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Abstract

This report complements the documentation on the HRT-UML/RCM methodology produced in the ASSERT
project, by discussing the constraints that hold the modeling space named the “Functional View”. The inter-
ested reader may find the necessary complementary information in the following ASSERT reports that are pub-
lished for convenience in the COrDeT repository at URL http://www.pnp-software.com/cordet/process/
methodology.html:

D3.1.4-1: Guide for Using AP-level Modelling Containers (Part 1), also available as an online tutorial at URL
http://www.math.unipd.it/ tullio/Research/ASSERT/Tutorial/

This document is a tutorial-level guide to the whole of the HRT-UML/RCM methodology and should possi-
bly be read first in complement to COrDeT Report WP502 (this document).

D3.2.6-1: Refinement of Model Transformation Rules from Use Experience in V2 Demonstrator.

This document illustrates the model-driven transformation-based essence of the HRT-UML/RCM method-
ology and should be read after D3.1.4-1.

D4.2.1-3: Software Design Tool Prototype (Final Version)

This document presents the first public release of the prototype tool infrastructure that supports the HRT-
UML/RCM methodology. This document should be read by those who want to have a more detailed under-
standing of the engineering activities required to apply the methodology.

D7.3-2: Consolidation of requirements and MW definition and coverage.

This document discusses the constructive principles of the ASSERT Virtual Machine (VM) and analyzes its
provisions for isolation against time, space and communication faults. The HRT-UML/RCM methodology
requires that an ASSERT VM operates on the target platform to assure that the level of property-preservation
guaranteed by the automated model transformations that realize the system implementation extend to run-
time execution.

This document should be read in complement to COrDeT Report WP603.

The Functional View is the specific modeling view in which the sequential behavior of the system is specified.
HRT-UML/RCM strives to make the Functional View void of any non-functional aspects, in particular related (but
not limited) to concurrency and time. Non-functional aspects are addressed in two distinct views, called Interface
View and Deployment View, which are presented in ASSERT-specific documents, manuals and tutorials and thus
not repeated here. In this report we illustrate the advantages of this choice. We especially emphasize how this
approach can facilitate the reuse of functional specifications across multiple non-functional architectures. We also
explain in language-neutral terms what constructs should not be included in a language to model a functional
specification compliant with the HRT-UML/RCM.
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Chapter 1

Overview of HRT-UML/RCM

The Model-Driven Engineering (MDE) paradigm strives to raise the abstraction level of the development and to
exploit automatic model transformation and code generation for a large part of the production process. However,
the application of the MDE paradigm to the development of high-integrity real-time systems requires the adoption
of a methodology that can ensure that the properties of interest are expressed at model level and then verified and
preserved throughout the entire development process as well as at all levels of abstraction, from the model space(s)
via source code to execution at run time.

HRT-UML/RCM [BV07, PV07] is an MDE methodology, with an associated prototype infrastructure, devised
in the scope of the ASSERT project (www.assert-project.net).

HRT-UML/RCM aims to: (i) provide a design environment in which the user almost exclusively manipulates
platform-independent models (PIM), with the sole exception of the specification of hardware configuration and the
application deployment to it; (ii) realize an instantiation of the general MDE paradigm endowed with principles
of correctness by construction [Cha06] and property preservation [Var06] from model down to execution; (iii)
guarantee that all models produced as part of the transformation process are trustworthy representations of the
system as it was intended by the user and as it is to be executed at run time.

In HRT-UML/RCM, the user design space is the PIM, which is free from any concerns related to programming
languages, implementation technologies and execution platforms. The PIM must conform to a specific metamodel,
which restrains the design space and prescribes syntax, ontology and semantics of all legal PIM entities, their
relationships and the constraints that hold on them.

HRT-UML/RCM adopts a single computational model, the Ravenscar Computational Model [BDV03] (RCM
for short). Adopting the RCM we earn several advantages, since systems that comply with it are by definition: (i)
amenable to static analysis for time, space and other dimensions of behavior, since they abide by a deterministic
model of concurrent execution; and (ii) can also be targeted to small and efficient run-time kernels which may be
economically certified for compliance with the intended execution semantics.

As a further point of interest, in contract to other mainstream modeling languages (in particular UML [OMGO07b]
and the MARTE profile [OMG07a]) the HRT-UML/RCM model space does not allow any semantic variation
points: the run-time semantics expressed in its models thus always is completely defined.

An automated model-to-model transformation turns the PIM into a lower-level (i.e., less abstract) platform-
specific model (PSM), which is compliant with the RCM by construction. In HRT-UML/RCM, the user spec-
ification of the PIM is essentially declarative, while the transformation process applied to it corresponds to an
implementation designed to be provably correct by construction. The crucial benefit of the latter is of course that
an implementation of that kind does not need to be verified a posteriori on a per-system basis, but it only requires
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a single per-platform validation, with considerable cost saving for the developer.

In contrast with other relevant approaches, like for example those promoted by AADL [SAE] or the MARTE
profile [OMGQ7a], the user is not required to ensure the consistency of all the models developed to represent
system views of interest. The modeling space under the control of the user is significantly reduced, which arguably
allows more focused verification and thus, presumably, better return on investment.

While multiple PSM may in principle be produced from a single PIM, HRT-UML/RCM has, for now, elected
to produce single PSM, which may also be used as a Schedulability Analysis Model (SAM). Other PSM of interest
may for instance address dependability, safety and security concerns.

The SAM is a formal model that represents the semantics of the system in so far as it allows to statically
analyze its timing behavior. The SAM generated in HRT-UML/RCM is comprised of a set of comparatively
simple Ravenscar-compliant building blocks (as the RCM is in effect a kind of Component Model, those building
blocks are in fact “components”) which, through correct-by-construction composition, may arrive at encompassing
arbitrarily complex execution semantics that realize the user specification as set in the PIM.

The HRT-UML/RCM infrastructure seamlessly integrates round-trip support for timing analysis. In the intent
of making the PIM the center of the user modeling space, round-trip starts and ends at the PIM [BPV08]. While
the analysis is of course made on the SAM, the results from it are reported back to the PIM, which is possible as
the entire model transformation logic is deterministic and reversible, hence it may also be followed backwards.

The HRT-UML/RCM infrastructure also features automated generation of source code. This leg of the trans-
formation process starts from the SAM, which eases the provision of constructive proofs that confirm that the
system at run time corresponds to what was analyzed and deemed feasible in the SAM. In our specific context, the
complexity of the code generator is modest since the SAM is very close to the system at run time and the code
generation engine makes extensive use of simple Ravenscar patterns [PdIPHT07].
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Chapter 2

A Multiple View Design Environment

It may be argued that the design of high-integrity real-time systems does benefit from some educated form of
separation of concerns, in particular between the functional and non-functional modeling. Each design view
should possess a dedicated design space in which the user may comfortably express the required semantics and
perform specialized stages of model-based analysis for verification and fine-tuning. Under this setting, it is of
course paramount that adequate mechanisms are in place to ensure that a consistent overall system may result from
the composition of each concern-specific view. This is the difficult part of the process. HRT-UML/RCM solves
that problem by adopting a single metamodel to underpin all model views, with dedicated “projections” to each
of them, so that system components are by definition capable of accepting the attributes set by the user in the
applicable views, as well as proven model transformation rules that ensure that component composition always
results in a statically-analyzable system.

The reasons why we want to achieve a controlled form of separation of concerns are manifold.

Firstly, the design of high-integrity real-time systems requires attention to very different aspects, including but
non limited to concurrency, functional specification, hardware selection and modeling, verification and validation,
system deployment and configuration: separation of concerns helps the user concentrate only on the aspects of
interest at the time. Furthermore it is most definitely possible that distinct designers with different project roles
are working on the same system whereby separation of concerns helps each single designer gain full intellectual
control over the aspects of pertinence without the need to also have to master the other system views.

Secondly, control over separation of concerns, is achieved using a single MDE infrastructure enforcing a precise
methodology and it is essential to: (i) guarantee the consistency between every design concern; (ii) enforce and
demonstrate traceability between model entities across views of potentially distinct abstraction levels.

Thirdly, if the design environment provides distinct views of the system, it is possible to adopt in each view
the most suitable design notation and it is thus easier to verify each view in isolation, using the most appropriate
verification tools.

And finally, the separation between the concurrent architecture and the functional (sequential) behavior allo-
cated on it facilitates reuse of the latter across distinct non-functional architectures as well as, interestingly, the
reverse, that is, the reuse of a single concurrent architecture with different functional behaviors (see fig. 2.2).

In HRT-UML/RCM the design environment rests on a single underlying metamodel, which integrates and
enforces the semantics of each design aspect of interest and provides it in separated but yet related system views. It
is clearly of paramount importance to guarantee the consistency between distinct views: modifications performed
in a view should be consistently propagated to the other system dimensions upon view switching. We contend that
it is too demanding and error-prone to leave the designer in charge of assuring such consistency: rules embedded
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in the MDE infrastructure enforce automatically the sought consistency at each view switch.
In HRT-UML/RCM the design space offered to the user features three views:

e a Functional View in which the designer specifies the sequential behavior of the system components by
means of class diagrams, state machines, sequence diagrams;

e an Interface View, which allows the designer to specify how functional components aggregate together and
what services they expose and require to one another. This modeling view is expressed using declarative
specifications that decorate the interface of model components and the relations among them with attributes
which specify the desired concurrent semantics within the expressive power availed by the underlying RCM
metamodel;

e a Deployment view in which the designer describes the hardware, the attibutes of interest of the target execu-
tion platform; logical distribution is also performed in this view, assigning components to logical partitions
and finally physical distribution is completed by deploying logical partitions on computational nodes.

Functional View » Interface View
IProducer IConsumer IPraducer Producer_Component:
+ Produse + Consume ICgnsumer
= Produce

2 - PIPTLT | [ >{ - P : Producer |-
Producer T
+ Produce

myProducer :

Producer_Component

CH—HW“” """ >|P : Producer |-~

Figure 2.1: Functional containers are embedded in components in the Interface View. Concurrent semantics is
later attached to provided services of the components.

The three user-level views address distinct and non-overlapping aspects of the system. Yet they are strictly and
cohesively related to one another by metamodel rules that determine what semantics attach to what model elements
and how. The entire design space (except for the specification of the hardware and the execution platform) is free
from any concerns related to programming languages, implementation details and dependencies on the execution
platform; in MDE terms we can say that the user mostly manipulates platform-independent models (PIM) and
this is in line with the goal to raise the abstraction level of the design process to mind valued-added concerns
as opposed to the low-level mechanics of implementation. An automatic model-to-model transformation is in
charge of turning the PIM user model (coupled with the platform specification) into a platform-specific model
(PSM), which contains all the details needed for its implementation on the target platform; chiefly the intended
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concurrent semantics that was declaratively specified on component services in the interface view is implemented
in the generated PSM (which is called Concurrency View), according to the adopted computational model. The
PSM is also a Schedulability Analysis Model (SAM) that is used to feed a tool for model-based analysis and it is
the input for automatic generation of the source code for the complete concurrent architecture.

IFroducer
Q >Q () e Prnducer*—g
IProducer IConsumer y |Cansumer
+ Produce + Consume H
. protected o1 :CunsumerJ
zFl [Produc er

Producer
+ Produce L p2: Prnducer*—(

IFroducer | Cansumer

() na F'rndun:er*—@----"--------------- unprotected |62 CnnsumerJ

Figure 2.2: Reuse of functional specification across different concurrent architectures: on the top, operation Con-
sume requires to be protected against concurrent access by its two clients; on the bottom, operation Consume
has a single client and does not require any access protection. The functional specification is the same since the
protection is provided by an additional layer applied on top of the functional specification.
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Chapter 3

The Functional View

In this section we discuss the role of the Functional View in the HRT-UML/RCM methodology and reason about
what kind of constructs should be excluded from it since they are not compatible with our overall intent of separa-
tion of concerns.

‘We want to introduce and explain the applicable constraints independently of the modeling language chosen for
the functional specification. In theory the sequential behavior can be specified in any formalism of choice (UML,
SDL, SCADE, Simulink, ...) and subsequently imported in the HRT-UML/RCM infrastructure, to be embedded
in components of the Interface View. In chapter 4 we discuss this import process.

As stated in earlier in this report, we want to achieve complete separation between the functional behaviour and
the concurrent architecture. To attain this goal we single out the constructs which can break the sought separation
of concerns since they entail non-functional considerations which should be addressed exclusively present in the
Interface View. After this reasoning, we will achieve a “pure” Functional View, which is completely compatible
with the HRT-UML/RCM methodology.

The first class of constructs that we investigate are those that show concurrency-related semantics. In this class
we include constructs which: (i) cause the spawning of new threads in the system; (ii) require synchronization
protocols to ensure the safe execution of operations in the face of concurrent access. Those two dimensions of
concern are to be directly addressed by the concurrent architecture, and thus we exclude them from the Functional
View.

The second class comprises those constructs that exhibit time-related semantics. Examples of language con-
structs that fall in this class are sleep (in Java), delay and delay until (in Ada), and any form of time-out. We thus do
not include in the Functional View any reference to time or time-related suspension. The time- (and possibly space-
) dependent composition of individual functional methods (or subprograms) is the concern of the Interface View
(and the Deployment View, respectively). An important implication of this decision is that a system-level algo-
rithm that has time-dependent ramifications must be described, in the Functional View, as a set of time-independent
actions.

The third class of constructs is the most elusive: we do not want to use constructs that incur blocking seman-
tics. In this class we include constructs that: (i) explicitly block the caller, such as for example, synchronization
constructs like join or barrier, or event-related suspensions like wait; (ii) require an intervention from outside the
application space and implicitly block the current executing thread of control. Dynamic memory allocation and
dynamic creation of objects fall in the latter class of constructs and should thus be strictly prohibited.

The global enforcement of these rules means that the designer of the sequential behavior can assume that the
specified operations are later: (i) guarded against concurrent access, if necessary; (ii) correctly attributed to a static
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set! of threads in charge of their execution. In essence, the designer is delivered of these concerns while establishing
the sequential behavior of the system. (The reader should notice that a direct and important consequence of the
choice of strictly separating concerns is that, strictly speaking, there can be no unified system concept in the
Functional View, which is instead deferred to the Interface View and the Deployment View.)

The strive for what we informally called “pure” functional view earns us additional advantages. We are sure
that the designer is realising a functional specification the correctness of which does not depend on timing behavior.
And furthermore the functional specification, isolated from system-level concerns since its conception, it is based
only on local properties and it is no more possible that we incur in the risk of polluting it with system-level
properties during its design.

In HRT-UML/RCM, concurrency concerns are imposed on the model by decorating the operations exposed by
components in the Interface View with the intended concurrent semantics: preserving safety from race conditions
is attained by declaring the affected operations as protected and the automated transformation that generates the
PSM protects them against concurrent access with a suitable synchronization protocol, in the form of the Priority
Ceiling Protocol (PCP). The allocation of independent threads of control to system components is obtained by
decorating designated methods with attributes that require that a thread of control is either periodically released
by the hardware clock at a given fixed rate or activated upon software invocation or hardware interrupt. Such
decorations are performed in the Inferface View, where system components are designed and the system is created
by their composition.

The reader should also notice that while constructs like timers and time-triggered events are not allowed and
thus cannot be used in the functional view, they are effectively used in the system at run time. Their creation is
under the complete responsibility of the model transformations, which can use them to implement the declarative
specification of the interface view. Those constructs are under the control of the concurrent architecture of the
system, which is automatically generated and shall not be modified by the user.

As stated before, the sequential behavior can be specified in any language of choice under the condition that
all constraints imposed on the functional view are satisfied. In the following, however, we concentrate on UML
[OMGO7b], the preferred language for the specification of the functional behaviour in HRT-UML/RCM. The RCM
metamodel conceptually mimics the basic infrastructure of UML, providing the suitable meta-classes to model
classes, interfaces, properties, operations, etc.. Thus there are no conceptual (and semantic) issues in the import of
a UML model. However, it is straightforward to understand that full-fledged UML violates the constraints that we
are imposing on the functional view: we thus analyze what specific UML language constructs should be prohibited
while using State Machines and Sequence Diagrams to specify the sequential behavior of the system.

3.1 UML State Machines

Under the constraints enumerated in chapter 3, state machines cannot be used to model any interaction between
threads. Furthermore it is not possible to express time-related semantics.

A state machine is then associated to a UML class and it is solely used to model its internal behaviour.

In the following we enumerate the UML features that are prohibited in the Functional View of HRT-UML/RCM.
Each feature is complemented by an excerpt of its description in the UML superstructure [OMGO7b].

3.1.1 Pseudostates

The use of the following pseudostates is forbidden:

'Under the RCM, threads are created exclusively at system initialization time, and their total population stays fixed during the whole system
life cycle (i.e., threads are never terminated).
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e fork pseudostate: “fork vertices serve to split an incoming transition into two or more transitions terminating
on orthogonal target vertices (i.e., vertices in different regions of a composite state). The segments outgoing
from a fork vertex must not have guards or triggers.”

e join pseudostate: “join vertices serve to merge several transitions emanating from source vertices in different
orthogonal regions. The transitions entering a join vertex cannot have guards or triggers.”

e junction pseudostate: “junction vertices are semantic-free vertices that are used to chain together multiple
transitions. They are used to construct compound transition paths between states. For example, a junction
can be used to converge multiple incoming transitions into a single outgoing transition representing a shared
transition path”

e terminate pseudostate: “Entering a terminate pseudostate implies that the execution of this state machine by
means of its context object is terminated. The state machine does not exit any states nor does it perform any
exit actions other than those associated with the transition leading to the terminate pseudostate. Entering a
terminate pseudostate is equivalent to invoking a DestroyObjectAction”.

3.1.2 Events
The following event kind cannot be used to trigger a transition in a state machine:

e SignalEvent: “A signal event represents the receipt of an asynchronous signal instance. A signal event may,
for example, cause a state machine to trigger a transition.”

e TimeEvent: “Extends TimeEvent (of package Communications ndr) to be defined relative to entering the
current state of the executing state machine”. TimeEvent of package Communications “[..] specifies a point
in time. At the specified time, the event occurs.”

3.1.3 Additional constraints

In addition to the run-to-completion* semantics mandated by the UML superstructure, state machines can receive
and process an incoming message (event) only if the previous message has been completely elaborated. State
machines shall be in fact void of any message buffering capability (which is provided by the concurrent architecture
on top of them).

3.2 UML Sequence Diagrams

UML Sequence diagram can be attributed to the behavior of a state. The entities that populate the diagram are the
lifelines, which can represent properties of a UML Classifier (the pointed property is selected with the represents
attribute). With sequence diagrams it is thus possible to model the invocation of operations on classifier properties.
It should be noted however that it is only in the definition of the concurrent architecture in the Interface View that
it is specified how the invocations are performed (e.g., by which thread).

An interesting feature provided by sequence diagrams is the possibility to link a specific invocation chain to a
specific state and provide alternative invocation chains for alternative states.

2UML defines a run-to-completion semantics for event consumption, which imposes that no other event is dequeued before the processing
of the previous event is fully completed. Events are consumed one by one. That means that the object will not accept new incoming events
until the previous one has been fully consumed.
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Figure 3.1: Example of sequence diagram with combined fragments

This is interesting to model intra-component execution flows precisely. That modeling can be of great advan-
tage to dramatically improve the accuracy of model-based timing analysis, which can then be performed on single
fine-grained scenarios.

In the following we enumerate the features that cannot be used in sequence diagrams:

CreationEvent: “A CreationEvent models the creation of an object.”
DestructionEvent: “A DestructionEvent models the destruction of an object.”

Duration: “A duration defines a value specification that specifies the temporal distance between two time
instants”.

DurationConstraint: “A DurationConstraint defines a Constraint that refers to a DurationInterval.”
DurationInterval: “A Durationlnterval defines the range between two Durations.”

DurationObservation: “An observation is a reference to a duration during an execution. It points out the
element(s) in the model to observe and whether the observations are when this model element is entered or
when it is exited.”

SignalEvent: “A signal event represents the receipt of an asynchronous signal instance. A signal event may,
for example, cause a state machine to trigger a transition.”
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TimeConstraint: “A TimeConstraint defines a Constraint that refers to a Timelnterval.”
TimeEvent: “A TimeEvent specifies a point in time. At the specified time, the event occurs.”
TimeExpression: “A TimeExpression defines a value specification that represents a time value.”

Timelnterval: “A Timelnterval is shown with the notation of Interval where each value specification element
is a TimeExpression.”

TimeObservation: “An time observation is a reference to a time instant during an execution. It points out the
element in the model to observe and whether the observation is when this model element is entered or when
it is exited.”

Additionally, the use of the following operators in Combined Fragments is forbidden:

critical: “The interactionOperator critical designates that the CombinedFragment represents a critical region.
A critical region means that the traces of the region cannot be interleaved by other OccurrenceSpecifications
(on those Lifelines covered by the region). This means that the region is treated atomically by the enclosing
fragment when determining the set of valid traces.”

e parallel: “The interactionOperator par designates that the CombinedFragment represents a parallel merge

3.3

between the behaviors of the operands. The OccurrenceSpecifications of the different operands can be
interleaved in any way as long as the ordering imposed by each operand as such is preserved.”

Additional UML Constraints

The use of Class from the Communication package is forbidden (the isActiveAttribute designates whether
the class has its own thread of control or it is considered a passive entity).

UML Properties shall stay fixed within a given system-wide mode of operation.
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Chapter 4

Importing the Functional View

In the development of high-integrity real-time systems, it is possible that the sequential behavior is specified with
different modeling languages: Matlab/Simulink for control algorithms, SDL for state machine logic, UML for the
exploitation of the object-oriented paradigm, and so forth.

Describing a functional specification with a specific language of choice it is clearly an advantage, since ad-hoc
tools can be used to design and verify the specification. Additionally, many of the tools can also generate source
code from functional models.

When the functional specification has been completed, all functional entities must be correctly integrated in the
system model. This step of integration is very critical because properties of a functional specification may greatly
influence the concurrent and timing behaviour of the overall system. Furthermore, this composition activity is
often performed manually, which makes it very risky and error-prone.

The integration process should satisfy the following requirements:

e it should generate a model representation of the functional specification that preserves the properties that
were locally proven on it;

e cach integrated functional block (component) shall not corrupt or invalidate properties verified on other
functional blocks (irrespectively of the specification language used for them);

e it should be possible to draw information relevant to system-level model-based analysis (like timing analysis)
from all imported functional models;

o the integration process shall provide a mean to include in the system architecture also the functional code
that has already been generated by ad-hoc tools.

e data semantics of message exchanges between functional blocks implemented in distinct languages shall be
preserved.

Each functional model that the designer may want to include in the system architecture shows the specific
semantics prescribed by its modeling language. In MDE terms we can say that models resulting from distinct
modeling languages rest on distinct metamodels.

The Interface View is the system view in which system components are established and functional behaviour
is embedded in them to characterise their provided and required services. Importing a functional specification
described in a modeling language other than that provided by the RCM metamodel means basically to import
entities that express their own specific semantics.
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In order to enable the creation of models with heterogeneous functional specifications it is possible to choose
among two radically different paths:

1. to import the entire language semantics of each candidate language for the functional specification
2. to extract only the information of interest from the input functional model.

With the first path, we impose that the system-level language, that is the user-level language provided by the
RCM metamodel, has to be expressive enough to express the semantics of all possible languages for importable
functional models. This means that the RCM metamodel should be more expressive than all the corresponding
functional metamodels. This is practically infeasible both from the theoretical and implementation point of view.
Following the second path instead we extract from the functional model only the information required (and ex-
pressible) in an HRT-UML/RCM model.

At this point we should also verify that the functional model exhibits a semantics that does not violates the
contraints specified in chapter 3. This can be done either:

1. with a set of verification rules checked by the import tool; this requires that the verification is performed
during each model import and that functional models that violate the constraints are rejected;

2. designing the functional specification with a suitable subset of the functional language of choice that abides
by the prescribed constraints; after establishing a mapping between the semantics of the subset of the func-
tional language and the entities of the RCM metamodel, functional models are amenable to import by con-
struction.

The path outlined in item 2 above was chosen in the scope of the ASSERT project for the development of the
FW Profile [CEPT06] by ETH, a UML Profile for the functional specification, completely compatible with the
RCM methodology. A more detailed description of the import of heterogeneous functional models in RCM can be
found in [BTPOS].

COrDeT_TN_WP503-1 Last Modified on: 18/08/2008 page 22 of 23



Reference: UPD-E02-D503-1
Date: 18/08/2008
Issue: 0.2

Bibliography

[BDVO03]

[BPVO08]

[BTPOS]

[BVO7]

[CEPT06]

[Cha06]

[OMGO07a]
[OMGO07b]

[PAIPHT07]

[PVO7]

[SAE]

[Var06]

Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide for the Use of the Ada Ravenscar Profile
in High Integrity Systems. Technical Report YCS-2003-348, University of York, 2003.

Matteo Bordin, Marco Panunzio, and Tullio Vardanega. Fitting Schedulability Analysis Theory into
Model-Driven Engineering. In Proc. of the 20th Euromicro Conference on Real-Time Systems, 2008.

Matteo Bordin, Thanassis Tsiodras, and Maxime Perrotin. Experience in the Integration of Hetero-
geneous Models in the Model-driven Engineering of High-Integrity Systems. In Reliable Software
Technologies - Ada-Europe, 2008.

Matteo Bordin and Tullio Vardanega. Correctness by Construction for High-Integrity Real-Time
Systems: a Metamodel-driven Approach. In Reliable Software Technologies - Ada-Europe, 2007.

V. Cechticky, M. Egli, A. Pasetti, O. Rohlik, and T. Vardanega. A UML2 Profile for Reusable and
Verifiable Software Components for Real-Time Applications. In Reuse of Off-the-Shelf Components,
9th International Conference on Software Reuse, 20006.

Roderick Chapman. Correctness by Construction: a Manifesto for High Integrity Software. In ACM
International Conference Proceeding Series; Vol. 162, 2006.

OMG. UML profile for MARTE. 2007. http://www.omg.org/cgi-bin/doc?ptc/2007-08-04.

OMG. UML2 Metamodel Superstructure. 2007. http://www.omg.org/spec/UML/2.1.2/
Superstructure/PDF.

José A. Pulido, Juan A. de la Puente, Jérome Hugues, Matteo Bordin, and Tullio Vardanega. Ada
2005 Code Patterns for Metamodel-based Code Generation. Ada Letters, XXVII(2), 2007.

Marco Panunzio and Tullio Vardanega. A Metamodel-driven Process Featuring Advanced Model-
based Timing Analysis. In Reliable Software Technologies - Ada-Europe, 2007.

SAE. Architecture Analysis and Design Language. http://la.sei.cmu.edu/aadl/currentsite/
aadlstd.html.

Tullio Vardanega. A Property-Preserving Reuse-Geared Approach to Model-Driven Development.
In 12th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, 2006.

COrDeT_TN_WP503-1 Last Modified on: 18/08/2008 page 23 of 23




