de­
ployment allows to define partitions and logical communications among partitions [CP07].

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 48 of 99

Figure 26: Invalid connection report

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

The Instance diagram shows the current Partition defined in the model (for instance they can be
created through the deployment diagram). Moreover it allows you to create partitions and deploy
APLcontainer instance into them.

A.4.2.4.1 Partition and LogicalCommunication

You can create RCM Partition entities directly through the instance diagram using the Partition
tool command.

A Partition is represented as a stereotyped instance.

 In the RCM model Partition's are owned by the RCM.Model.DeploymentInformation.Lo­
gicalArchitecture entity.

For a partition, all the deployed APLcontainer instances appears in the dedicated compartment.

When you have partitions then you can create (and so deploy) APLcontainer instances directly
into the dedicated compartment of a partition.

You can also drag instances into the partition compartment to deploy them.

When you edit links between deployed APLcontainer instance the tool automatically manages the
LogicalCommunication entities existence between the involved partitions, according to the defini­
tion given in [CP07]

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 49 of 99

Figure 27: Partition representation in instance diagram

Deployed AP container
instances compartment

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

When instances are dragged between Partitions, the logical communications figures are
not always automatically synchronized with the changes performed in the model: to rap­
idly synchronize the diagram you can press F5. Alternately you can close and reopen the
diagram.

A.5 Working with HRT-UML/RCM patterns

This chapter illustrates hot it is possible to use the HRT-UML/RCM patterns during the modeling
activity performed with the tool.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 50 of 99

Figure 28: Logical deployment in the instance diagram

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.5.1 WCET overrun handling

It is possible to mark a number of APLC instances to perform "safe-mode" operations within in­
dividual logical partitions of the system: in the Instance Diagram, select a single istance of APLC
and, on the Properties tab, set the value of the is_safe_mode_instance attribute to "True".

All APLC instances marked as "safe-mode" are inactive during nominal operation. It is to be
noted that the nominal mode is the default mode for the entire system, since support for modeling
system modes is not presently incorporated in the HRT-UML/RCM.

Each logical partition comprises a Timer Manager which enforces the preservation of the WCET
budget assigned to the operations provided by the APLC which compose the partition. Whenever a
WCET overrun is detected at run time for any operation of a given logical partition, all "safe-mode"
APLC instances of that partition are immediately and automatically activated.

The "safe-mode" APLC instances are meant to include operations which perform diagnostic and
recovery actions to rectify the violations incurred with the WCET overrun. In order that those oper­
ations can be performed without incurring interference from the continuation of the nominal opera­
tions (at least one of which had erroneously overrun) the criticality attribute of "safe-mode" opera­
tions should be set higher than all other nominal operations in the same partition.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 51 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.5.2 Deferred services with write-mode parameters (and optional
time-out)

This pattern allows to model deferred services with write-mode (i.e. out) parameters.

As an important limitation of the present release of the toolset, however, the caller and the
callee for that type of deferred operations must be located on one and the same physical
node. In other words, this feature does not work yet for remote invocations.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 52 of 99

Figure 29: safe-mode instance

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

While work is in progress at UPD to incorporate support for this feature (which may
possibly complete in time for use in the V3 demonstrators) an alternate solution may be used
to model remote deferred invocations with out parameters by using the Reactivity Links
pattern provided as part of the current sets of enhancements.

In the class diagram for the functional view, locate an operation with a write-mode parameter. In
the picture 30, op has a write-mode parameter.

Locate an other operation which requires an operation with a write-mode parameter. In the figure
31, call has such a required operation.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 53 of 99

Figure 30: deferred with write mode parameters, step 1

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

In order to allow the request originated by call to be satisfied by a deferred implementation of op,
we must specify a callback operation for call. This is done by creating a new operation in the con­
tainer of call. In the picture at left, the new operation is called back. In the properties tab for the
new operation, set the value of the callback_caller reference to the caller operation (in our example
we set it to call). The callback operation will be called when the execution of the required deferred
operation will be completed and the write-mode parameter will be available for further computa­
tion.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 54 of 99

Figure 31: deferred with write mode parameters, step 2

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

In the properties tab for the new operation, set the value of the callback_receiver reference to the
"required operation descriptor" of the caller operation. The "required operation descriptor" to select
is the required operation which targets the operation with write-mode parameters. (in our example
we set it to the only "required operation descriptor" of call)

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 55 of 99

Figure 32: deferred with write mode parameters, step 3

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

In the properties tab for the new operation, add as many read-mode parameters as needed to match
the write-mode parameters of the called service. (In our example we added a single read-mode In­
teger parameter called p.)

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 56 of 99

Figure 33: deferred with write mode parameters, step 4

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

In the class diagram for the interface view, locate the APLcontainer providing a port for the oper­
ation with write-mode parameters, and set its concurrent type to sporadic, cyclic or modifier.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 57 of 99

Figure 34: deferred with write mode parameters, step 5

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

In the instances diagram for the interface view, locate an instance providing a slot whose defining
feature is the port which you have just decorated as sporadic, cyclic or modifier. Then locate an in­
stance with a slot whose defining feature is the required port originated by the operation which re­
quires the operation with write-mode parameters. Finally, create a link between the slot for the port
cluster containing the latter and the slot for the port cluster containing the former.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 58 of 99

Figure 35: deferred with write mode parameters, step 6

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

You can specify a time-out for the callback operation to commence. You may do so by specifying
a handler to be automatically called when the time-out should expire: the handler is a method of the
invocation object and is set in the column "Time-out handler" of the tab "Required Operations".
When that required operation is invoked, a time-out is set on the invocation of its callback; if the
time-out expires before the callback is called, the time-out handler is automatically invoked and ex­
ecuted.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 59 of 99

Figure 36: deferred with write mode parameters, step 7

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

The time value for the time-out is set on the required slot for the desired required port at in­
stance level through the attribute "Time-out interval".

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 60 of 99

Figure 37: time-out handler

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

The creation of a link between two slots should be denied if one of them has a deferred
port with write-mode parameters as defining feature, unless a callback operation for the
operation originating the required port exists. At present, this restriction is not imple­
mented by the editor.

A.5.3 Reactivity links

It is possible to specify a concatenation of invocations to occur at user-specified time offsets from
the arrival of a given deferred invocation. This enhancement feature is termed reactivity link.

Reactivity links can be used to program the execution of operations using a sporadic or cyclic op­
eration as the base reference. Given a specific cyclic or sporadic operation, the user may specify a
set of operations that have to be performed at a specified time offset from the release of the base
reference. The base reference operation is called action; each programmed operation to be executed
after the action are named reactions; the relationship between an action and one of its reactions is
named reactivity link.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 61 of 99

Figure 38: time-out interval

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Given the distinction between APLC types and instances in the HRT-UML/RCM, actions and re­
actions have to be specified at type level. After this specification has been accomplished, reactivity
links have to be specified at instance level between slots compatible with the specification estabil­
ished at type level.

 A remote deferred operation with out parameters can be modeled using the "Reactivlty
Link" model pattern by breaking down that operation in two parts: a "normal" deferred oper­
ation (with no out parameters) set as the action, which does the send ing, and an imme
diate operation with the intended out parameter, set as the cor responding reactivity link,
which does the receiving at a specified time offset from the relevant sending.

To design reactivity links: select an APLC, show Properties Tab, select Reactivity Links

Click on the Add button to add a new reactivity link to the selected APLC. The new link has a de­
fault name.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 62 of 99

Figure 39: reactivity links, step1

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Set the name of the reactivity link, the action, the reaction, and the number of calls. The available
actions are all the cyclic or sporadic services provided by the APLC. The available reactions are all
the public operations in the whole system. The number of calls must be strictly positive.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 63 of 99

Figure 40: reactivity links, step2

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Open the instance diagram for the model. All instances of the modified APLC will show a new
element inside them: a reactivity link slot. If you don't see it, it may be hidden by an other element.
It is usually placed in the center of its container.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 64 of 99

Figure 41: reactivity links, step3

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Select the Reaction tool on the palette, and draw a connection between the reactivity link slot and
an elementary port slot of your choice. The tool will visually warn whether the pointed port is suit­
able for the connection. The destination slot's defining feature must be either a protected or unpro­
tected port providing an operation compatible with that which was specified as "reaction" when the
reactivity link was designed.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 65 of 99

Figure 42: reactivity links, step4

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Finally select the reactivity link slot and click on the Items tab in the property sheet. The editor
displays as many items as specified in the CallsNr field when the reactivity link was designed. For
each item, specify the desidered offset from thread activation and the desidered relative rate.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 66 of 99

Figure 43: reactivity links, step 5

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

As an alternative to reactivity links defined on APLC, the methodology permits the user to define
reactivity links at functional level too. This is done by selecting the operation whose execution has
to trigger the reaction, and adding a new required operation descriptor targeting the desidered oper­
ation. The number of times the reaction operation is executed has to be specified in the "auto invoc­
ations" column. Instead of creating a dedicated required operation descriptor, it is possible to simply
change the number of auto invocations of an already existing required operation targeting the de­
sidered reaction. All restrictions on required operation descriptor hold even for required operation
descriptors with autoinvocations: the only operations which may be required (i.e. target actions) are
those operations which are accessible through a property of the classifier. In our example, we added
an attribute typed POS to our PRO class, in order to access the Read_X_Write operation.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 67 of 99

Figure 44: reactivity links, step 6

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.5.4 Sporadic operations with bursty activation

It is possible to allow sporadic operations to tolerate bursty activations without causing excess­
ive pessimism in the feasibility analysis. A bursty activation occurs when for bounded time dura­
tions, the inter-arrival time between successive sporadic activations must be minimized in order for
the service to cope with the inbound flow of invocations. After that time duration however, invoca­
tions become sparse and more spaced in time and therefore allow for a larger minimum inter-arrival
time. In order that this type of sporadic operations do not cause excessive pessimism in the feasibil­
ity analysis, the need to cater for bursty activations must be specified in the model to be recognized
in the analysis.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 68 of 99

Figure 45: reactivity links, step 7

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

 In contract with normal sporadic operations, a bursty sporadic operation permits the executing
task to be released a given number of times within a given time span (called burst interval): with­
in a burst interval the allowable sporadic activations may be so frequent and dense that the actual
inter-arrival time between any two of them may be virtually null, which is an obviously illegal
value for normal sporadic operations. A bursty sporadic operation may instead be executed, for a
certain number of times at most, without enforcing its stipulated minimum inter-arrival time
between successive releases. The analysis tools takes the particular behaviour of bursty activations
into account and provides a precise evaluation of their lesser interference effect on the system.

In the Class Diagram, select a provided port marked as 'sporadic' and set 'isBursty' to true. The
maximum number of consecutive releases allowed in the burst is specified in OBCSqueueSize.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 69 of 99

Figure 46: Setting sporadic as bursty

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

In the Instance Diagram, specify the burst interval in a sporadic slot. The minimum inter-arrival
time can be set to zero.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 70 of 99

Figure 47: Setting the burst interval

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.6 Deployment view Modelling

The HRT-UML plug-in allows to model the Deployment View. This view provides a description
of: (1) the logical partitions and their mutual relations; (2) computational nodes and their physical
interconnections; and (3) the intended mapping between both the logical communications specified
in (1) and the physical interconnections specified in (2).

A.6.1 Deployment Diagram

In order to create a new Deployment Diagram :

– right-click on the .rcm model file and select Initialize rcm_deploy_diagram diagram file com­
mand;

– or go through File->New...->Other... and choose to create a new RCM Deployment Diagram
from the HRT-UML2 folder. In this case a new model is also created by default.

The Palette buttons are used to create:

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 71 of 99

Figure 48: The deployment view editor

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

● the Computational Nodes;

● the Interconnections between them;

● the Partitions that belong to the nodes and

● the Logical Communications that link them

● the different attributes of the node, to be create in the attribute compartment of a node (see fig­
ure 6.3) : Processor, Memory, RCMVirtualMachine.

In the following paragraphs, a description of the deployment diagram entities is given.

A.6.1.1 Computational Node

The computational node is represented by a cube with name, attribute and partition compartments.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 72 of 99

Figure 49: Deployment View Palette

Links two nodes

Links two partitions

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.6.1.2 Partitions

Partitions may be created inside the Partition Compartment of a Node using the “Partition” button
of the Palette. A new partition is then created in the .rcm model associated to the deployment dia­
gram.

If a partition was previously created in the model, it can be allocated to a node when in the De­
ployment View. To do this select the node you desire to assign the partition to and in the Properties
view of this node, open the Deployed Partition list.

To a partition can also be allocated an APLContainer Instance. The latter however must be previ­
ously created in the Instance view, and it's type (classifier), created in the Class Diagram (civ).

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 73 of 99

Figure 50: Computational Node representation

Node compartment

Partition
compartment

Figure 51: Partition with APLContainer Instance

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

The list of partitions in the left compartment of the window that appears on the screen shows the
partitions previously created in the model. Selected the partitions you wish to assign to your node
and click on “add” then “Ok”. Use this same method to take away a partition from a node. Selecting
a partition on the editor and hitting “Del” on the keyboard deletes it from the editor as well as from
the model.

A.6.1.3 Logical Communication

Logical Communications between partitions can be created using the appropriate button from the
Palette, as well as through the .rcm model view. Constraints for this element have yet to be imple­
mented, and their behaviour to be adjusted.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 74 of 99

Figure 52: Selecting a partition for a node

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.6.1.4 Logical Communication constraints

Between two partitions can be created at the most two Logical Communications, each of them
having opposite directions. Moreover a partition cannot have a Logical Communication starting and
finishing on itself. However a partition may communicate with as many other partition as desired.

 The implemented constraints will prevent the user from creating Logical Communications failing
these rules.

A.6.1.5 Visible attributes of a Node

The Attribute compartment of a Computational Node may show the Processor, Memory and RCM
Virtual Machine associated to that node. To do this, to possibilities are offered:

● previously creating them in the .rcm tree model under Deployment Information-> Physical Ar­
chitecture->Physical Types (right click on Physical Types, then New Child, and choosing
between Processor, Memory and RCMVirtualMachine). Once created, they can be chosen from a
list in the Deployment view editor as for partitions, going through the Properties view of a Node
and selecting the desired attribute in the list available;

● creating them directly in the Deployment View : buttons from the Palette are provided for cre­
ation of the attributes. After having selected the attribute, click on the Attribute compartment of
the node you desire allocating the attribute to.

 Once the attributes created, you can select them from the node to change their name, but also
to set all other parameters of the attribute in the Properties view.

A.6.1.6 Interconnection constraints

A series of constraints have been implemented for the interconnections between nodes.

An interconnection cannot be created starting and ending on the same node (a node cannot be dir­
ectly connected to itself). This constraint is dynamic, i.e. the editor does not let you create such a
link.

The second constraint will appear as an error upon validation of the diagram, if not complied with
: there must exist a path linking all nodes of the deployment graph together. To validate, simply
click on Diagram->Validate in the Eclipse menu, after saving. If an error occurs, it is signalled by a
white cross circled in red on the top right corner of the diagram as well as in the Problems view of
the Eclipse workspace. The red cross is not always reliable, whereas the Problems view is, so be
careful to control this view for a trustworthy diagnosis.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 75 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

A.7 Model validation

HRT-UML2 plug-in allows creating RCM models accordingly to the correctness by construc­
tion development; in this way it is guaranteed by construction that many RCM constraints [see Ap­
pendix A] cannot be violated.

Moreover several constraints are implemented as “live constraints”, i.e. they are automatically
checked by the tool before committing a particular modification on the model. Actions that would
invalidate these constraints are rolled back.

However not all the constraints defined by the RCM methodology can be imposed at model con­
struction time, so a check to be invoked upon a populated model is required to validate the model.

To invoke the validation on a model you can open a diagram and select the command Diagram ->
Validate from the Eclipse menu. So doing the violated constraints appears in the Eclipse Problems
view; moreover all the entities having some problem with the validation are graphically marked
with a red icon in the diagram.

To make the navigation of these entities easier it is possible to click a raw in the Problems View
table to automatically retrieve and select the associated invalidated element in the diagram.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 76 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Using the Problem Filter view (see figure 53) you can select the filter to apply to the current valid­
ation, e.g. to show problems related to the current diagram only or for the entire model.

A.8 Model transformation

The tool integrates the model transformations developed in the context of the DDHRT cluster:
the round-trip analysis, the code generation and the interface view to concurrent view transforma­
tion.

A.8.1 Round-trip analysis

The round-trip analysis is started by the user from the interface view and it is performed on the
concurrency view. The concurrency view model is automatically obtained from the interface view
through a model to model transformation.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 77 of 99

Figure 53: validating the class diagram

Entities with
violated cons traint
are visually tagged
in the diagram

Eclpse
Problems view

Violated cons traints
lis t description. Double
click to select the element
in the diagram

Problems Filter

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

The goal of the round-trip analysis is to execute the feasibility and sensibility analysis on the con­
currency view and then return the results back to the interface view entities for the user to inspect
them. For an exhaustive explanation of this process please refer to [DDHRT3-1.TN.10].

In the current version of the HRT-UML2 tool the round-trip analysis is performed in three separ­
ated steps:

1. the concurrency view is obtained and the model to be given in input to MAST+ tool is
generated

2. the analysis is performed using MAST+ tool

3. the analysis results are loaded back into the initial RCM model

To start the process, right click on the .rcm model file owning the interface view and select one of
the available analysis listed in Round-trip Analysis -> Generate MAST+ input file menu:

1. Classical Response Time Analysis

2. Feasibility Analysis

3. Sensitivity Analysis

4. Holistic Analysis

The following constraint has to be satisfied to perform the Classical Response Time
Analysis, Feasibility Analysis and Sensitivity Analysis: all instances are deployed on
partitions which are associated within a single computational node.

The tool generates the concurrency model and than performs other transformations.

The result of this first step is a MAST+ input file stored in the temporary folder named RoundTri­
pAnalysisTemp created in the current Eclipse resource: this file has “.mastInput” extension.

The .mastInput file obtained is then used to perform the selected analysis with MAST+. When this
analysis is executed an ouput .xml file is obtained. This file is then used to load back the results in
the starting RCM model that has been used to generate the MAST+ input file.

When the loading is terminated a report is showed telling if the system is feasible or not and list­
ing the founded problems. Then you can decide to save the RCM model updated with the analysis
results in the same .rcm file or save it in a different one.

A.8.2 Generating Ada2005 code

A model to code transformation generates Ada2005 code from an RCM model.

Given an RCM model it is possible to generate code for the functional view only or generate code
for the entire model.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 78 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

To start the generation right click on the .rcm model file and from the Code Generation menu se­
lect:

1. Generate Ada 2005 for Functional View command to generate code from functional view
only, or

2. Generate Ada 2005 code command, or

3. Generate Ada 2005 Heterogeneous Functional Models Code command (see next chapter),

Currently the code is generated in a default directory created at the same level of the .rcm file. The
name of the directory is <name of the .rcm file>_ADA2005.

In order to safely generate code a WCETdescriptor has to be created for every operation;
it is possible to leave the WCETdescriptor.WCET attribute to its default (i.e. maximum)
value.

A.8.3 Code Generation for modelling tools integration (SCADE, SDL..)

HRT-UML/RCM toolset allows to generate code for VMLC's using heterogeneous functional
models as their OPCS: this can be achieved using the Generate Ada 2005 Heterogeneous Function­
al Models Code generation command. The functional models may be designed with SCADE or
SDL and their code-level implementation generated by the code generation engines provided with
the design tool, or they can be manually written in C/C++ or Ada: this information has to be spe­
cified for each RCMfunctionalContainer using the implementation language attribute (see
A.2.1.1).

The communication between heterogeneous functional models requires the definition of a plat­
form independent Data View and the generation of ASN.1 (un)marshallers and "glue code" with the
tools developed in ASSERT [SEM07]. See also Appendix D for related information.

In case of heterogeneous code generation an .aadl file is also generated under the default directory
<name of the .rcm file>_ADA2005: this file gives a description of the RCMoperations using the
AADL language, it has to be used to drives the "glue" generation performed by the ASSERT build­
er tool developed by Semantix (Appendix D).

A.8.4 Interface View to Concurrent View

This transformation refines the RCM model by the generation of the concurrent view starting
from the interface view:

• right click on the .rcm model file and select Generate Concurrency View command

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 79 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

When the transformation terminates the following dialogue window appears:

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 80 of 99

Figure 54: generating Concurrent View

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

It is preferable to answer “No” and let the tool write the transformed/extended model
into a new .rcm file. The new model file is created under the current Eclipse resource
and its name it is tagged with the “__CV” extension.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 81 of 99

Figure 55: Generating Concurrent View dialogue window

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Appendix B Appendix B Current Version LimitationsCurrent Version Limitations

In the following a list of other relevant current tool limitations and unsupported features is given.

Functional View

• Checks on the namespace visibility rules are partially implemented by the tool. For in­
stance drag and drop of entities between packages can invalidate visibility rules.

• To be able to delete an item located inside a compartment (e.g. an operation or a prop­
erty of a class) be sure to select the item just with one mouse click; in fact the delete com­
mand is not available when the item is clicked two or more times and a rectangle appears
around it.

Interface View:

• A port cluster connection made at class level is not automatically reflected at instance
level.

Functional View and Interface View Synchronization

Most of the modification actions on the functional view are automatically reflected by the tool in
the interface class and instance view. For instance it is possible to add/remove an operation on an
RCMfunctionalContainer referenced by an APLcontainer and, for the latter, have the corresponding
elementary provided port added/removed in the proper provided port cluster; the same for Require­
dOperation (in the functional view, the cause) and required ports (in the interface view, the effect).

PortCluster figures for an APLC can disappear during the synchronization phase: in this
case you can perform a “Show all port cluster” action on the APLC to make them visible

 again.

There are some kind of modifications on the functional view that can resolve into an invalid state
for existing RequiredOperations (and so required port in the Interface view): these problems about
invalid RequiredOperation have to be fixed by the user in the functional view in order to let the tool
to synchronize the interface view accordingly. More properly, for a RCMfunctionalContainer, the
following actions:

• altering the inheritance hierarchy of a required type, i.e a type referred by an owned Re­
quiredOperation entity

• modifying the visibility of an operation referred by an owned RequiredOperation entity

can invalidate the RequiredOperation of the RCMfunctionalContainer. After performing one of
the previously action it is safe to:

• run a validation of the model

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 82 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

• search for RequiredOperation problems in the Problems View and fix them (e.g. deleting the
RequiredOperation or setting a new valid Operation for it). By fixing all of these problem the
interface view will be correctly updated and synchronized.

Regarding the interface instance view: problems with missing connection for an RiSlot (i.e in­
stance of required elementary port) can appear after a model validation (for instance this happens if
a new required elementary port is added to a required port cluster that, at instance level, is already
linked and satisfied); in this case the problem can be rapidly solved by deleting and then creating
the outgoing link for the port cluster owning the invalid RiSlot.

Instance View:

• Editing commands on the structure are available but they don't have to be used, given
that an APLcontainer instance structure is automatically managed by the tool according to
its typing classifier.

XPath/UUID in model and diagram XML files

The tool (more properly the EMF plug-in), in its default configuration, use the XPath language to
trace references between elements in the XML files. The tool also supports the UUID mechanism as
alternative: to set(unset) the usage of UUID open the Eclipse window

Window->Preferences->Run/Debug->StringSubstitution

and set the UseUUID variable to 'true'('false'). You can switch the usage of UUID on and off for
the same model with no limits. So for instance you can have XPath, then UUID and then XPath
again.

Currently the round-trip analysis process (i.e. the ATL transformation) is not able to read the
UUID informations on the .rcm model given in input to the process. In this way if the starting .rcm
file is overwritten at the end of the round-trip process, the diagram files having UUID as model ele­
ments references result damaged; so, you must use diagrams (and so model) with the XPath system
if you want to avoid this situation.

General

• Time unit for HRT attributes is ms and it is not configurable.

• Validation: see Appendix A for the current status of the RCM constraints definition and
implementation

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 83 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Appendix C Appendix C RCM ConstraintsRCM Constraints

Core

NamedElement
Name Mode Severity Description Status Comment

NonEmptyNames Live Error Name length must be at least 1. Proposed

SimpleNames Live Error Names may only contain letters, digits,
or underscores [a-z] or [A-Z] or [_] or [0-
9]

Proposed

NonDigitNames Live Error First character of the name must be a
letter [a-z] or [A-Z]

Proposed

NonAdaKeywordNa
mes

Live Error Name must not be one of the following:
abort, abs, abstract, accept, access,
aliased, all, and, array, at, begin, body,
case, constant, declare, delay, delta,
digits, do, else, elsif, end, entry,
exception, exit, for, function, generic,
goto, if, in, interface, is, limited, loop,
mod, new, not, null, of, or, other, out,
overriding, package, pragma, private,
procedure, protected, raise, range, record,
rem, renames, requeue, return, reverse,
select, separate, subtype, synchronized,
tagged, task, terminate, then, type, until,
use, when, while, with, xor. All
keywords are case insensitive.

Proposed

UniqueCaseInsensiti
veNames

Live Error No two elements in the set may have the
same name, or names whose difference is
only a matter of uppercase/lowercase.

Proposed

UniqueCaseSensitiv
eNames

Live Error No two elements in the set may have the
same name.

Proposed

CatchAllNames Live Error The name of entities at the same level
has to be unique, not empty and not null.

Building Not
implemented
for
Interconnection
! Currently
implemented
for:
Packageable
entity,
Computational

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 84 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Name Mode Severity Description Status Comment

Node,
DeployableInst
ance, Partition,
Computational
Node,
PhysicalTypes
entities.

Interface View

APLC
Name Mode Severity Description Status Comment

realizingComponent CbyC Not user-accessible Completed

orderedAttribute CbyC Not user-accessible Completed

RiPortClusters CbyC For every statereference S owned by this
APLC A, A owns a dedicated*
RCMriPortCluster for every property P
owned by the type T of S, typed to the
type K of the property, as long as the P is
required by any of the methods
implemented by T or any of its
superclasses. Moreover, if any of those
require an invocation on "this", A owns a
dedicated* RCMriPortCluster for "this".
[*: every RCMriPortCluster is associated
to one and only one statereference and to
one and only one property owned by the
type of that statereference, except the
cluster for "this", which is not associated
to any property]

Completed

PiPortClusters CbyC For every statereference S owned by this
APLC A, A owns a dedicated*
RCMpiPortCluster for every type T
implemented by S, typed to T. [*: every
RCMriPortCluster is associated to one
and only one statereference]

Completed

AutoAssemblies CbyC If this APLC owns a RCMriPortCluster
with a statereference S of type T but not
for any particular property of T, and
therefore associated with S itself as "this",
then there exists an RCMassembly
starting from the RCMriPortCluster and
ending to the only RCMpiPortClusterof
type T associated with S.

Completed

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 85 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Name Mode Severity Description Status Comment

ClonedPorts CbyC Whithin every single APLC, all the
RCMpiPorts which refer the same*
operation, which are owned by
portclusters of the APLC which refer the
same statereference, must have the same
values for the following attributes: kind,
variates, variators. [*: the two operations
must be the same operation, or one of
them must override/implement the other
one]

Building Variators
are not
cloned yet

isEventManager CbyC Not user-accessible Completed

isTimerManager CbyC Not user-accessible Completed

Component
Name Mode Severity Description Status Comment

requiredTypes CbyC Not user-accessible Completed

providedTypes CbyC Not user-accessible Completed

publicTypes CbyC Not user-accessible Completed

distributionRole CbyC Not user-accessible Completed

ownedConnection CbyC Not user-accessible Completed

Structured Classifier
Name Mode Severity Description Status Comment

ownedConnector CbyC Not user-accessible Completed

ownedPortCluster CbyC Not user-accessible Completed

RCMpiPortCluster
Name Mode Severity Description Status Comment

PPCtype CbyC For every operation owned by the type of
this portcluster PC, PC owns a dedicated
RCMpiPort associated with that
operation.

Completed

RCMriPortCluster
Name Mode Severity Description Status Comment

RPCtype CbyC For every operation owned by the type of
this portcluster PC, if the operation is
required by an operation provided by the
type of the statereference associated with

Completed

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 86 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Name Mode Severity Description Status Comment

PC, PC owns a dedicated RCMriPort
associated with that operation.

ReactivityLink
Name Mode Severity Description Status Comment

callsNr Live Error value must be strictly positive Confirmed

action Live Error Action must be a nominal PI provided by
the owner of this ReactivityLink, and it
must be a "concrete" port

Confirmed

reaction Live Error Reaction must be an operation with public
visibility, or a different visibility but in
that case the target of the associated
ReactivityLinkSlot is subject to further
restrictions.

Proposed

RCMpiPort
Name Mode Severity Description Status Comment

ConcreteConcurrentT
ypes

Batch Error RCMpiPort kind must be one of the
following {cyclic, passive, sporadic,
modifier, protected}

Completed

VariatorVariates Batch Error A variator must refer a nominal
operation

Completed

CouplesOfPorts Batch Warning If two ports "share" the same variable on
the same state of the same APLC, then
they can only be: {cyclic modifier}
{sporadic modifier} {modifier modifier}
{protected protected} {unprotected
unprotected}

Completed

QueueSize Live Error RCMpiPort.requestQueueSize: its value
must be greater or equal to 2.

Completed

FunctionalView

Required Operation
Name Mode Severity Description Status Comment

autoInvocations Live Error value must be non-negative Confirmed

Classifier
Name Mode Severity Description Status Comment

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 87 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

ownedInstantiationPar
ameter

CbyC Not user-accessible. Completed

Interface
Name Mode Severity Description Status Comment

PropertiesInInterfaces CbyC An Interface may not have any property Proposed

NoFwNominalOperati
on

CbyC An interface may not contain
FwNominalOperation

Proposed

RCMoperation
Name Mode Severity Description Status Comment

callbackCaller CbyC Must be a sister non-abstract
RCMoperation (either inherited or locally
defined)

Completed

callbackReceiver CbyC Must be a RequiredOperation owned by
the callbackCaller operation.

Building

callback Live Error Either both callbackCaller and
callbackReceiver are null, or none of them
is null

Building Provided in
Batch mode.

NoRecursion no operation x can feature a required
operation which contains x in the closure
of its required operations

Proposed

PositiveWcet Batch Error A concrete operation of a
RCMfunctionalContainer must have a
WcetDescriptor for every VM in the
system, and its wcet must be > 0

Completed .

actionOf CbyC Not user-accessible Proposed

reactionOf CbyC Not user-accessible Proposed

isAbstract Live From false to true is denied if an
RCMpiPort referrring the operation exists.

Proposed

FunctionalContainer
Name Mode Severity Description Status Comment

InterfaceMethodsCby
C

CbyC For every method of every interface a
class implements, the class must have a
method which implements that method.

Building this is
implemented
just when
"adding" an
implemented
interface

InterfaceMethodsBatc
h

Batch For every method of every interface a
class implements, the class must have a
method which implements that method.

Completed

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 88 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

AbstractMethods CbyC For every abstract method of every
abstract class a class directly* extends,
the class must have a non-abstract
method which implements that method.
[*: not when superclass relation with
abstract class is due to the extension of
a concrete class]

Proposed

isAbstract Live Changing to “true” is denied if an
APLcontainerState which type is the
RCMfunctionalContainer exists.

Completed

isLeaf Live Changing to “true” is denied if a derived
class exists.

Proposed

Operation
Name Mode Severity Description Status Comment

redefinedOperation CbyC Whenever an operation x has the same
signature of an operation y inherited by
the classifier, x.redefinedOperation == y.
(not neatly defined, see comments)

Proposed If there are
more than
one operation
with the same
signature,
redefinedOpe
ration should
be the lowest
in the
hierarchy

Instance View

InstanceSpecification
Name Mode Severity Description Status Comment

slot CbyC Not user-editable. The actual list of slots is
read-only, and is always derived
automatically.

Completed

specification CbyC Not user-accessible. Completed

APLcontainerInstance
Name Mode Severity Description Status Comment

RiSlots CbyC If its classifier is not null, the
APLcontainerInstance must contain
exactly one RiSlot for each
ownedElementaryPort owned by every
RCMriPortCluster owned by the
classifier, each of the slot having that port

Completed

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 89 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

as definingFeature.

PiSlots CbyC If its classifier is not null, the
APLcontainerInstance must contain
exactly one PiSlot for each
ownedElementaryPort of every
RCMpiPort owned by the classifier, each
of the slot having that port as
definingFeature. If the kind of the port is
sporadic, the slot must be a SporadicSlot.
If the kind of the port is cyclic, the slot
must be a CyclicSlot. If the kind of the
port is modifier, the slot must be a
ModifierSlot. In the remaining cases, its
metaclass must not be a sub-metaclass of
PiSlot different from PiSlot.

Completed

ClusterSlots CbyC If its classifier is not null, the
APLcontainerInstance must contain
exactly one Slot for each
ownedPortCluster owned by the
classifier, each of the slots having that
portcluster as definingFeature. If the
portcluster contains a port whose kind is
protected, the slot must be a
ProtectedSlot, otherwise, its metaclass
must not be a sub-metaclass of Slot
different from Slot.

Completed

StateReferenceSlots CbyC If its classifier is not null, it must contain
exactly one Slot for every
ownedStateReference of the classifier,
and the definingFeature of that slot must
be that ownedStateReference.

Completed

InternalLinks CbyC If its classifier is not null, it must contain
exactly one APInstanceLink for every
assembly contained into the classifier,
linking the slot whose definingFeature is
the source of the assembly to the slot
whose definingFeature is the target of the
assembly

Building

ClonedSlots CbyC APLcontainerInstance.slots: all those
whose defining feature is a port
implemented by the same port must have
the same values for all attributes.

Completed

AplcAsClassifier CbyC An APLcontainerInstance can have only
an APLcontainer as classifier.

Completed

realizingVMLCinsta
nce

CbyC Not user-accessible. Completed

utilization CbyC Not user-editable, Read-only, and is
always derived automatically.

Completed

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 90 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

reactivitySlots CbyC For every ReactivityLink owned by the
classifier of this instance, this instance
owns a ReactivityLinkSlot whose
definingFeature is that ReactivityLink

Confirmed

Classified Batch Error An APLcontainerInstance must have a
classifier.

Completed

APInstanceLink
Name Mode Severity Description Status Comment

ClusterLinks CbyC Intuitively, whenever an APinstanceLink
exists between two slots whose defining
features are RCMportCluster(s), then
there exist also many APinstanceLink
which connect the slots whose defining
features are children of the two
RCMportCluster(s), and viceversa.

Completed

TimeCompatibleLin
ks

Live Error If riSlot is a RiSlot and piSlot is a PiSlot,
then
riSlot.maximum_allowed_execution_time
must be not greater than
piSlot.wcet_ri_closure

Building

TypeCompatibleLin
ks

CbyC Error Intuitively, the two ends of an
APinstanceLink must be somewhat type-
compatible

Completed

NoCycles Error Fulfillment and usage links cannot form a
cycle.

Proposed

PortSlotsOnly CbyC Error An APInstanceLink cannot be connected
to a Slot unless the definingFeature of
that slot is a Port.

Confirmed

NoDeferredWithOu
tParameters

Batch Error No link may exist between a PI and a RI
when the PI is deferred and features an
operation with "out" parameters, and the
RI is generated for a Required Operation
of an operation which has no associated
callback operations.

Confirmed Deferred
with "out"
may be used
only with
callback
operations.

Slot
Name Mode Severity Description Status Comment

providingLink CbyC Not user-editable, read-only. Completed

requiringLink CbyC Not user-editable, read-only. Completed

definingFeature CbyC Not user-editable, read-only. Completed

owningInstance CbyC Not user-accessible Completed

value CbyC Not user-accessible Completed

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 91 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

ProtectedSlot
Name Mode Severity Description Status Comment

ceiling CbyC Not user-editable, read-only. Completed

protocol CbyC not user-editable, read-only, (currently is
not used)

Completed

flows Batch A protection protocol is needed only if at
least 2 threads use the service

Confirmed

PiSlot
Name Mode Severity Description Status Comment

WcetRiClosure CbyC Intuitively, the wcet_ri_closure of a pislot
is the cost of the concrete operation
provided plus the wcet_ri_closure of the
immediate services connected to the rislots
related to the pislot, if any. If no
wcet_ri_closure is computable, then its
value is set to -1.

Building

NoCyclicWithParam
eters

CbyC kind may not be cyclic if the referred
operation has parameters

Proposed

NoDeferredWithRet
urn

CbyC kind may not be deferred {cyclic,
sporadic, variator} if the referred
operation has non-null return type

Proposed

RiSlot
Name Mode Severity Description Status Comment

FulfilledRiSlots Batch Error Every RiSlot must be connected to a
PiSlot via an APInstanceLink

Completed

maet Live Error maximum_allowed_execution_time must
be greater or equal to 0

Proposed

CyclicSlot
Name Mode Severity Description Status Comment

priority Not user-editable, read-only. Completed

period_ms Batch Error must be greater than 0 Completed Before
launching
analysis

criticality Batch Error must be greater than 0 Completed Before
launching
analysis

OBCS_ceiling Not user-editable, read-only. Completed

task_ceiling Not user-editable, read-only. Completed

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 92 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

phase_ms Batch Error must be greater then or equal to 0 Completed Before
launching
analysis

worst_case_response_
time_ms

Not user-editable, read-only. Completed

deadline_ms Batch Error must be greater than 0 Completed Before
launching
analysis

minimum_feasible_pe
riod_ms

Not user-editable, read-only. Completed

maximum_feasible_w
cet_ms

Not user-editable, read-only. Completed

maximum_blocking_ti
me_ms

Not user-editable, read-only. Completed

number_of_preemptio
ns

Not user-editable, read-only. Completed

worst_case_running_ti
me_ms

Not user-editable, read-only. Completed

slack_time_ms Not user-editable, read-only. Completed

utilization Not user-editable, read-only. Completed

SporadicSlot
Name Mode Severity Description Status Comment

priority Not user-editable, read-only. Completed

minimum_interArrival
Time_ms

Batch Error must be greater than 0 Completed Before
launching
analysis

criticality Batch Error must be greater than 0 Completed Before
launching
analysis

OBCS_ceiling Not user-editable, read-only. Completed

task_ceiling Not user-editable, read-only. Completed

worst_case_response_
time_ms

Not user-editable, read-only. Completed

deadline_ms Batch Error must be greater than 0 Completed Before
launching
analysis

minimum_feasible_int
erArrivalTime_ms

Not user-editable, read-only. Completed

maximum_feasible_w
cet_ms

Not user-editable, read-only. Completed

maximum_blocking_ti Not user-editable, read-only. Completed

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 93 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

me_ms

number_of_preemptio
ns

Not user-editable, read-only. Completed

worst_case_running_ti
me_ms

Not user-editable, read-only. Completed

slack_time_ms Not user-editable, read-only. Completed

utilization Not user-editable, read-only. Completed

burstInterval Live Error it must be equal or greater than 0. Completed

ReactivityLinkSlotItem
Name Mode Severity Description Status Comment

offset_ms Live Error value must be non-negative Confirmed

relativeRate Live Error value must be strictly positive Confirmed

ReactivityLinkSlot
Name Mode Severity Description Status Comment

items CbyC Every ReactivitySlot must have as many
item as the value of callsNr of its
definingFeature (see constraint
definingFeature).

Confirmed

definingFeature CbyC The definingFeature of every
ReactivityLinkSlot must be a
ReactivityLink.

Confirmed

reactionSlot CbyC Must be a slot whose definingFeature is an
immediate {protected, unprotected}
RCMpiPort whose operation is the same*
specified as "reaction" by the
definingFeature of this
ReactivityLinkSlot. [*: the two operations
must be the same operation, or one of
them must override/implement the other
one]

Confirmed

UnprotectedSlot
Name Mode Severity Description Status Comment

flows Warning A unprotected protocol cannot be safe if
more than one thread use the service

Confirmed

ModifierSlot
Name Mode Severity Description Status Comment

number_of_preemptio Not user-editable, read-only. Completed

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 94 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

ns

worst_case_running_ti
me_ms

Not user-editable, read-only. Completed

slack_time_ms Not user-editable, read-only. Completed

utilization Not user-editable, read-only. Completed

Deployment View
Name Mode Severity Description Status Comment

OneThreadPerPartitio
n

Batch Error every partition containts at least an
APLcontainerInstance containing a
SporadicSlot or a CyclicSlot, or more of
them.

Completed

OnePartitionPerNode Batch Error Every computational node is associated
to a partition

Completed

OneNodePerPartition Batch Error Every partition is associated to a
computational node

Completed

WorkingNodes Batch Error Every computational node has a
processor, a virtual machine and a
memory.

Completed

PartitionCriticality Batch Error Given a ComputationalNode, its
deployed partitions may not have the
same criticality.

Completed

PriorityRangeWellFor
medness

Batch Error RCMVirtualMachine.maxInterruptPriorit
y >
RCMVirtualMachine.minInterruptPriorit
y > RCMVirtualMachine.maxPriority >
RCMVirtualMachine.minPriority > 0

Completed

JointNodes Batch Error ComputationNodes have to form a joint
graph.

Completed

LogicalConnections CbyC a logical connection between two
partitions exists iff a link between two
aplc instances deployed in the two
partitions exists

Completed

DeployableInstance
Name Mode Severity Description Status Comment

originalInstance CbyC Not user-accessible Completed

instanceSet CbyC Not user-accessible Completed

Interconnection
Name Mode Severity Description Status Comment

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 95 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

bandwidth Batch Error has to be greater than 0 Confirmed

maxPacketSize Batch Error it has be greater than 0 Confirmed

minPacketSize Batch Error it has to be greater than 0 Confirmed

maxPacketPropagatio
n

Batch Error it has to be greater than 0 Confirmed

Analysis View
Name Mode Severity Description Status Comment

NonDistributed Batch Cancel All DeployableInstances are deployed on
partitions which are associated within a
single computational node.

Completed This
constraint is
required to
perform the
following
analyses:
Classical
Reponse
Time
Analysis,
Feasibility
Analysis,
Sensitivity
Analysis

feasibility Batch Error For every sporadic and cyclic slot,
worst_case_response_time <= deadline.

Completed

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 96 of 99

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Appendix D Appendix D The ASSERT Builder LauncherThe ASSERT Builder Launcher
Plug-inPlug-in

HRT-UML2 comes with a dedicated plug-in named hrtruml2.assert.builder.launcher that allows
to invoke the ASSERT Builder tool (developed by Semantix) from the Eclipse environment; please
refer to [SEM07]for an exhaustive explanation of the ASSERT Builder.

 Information about the environment and settings required by the ASSERT builder tool are
not given here.

To invoke the launcher from the Eclipse select Run->Open Run Dialog...

Right click on the ASSERT builder type and select New to create a new run configuration.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 97 of 99

Figure 56: Run dialog

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

Then you have to specify:

• the folder where the output of the ASSERT Builder tool will be generated

• the ASN file

• the folder with the VMLC code generated through the HRT-UML2 tool (10.2)

• the files representing the systems generated with the other ASSERT technologies

When all the information above have been specified you can press Run to launch the builder.

A launch configuration, together with its specified information, is persistent, so it can be re-
used.

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 98 of 99

Figure 57: ASSERT Builder run configuration

D4.2.1-3 Software Design Tool Prototype (Final Version)

DATE : 14 January 2008

AUTHOR : INTECS

ISSUE : 1 REVISION: 1

ID : 004033.DVT_INTECS.DVRB.03

BibliographyBibliography

[BT07] Matteo Bordin, Marco Trevisan The HRT-UML/RCM metamodel
004033.DDHRT_UPD.TN.04

[CP05] V. Cechticky, A. Pasetti, O. Rohlik Software Building Block Adaption Techniques
004033.DVT_ETH.DRVB.2

[CP07] Daniela Cancila, Marco Panunzio Deployment Attribute004033.DDHRT3-1.TN.2
[CV06] Daniela Cancila, Tullio Vardanega AP-level Containers: A Survival Kit

004033.DDHRT3-1.TN.1
[CVHN06] D. Cancila, T. Vardanega, I. Hamid, E. Najm An HRT-UML/RCM Interface

Grammar for AP-level Modeling 004033.DDHRT_UPD_DVRB.03
[PV07] Marco Panunzio, Tullio Vardanega Model-based round-trip timing analysis: status

report 004033.DDHRT3-1.TN.10
[SEM07] Semantix Description and design of the code generating tool 004033.DVT

SEMANTIX.DVRB.1.I1.R1.4.4-3
[UEE07] UPD,ENST,Ellidiss Full definition and behavioural model of AP-level containers

004033.DDHRT UPD.DVRB.03

004033.DVT_INTECS.DVRB.03.I1R1_080114_D4.2.1-3 Last Modified on: 14/01/2008 13:15 page 99 of 99

	
	1.Glossary
	2.Introduction
	2.1.Purpose of the document
	2.2.How to read this document
	2.3.Acknowledgments

	3.HRT-UML2: the HRT-UML/RCM toolset Eclipse plug-in
	3.1.HRT-UML2 Status
	3.2.The HRT-UML2 Process
	3.3.HRT-UML2 Plug-in Environment and Distribution
	3.3.1 HRT-UML2 requirements
	3.3.2 HRT-UML2 distribution and installation

	3.4.The HRT-UML2 workbench
	3.5.Diagrams as resources
	3.5.1 Printing, Saving a diagram (as an image file)

	3.6.Multiple editors
	3.7.Multiple models

	Appendix A Detail description on How to Work with the Toolset
	A.1 Working With Packages
	A.2 Data View Modeling
	A.3 Functional Modeling
	A.3.1 Class Diagram for Functional Modeling
	A.3.1.1 RCMfunctionalContainer (Class)
	A.3.1.2 Interface
	A.3.1.3 DataType, Primitive Type and Enumeration
	A.3.1.4 Properties
	A.3.1.5 RCMoperation
	A.3.1.5.1 FwNominalOperation
	A.3.1.5.2 RequiredOperation
	A.3.1.5.3 WorksOn
	A.3.1.5.4 	WCET descriptor
	A.3.1.6 Classifier relations

	A.3.2 State Machine diagram
	A.3.3 Importing a functional model
	A.4 Interface View Modeling
	A.4.1 Class Diagram
	A.4.1.1 AP-level container
	A.4.1.2 AP-level container state (State Reference)
	A.4.1.3 Provided Ports and Port Clusters
	A.4.1.4 Required Ports and Port Clusters
	A.4.1.5 Port Cluster Connectors
	A.4.1.6 Managing port cluster visibility on diagram

	A.4.2 Instance Diagram
	A.4.2.1 APLcontainer instance
	A.4.2.2 Port instance and HRT attributes
	A.4.2.3 AP instance Link
	A.4.2.4 A view on the logical deployment
	A.4.2.4.1 Partition and LogicalCommunication

	A.5 Working with HRT-UML/RCM patterns
	A.5.1 WCET overrun handling	
	A.5.2 Deferred services with write-mode parameters (and optional time-out)
	A.5.3 Reactivity links
	A.5.4 Sporadic operations with bursty activation
	A.6 Deployment view Modelling	
	A.6.1 Deployment Diagram
	A.6.1.1 Computational Node
	A.6.1.2 Partitions
	A.6.1.3 Logical Communication
	A.6.1.4 Logical Communication constraints
	A.6.1.5 Visible attributes of a Node
	A.6.1.6 Interconnection constraints

	A.7 Model validation
	A.8 Model transformation
	A.8.1 Round-trip analysis
	A.8.2 Generating Ada2005 code
	A.8.3 Code Generation for modelling tools integration (SCADE, SDL..)
	A.8.4 Interface View to Concurrent View

	Appendix B Current Version Limitations
	Appendix C RCM constraints
	Appendix D The ASSERT builder Launcher plug-in
	Bibliography

