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Abstract

This document is a guide to the current RCM code generation that covers the non-functional parts of the software
architecture of a system design with the HRT-UML/RCM methodology defined in the ASSERT project. The
generation strategy is designed to be able to accommodate the seamless insertion of functional (algorithmic) code
either hand-coded or else produced by other generation means, so long as in compliance with the HRT-UML/RCM
restrictions. Those restrictions are discussed in COrDeT Report WP503 which readers are advised to read first,
before approaching the core of this document.

After a short introduction in which we recall the key concept of the RCM methodology, we discuss code
generation. In particular we examine the code archetypes used by the generation engine, the complete structure of
the various types of Virtual Machine-level Containers and the generation of Application-level Containers. A small
example is used to comment various aspects of the generated code.

Acknowledgments. The authors of the document gratefully acknowledge the contribution of Matteo Bordin,
former member of the ASSERT team at UPD, who was the principal designer of the current code generation
strategy, for all the hints and the discussions about the code generation as reported in this document.
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Chapter 1

Introduction

1.1 Overview of AP-level and VM-level Containers
Application-level Containers (APLC for short) are the main design entities in the RCM methodology. APLC are
components that embed cohesive services and functional states and expose them in a controlled way through an
interface.

An APLC exposes two kind of interfaces: the provided interface (PI) and the required interface (RI). The PI
specifes the services that the APLC offers to other APLC components. The signature of these operations denotes
”what” is offered, whereas a set of other attributes declaratively determine the ”how”. The ”how” attributes
determine for example whether any synchronization protocol is provided to protect the execution of an interface
invocation in the face of concurrency or that the operation is executed by a dedicated thread of control on the
callee side. In contrast, the RI specifies what the component needs from others in order to discharge its duty to the
system. An RI is similar in nature to a PI, except that a PI specifies the services offered to others by the component
of interest, whereas the RI specifies its needs.

Relations drawn between RI and PI are subject to compliance checks so that a PI satisfies an RI if and only
if all the ”what” and ”how” wishes are matched by ”what” and ”how” obligations exposed by the corresponding
PI. Attributes are set on the interfaces and not on the relations among them. In other words, it is the interface that
statically determines the semantics of the invocation.

This choice intentionally differs from other model formalisms in which some attributes of an interface invoca-
tion determine the semantics of it. The wisdom of our choice is in that static analysis is considerably facilitated (for
an acceptable loss of expressive power) when the invocation semantics is a static attribute of the provided interface
instead of being a dynamic attribute of the invocation.

A functional specification is attached to each interface operation to determine its sequential behavior. The way
an invocation to a PI operation actually activates a transition in the state machine that describes the behaviour of
that operation is determined by the attributes attached to the method itself (the ”how”).

Figure 1.1 complements with an example what has been just exaplained. We are partially modeling a tiny
producer-consumer system. The designer specifies the sequential behavior of the system with a formalism that
includes interfaces, classes, state machines. We define an interface for the consumer (IConsumer) and an interface
and a concrete class for the producer (IProducer and Producer respectively). In method Produce of class Producer
we need to use method consume of interface IConsumer, and we specify this need in the design of the class. Then
we define an APLC for the producer. We embed in this component a functional state that is typed to the class
Producer.
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Figure 1.1: Modeling of AP-level Containers.

The resulting PI and RI of the APLC are automatically calculated since they directly derive from the functional
specification of the embedded state. The PI exposes the Produce method, which in turn requires a method Consume
exposed by interface IConsumer. That need is correctly reproduced in the RI of the Producer APLC.

The designer then completes the definition of the APLC operations specifying how its services are performed.
In the example we specify that the operation Produce is to be executed periodically (cyclic concurrent kind).

APLC are platform-independent components used by the designer to specify the solution to the system prob-
lem. In fact the reader can note that neither references to any programming language nor to a concurrency model
have been made in the previous example. For instance, the concurrent kind of the operation is only specified
declaratively, but no implementation details on how that concurrent behaviour is achieved in the final system is
provided by the designer, coherently with Model-Driven Engineering (MDE), which is the software engineering
approach that inspires our methodology.

Being free of implementation details, APLC are defined in the space of the Platform Independent Model (or
PIM, in the terminology of Model Driven Architecture). In the RCM development process, the PIM is automat-
ically transformed in a Platform Specific Model (PSM), which conversely specifies all the information needed
to implement the system. In RCM, the automatic transformation is instructed by a set of rules that attach to
each Application-level Container one or more Virtual Machine-level Containers. Virtual Machine-level Containers
(VMLC for short) are platform-dependent entities that implement the concurrent semantic requirements attached
to the APLC services, in the form of a specific computational model.

In our design process we chose to use the Ravenscar Computational Model [BDV03], which emanates directly
from the Ravenscar Profile [BDR98] of the Ada language [ISO05].

APLC and VMLC thus belong to distinct abstraction levels: the former provide a platform-independent speci-
fication of reusable software components, the latter ”implements” the APLC in manners that provably abide by the
chosen computational model.

The general structure of a VMLC comprises the following three entities:
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• the Operation Control Structure (OPCS), the primitive container that realizes one or more PI operations (as
many as operate on one and the same functional state of the encompassing container)

• the Object Control Structure (OBCS), which embeds an agent of the synchronization protocol specified in
the relevant PI attributes

• the Thread, which is a thread of control that executes the invoked PI operations in coordination with the
synchronization protocol agent embedded in the OBCS.

Not all VMLC need to exhibit all those three constituents. The allowable structure of each possible kind of
VMLC is discussed in chapter 2.

Figure 1.2: General structure of an APLC realized by a single VMLC.

The general structure of an APLC and its implementing VMLC is depicted in figure 1.2. Often multiple VMLC
are attached to a single APLC, but for the sake of simplicity we present in that figure the simplest case (1 APLC
realized by 1 VMLC).

Any legal vertical transformation effectively delegates the PI of an AP-level container to the matching PI of the
target aggregate of VMLC. Similarly, it must ensure that the RI that those VMLC promote does match the RI of
the corresponding APLC. The reader should recall that the intra-component relation between PI and RI is defined
while specifying the functional behaviour of the system (which resides in the OPCS).

In the RCM the following types of VM-level containers are estabilished:

1. Passive VMLC: it is a primitive run-time entity with PI void of any synchronisation protocol.

2. Protected VMLC: it is a primitive run-time entity with synchronization control on access to its PI, following
the ”Priority Ceiling Protocol” (PCP) [SLR86] (or, equivalently, the ”Stack Resource Policy” (SRP) [Bak91]
with dispatching policies other than fixed-priority preemptive were used in the relevant partition). The use
of any of those synchronization protocols warrants structural absence of deadlocks induced by cumulation
of resources, minimisation of priority inversion and occurrence of blocking time at most one time per thread
activation.
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3. Cyclic VMLC: it is an aggregate of run-time entities that includes a thread of control which issues jobs at a
fixed constant rate. The event that triggers the activation of a job of that thread is produced directly by the
system clock.

4. Sporadic VMLC: it is an aggregate of run-time entities that includes a thread of control which executes job
sporadically, i.e., with a stipulated minimum separation time between successive invocations, which is also
guaranteed at run time. The event that triggers the activation of a job of that thread is produced by software
(an interrupt handler or some other thread).

This general structure depicted in fig. 1.2 is the result of several architectural choices.
The reader should note that there is a single access point for the APLC and its underlying set of VMLC, that is

the APLC provided interface: thus we earn encapsulation of the overall aggregation of entities. Each service of the
PI is further equipped with a specific visibility attribute, which may further restrict the accessibility of the service
to other entities that populate the system.

The three primitive structures that we have identified (OBCS, Thread, OPCS) have specific design goals, and
their separation promote and facilitate factorization. The (optional) OBCS caters for protection against concurrent
access to the operation and in deferred operation provides the mechanisms to reify operation invocations in a
manner akin to what is done in classical middleware. The (optional) Thread is an executor of reified requests
of invocations. For this reason, a Thread always requires an OBCS in the same VMLC from which to fetch the
requests of execution. The OPCS is the entity where the sequential behaviour of the VMLC resides. That sequential
behaviour is specified in the Functional View using UML2 formalism: interfaces, classes, state machines. The
static structure of the OPCS simply exposes the PI and (possibly void) RI as specified in its class definition. What
it is important is that the PI of the OPCS is never exposed to the system, but it is only reachable in a controlled
form through the specification delegation chain that proceeds from the PI of the APLC. This property permits
effective protection against concurrent access (which is provided by the OBCS) and the execution by a thread on
the callee side (which is provided by the Thread). In theory, the OPCS can be used by multiple distinct VMLC
and the sought separation from the synchronization agent and the executor becomes very valuable; in fact the same
OPCS definition can be freely used in a threaded VMLC, in a protected VMLC and in a passive VMLC without
any change to the sequential code.

Finally, the reader can note that the RI of the APLC is completely determined by the RI of its included OPCS:
those RI are the sole RI of all the three primitive VMLC components that are promoted to the APLC level and
become functional needs that must be completely satisfied in order for the APLC to discharge its services to the
system.

We can now return to the allowable operations of APLC. In particular we examine the possible choices of
concurrent semantics that each operation may exhibit:

1. unprotected operation: an operation that does not provide any protection against concurrent access and it is
directly executed by the caller;

2. protected operation: an operation that is directly executed by the caller and that is subject to a synchroniza-
tion protocol to govern concurrent accesses;

3. cyclic operation: an operation that is to be executed with a fixed period by a dedicated thread of control on
the side of the callee; an operation of this kind can have no software caller;

4. sporadic operation: an operation that is to be executed sporadically, that is with a guaranteed minimum
separation time between two subsequent executions; the operation is invoked by a software caller but it is
execution by a dedicated thread of control on the side of the callee; the execution of an operation marked
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“sporadic” is triggered by a condition (a guard, in technical terms) becoming true; the specification of the
condition is associated with the specification of the “sporadic” attribute;

5. modifier operation: an operation that causes the executor thread to take an alternative behavior to the nominal
one, whether cyclic or sporadic. In the current version of the code generation, the alternative behavior is
one-off, i.e., executed only once before resuming nominal operation. It is easy to see however that modifier
operations are also the most natural means for the implementation of mode changes.

The model-to-model transformation that instantiates VMLC to realize APLC uses the concurrent semantics of
each operation (as well as information about the members of the functional states accessed by individual operation)
to determine which type and how many VMLC are required to implement the intended concurrent semantics.

In domains like high-integrity real-time systems, the need often arises to reduce as much as possible the number
of threads required at run time, to incur less space and time overhead. In RCM, modifier operations help meet this
requirement. Modifier operations (or simply modifiers) are always coupled with a nominal operation. For each
nominal operation, which may either be marked as cyclic or sporadic, there always exists a dedicated thread of
control designated to perform their execution. Modifier operations represent an alternative sequential behavior to
the nominal operation, which may be executed, at distinct invocations, by one and the same thread of control. In the
current implementation, modifier operations feature exclusively a one-off behavior, meaning that an asynchronous
request for a modifier operation replaces the nominal operation during the next activation of the executor thread.
After that activation, the nominal operation is executed again.

1.2 Key principles and requirements of RCM

Abstraction and automation. MDE in general promotes reduced time and costs of system production, mainly
by raising the abstraction level of the design space and enabling the automated generation of (portions of) the
system code. In RCM the designer devises the solution to the system problem by: creating APLC; decorating their
contractual interfaces; and binding them to one another so that RI as satisfied by matching PI. The designer need
not decompose the system in low-level primitive entities: automatic model transformations generates intermediate
artefacts which comply with the chosen computational model and are used to feed model-based analysis and the
code generation engine, which generates the code for the concurrent architecture.

Separation of concerns. The RCM promotes strict separation between functional modeling and architectural/-
concurrent modeling. The functional specification of the system shall be intentionally void of any concurrent and
time-related semantics. This form of separation of concerns is sought especially to facilitate reuse of the functional
specification across distinct concurrent and distribution architectures.

Types and instances. APLC (and VMLC) are type based and support multiple instantiation. Thanks to this
feature, RCM places a clear step ahead of the object-centric design space typical of other methodologies like for
example HRT-HOOD. The dichotomy of types and instances has to be properly expressed in the design space and
recognisable in the source code. Even if APLC and VMLC are considered as types, they do not feature a complete
object-oriented nature: inheritance and methods overriding are intentionally removed from the Interface View.
Conversely, full object-orientation is supported in the Functional View for the definition of the sequential behavior
of the system.
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Traceability. All the entities present in the PSM should be present in the automatically generated source code
so as to allow complete traceability. This implies that APLC types, APLC instancies, VMLC types and VMLC
instancies should all be mapped in the source code.
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Chapter 2

Mapping of VM-level Containers

In this chapter we focus on the realisation of VM-level Containers according to the current code generation strat-
egy. First, we examine the general structure of an OPCS, which encapsulates the sequential behaviour of system
components. Subsequently, we explore a set of code archetypes, which are fragments of code used to factorize the
common behaviours that can be typically encountered in a real-time system (a task with cyclic activation pattern,
a sporadic task, etc..). Finally, we examine how archetypes are assembled to form the structure of a VMLC, as
introduced in chapter 1. In order to simplify the presentation and the discussion, the code archetypes shown in
this chapter do not make any provisions for the monitoring of execution time nor for handling violation events.
Consideration of those features however forms integral part of the RCM code generation logic.

2.1 Structure of the OPCS
Let us commence by examining how an OPCS is mapped to code in the current strategy of code generation. In
particular we first review the mapping of Interfaces specified in the Functional View.

Listing 2.1: Interface mapping

1 package <In te r face Type>s is
2 −− f o r the sake of r e a d a b i l i t y assume <In te r face Type> i s ‘ ‘ IProducer ’ ’
3 type IProducer is in ter face ;
4 type IProducer Ref is access a l l IProducer ’ Class ;
5 type IP roduce r S ta t i c Re f is access a l l IProducer ;
6
7 type IP roducer Ar r is
8 array ( Standard . I n tege r range <>) of IProducer Ref ;
9 type IP roducer Ar r Re f is access IP roducer Ar r ;

10
11 −− f o r each i n t e r f a c e opera t ion
12 procedure <Operation Name> ( This : in out IProducer ;
13 <Param1 Name> : in <Param1 Type>;
14 <ParamN Name> : in <ParamN Type>) is abstract ;
15 private
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16 end <In te r face Type>s ;

The mapping is straightforward. For each Interface, a dedicated package (with the ’s’ character appended to
the Interface name) is created. In this package, we define the interface, as well as access types to it. Each operation
in the interface definition is also generated as shown on line 10 of listing 2.1.

Now we examine the mapping of classes defined in the Functional View, which can be used as the OPCS of
VMLC.

Listing 2.2: Generic structure of the OPCS (spec)

1 package <OPCS Type>s is
2 −− f o r the sake of r e a d a b i l i t y assume <OPCS Type> i s ‘ ‘ Producer ’ ’
3 type Producer is new Con t ro l l ed and <OPCS SuperType>s.<OPCS SuperType>
4 with pr ivate ;
5 type Producer Ref is access a l l Producer ’ Class ;
6 type Producer S ta t i c Re f is access a l l Producer ;
7
8 type Producer Arr is array ( Standard . I n tege r range <>) of Producer Ref ;
9 type Producer Arr Ref is access Producer Arr ;

10
11 overriding
12 procedure I n i t i a l i z e ( This : in out Producer ) ;
13
14 −− f o r each opera t ion i n PI
15 procedure <Operation Name> ( This : in out Producer ;
16 <Param1 Name> : in <Param1 Type>;
17 <ParamN Name> : in <ParamN Type>);
18
19 −− f o r each a t t r i b u t e
20 procedure Set <Attr ibute Name> ( This : in out Producers . Producer ;
21 <Var Name> : <OPCS Type1>s . Producer ) ;
22 private
23 type Producer is new Con t ro l l ed and
24 <OPCS SuperType>s.<OPCS SuperType> with record
25 −− f o r each p r i m i t i v e a t t r i b u t e
26 <Attr ibute Name> : <Pr im i t i ve Type>s.<Pr im i t i ve Type >;
27 −− f o r each non−p r i m i t i v e a t t r i b u t e
28 <Attr ibute Name1> : <OPCS Type1>s.<OPCS Type1> Ref ;
29 end record ;
30 end <OPCS Type>s ;

Similarly to what we saw for Interface specification, the OPCS declaration is placed in a package named after
the name of the OPCS with a trailing ’s’. The generated code includes the declaration of the OCPS as a limited,
controlled record type and the access types that point to it. (The limitedness and controlled nature of the record
type ensures that the objects of that type can only be manipulated by specific operations, which adds to the overall
integrity of the code.) All the member attributes present in the class definition are declared in the record type. A
setter procedure is defined to initialize those attributes.
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Listing 2.3: Generic structure of the OPCS (implementation)

1 package body <OPCS Type >s is
2 −− f o r the sake of r e a d a b i l i t y assume <OPCS Type> i s ‘ ‘ Producer ’ ’
3 procedure I n i t i a l i z e ( This : in out Producer ) is
4 begin
5 −− user−code here ;
6 end I n i t i a l i z e ;
7
8 −− f o r each PI
9 procedure <Operation Name> ( This : in out Producer ;

10 <Param1 Name> : in <Param1 Type>;
11 <ParamN Name> : in <ParamN Type>) is
12 −−+ <L i s t o f component RI>
13 −−+ <L i s t o f accessed members>
14 begin
15 −− User−code here −−
16 end <Operation Name>;
17
18 procedure Set <Attr ibute Name> ( This : in out Producers . Producer ;
19 <Var Name> : <OPCS Type1>s.<OPCS Type1> Ref ) is
20 begin
21 −− s e t t e r s should be invoked only once at system i n i t i a l i z a t i o n
22 i f This .<Attr ibute Name> = nul l then
23 This .<Attr ibute Name> := <Var Name>;
24 end i f ;
25 end Set <Attr ibute Name >;
26 end <OPCS Type>s ;

The generation engine places appropriate hooks where action semantics can be inserted (via manual coding or
via interfacing with code generated by foreign tools): the functional contract of each operation (accessed members,
invoked required interfaces) is generated as source documentation.

2.2 Code archetypes
Code archetypes are used to factorize common behaviour usually found in a real-time system in a shared library of
patterns [BV07]. The use of code archetypes improves the compactness of the generated code.

The current RCM code generation strategy uses a set of archetypes: cyclic thread, cyclic thread with modifiers,
sporadic thread, and a common functional behaviour for the OBCS.
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2.2.1 Cyclic thread

Listing 2.4: Skeleton of a Cyclic Thread

1 task type Thread T ( T h r e a d P r i o r i t y : A n y P r i o r i t y ;
2 I n t e r v a l : I n tege r ) is
3 pragma P r i o r i t y ( T h r e a d P r i o r i t y ) ;
4 end Thread T ;
5
6 task body Thread T is
7 Next Time : Time := System Start Time + Task Ac t i va t ion De lay ;
8 begin
9 loop

10 delay u n t i l Next Time ;
11 −− Perform the opera t ion o f the OPCS
12 Next Time := Next Time + Mi l l i seconds ( I n t e r v a l ) ;
13 end loop ;
14 end Thread T ;

The listing shows the code archetype for a cyclic thread. After elaboration, the thread is immediately put into
suspension until a system-wide start time, which represents the common start time of all threads with 0 phase.
Support for thread-specific offsets can easily be incorporated by including a further task attribute valued to a user-
level parameter specified in the Interface View. Upon release after suspension, the thread performs the operation
specified in its OPCS, then computes the absolute time of its next activation, and finally repeat the cycle.

To build a shared library of archetypes that factorize common execution behaviors within ASSERT systems,
we need to allow the thread operation to be instantiated on a per-VMLC basis. To this end, we use the generic
construct of the Ada language. The archetype thus becomes the following:

Listing 2.5: Cyclic Thread

1 generic
2 with procedure Cyc l i c Opera t ion ;
3 package Simple Cyc l ic Task is
4 task type Thread T ( T h r e a d P r i o r i t y : A n y P r i o r i t y ;
5 I n t e r v a l : I n tege r ) is
6 pragma P r i o r i t y ( T h r e a d P r i o r i t y ) ;
7 end Thread T ;
8 end Simple Cyc l ic Task ;
9

10 package body Simple Cyc l ic Task is
11 task body Thread T is
12 Next Time : Time := System Start Time + Task Ac t i va t ion De lay ;
13 begin
14 loop
15 delay u n t i l Next Time ;
16 −− Perform the opera t ion o f the OPCS
17 Cyc l i c Opera t ion ; −− obv ious ly parameter less f o r a c y c l i c thread !
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18 Next Time := Next Time + Mi l l i seconds ( I n t e r v a l ) ;
19 end loop ;
20 end Thread T ;
21 end Simple Cyc l ic Task ;

2.2.2 Cyclic thread with modifiers

Listing 2.6: Cyclic Thread with Modifiers

1 generic
2 with procedure Cyc l i c Opera t ion ;
3 with procedure Get Request (Req : out Request Descr ip tor T ) ;
4 package Cyclic Task ATC is
5 task type Thread T ( T h r e a d P r i o r i t y : A n y P r i o r i t y ;
6 I n t e r v a l : P o s i t i v e ) is
7 pragma P r i o r i t y ( T h r e a d P r i o r i t y ) ;
8 end Thread T ;
9 end Cyclic Task ATC ;

10
11 package body Cyclic Task ATC is
12 task body Thread T is
13 Req Desc : Request Descr ip tor T ;
14 Next Time : Time := System Start Time + Task Ac t i va t ion De lay ;
15 begin
16 loop
17 delay u n t i l Next Time ;
18 Get Request ( Req Desc ) ;
19 case Req Desc . Request is
20 when NO REQ =>
21 −−nominal opera t ion
22 Cyc l i c Opera t ion ;
23 when ATC REQ =>
24 −− mod i f i e r opera t ion
25 My OPCS( Req Desc . Params . a l l ) ; −− may take parameters !
26 when others =>
27 −− e r r o r handl ing
28 end case ;
29 Next Time := Next Time + Mi l l i seconds ( I n t e r v a l ) ;
30 end loop ;
31 end Thread T ;
32 end Cyclic Task ATC ;

The listing shows the code archetype for a cyclic thread with modifiers. As in the archetype of section 2.2.1, the
thread executes with a fixed period the cyclic operation denotes as the nominal operation). The nominal operation
is passed as an instantiation parameter to the encompassing generic unit.
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Additionally, this thread is able to receive requests for the execution of alternative operations, termed modifier
operations or simply modifiers. While the cyclic nominal operation cannot have any parameter since it is not
invoked by software, modifiers instead can (cf. listing 2.6, line 23), since they indeed are invoked by software.
The invocation parameters are not directly handled in the code of the thread, but instead are stored in a request
descriptor.

Each time the thread is put in the running state after resuming from suspension, it inspects a request queue held
in its OBCS, searching for possible asynchronous requests of execution posted in the meanwhile by some callers.
If no such requests are found, the thread executes its nominal operation. Otherwise, if there are pending requests,
the OBCS returns the first request from the queue and the thread executes the appropriate modifier operation on
it. In this manner, the thread skips for one activation the execution of the nominal operation. In this section we
intentionally omit the scrutiny of Request Descriptors. Suffice it to say for now that they embed the parameters
needed to perform the requested operation.

2.2.3 Sporadic thread

Listing 2.7: Sporadic Thread

1 generic
2 with procedure Get Request (Req : out Request Descr ip tor T ) ;
3 package Sporadic Task is
4 task type Thread T ( T h r e a d P r i o r i t y : A n y P r i o r i t y ;
5 I n t e r v a l : I n tege r ) is
6 pragma P r i o r i t y ( T h r e a d P r i o r i t y ) ;
7 end Thread T ;
8 end Sporadic Task ;
9

10 package body Sporadic Task is
11 task body Thread T is
12 Req Desc : Request Descr ip tor T ;
13 Next Time : Time := System Start Time + Task Ac t i va t ion De lay ;
14 Release : Time ;
15 i d : aliased Task Id := Current Task ;
16 begin
17 loop
18 delay u n t i l Next Time ;
19 Get Request ( Req Desc , Release ) ;
20 case Req Desc . Request is
21 when START REQ | ATC REQ =>
22 −− nominal or mod i f i e r opera t ion
23 My OPCS ( Req Desc . Params . a l l ) ;
24 when NO REQ =>
25 −− i n t e n t i o n a l i d l i n g
26 nul l ;
27 when others =>
28 −− e r r o r handl ing
29 end case ;
30 Next Time := Release + Mi l l i seconds ( I n t e r v a l ) ;
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31 end loop ;
32 end Thread T ;
33 end Sporadic Task ;

The listing shows the code archetype for a thread with sporadic behaviour. The archetype is very similar to the
cyclic thread with modifiers.

As in the previous case the thread is put in the suspended state until the time of first system-wide activation.
Then the thread calls the single entry of its OBCS (Get Request) to probe for execution requests. When at least
one request is pending in the queue held in the OBCS, the guard to the entry is open and the entry call returns
with the first request descriptor from the queue. Otherwise the calling thread is blocked until an execution request
is posted. On resuming execution, the thread performs the required operation and then computes the next earliest
time of activation and suspends until then. It is a distinct requirement on sporadic threads that subsequent jobs of
theirs must be spaced by at least some minimum interarrival time (MIAT). The code generation strategy enforces
that requirement by having the thread suspend between successive executions until an absolute time no earlier than
the return time from Get Request plus the MIAT value stipulated in the Interface View.

At line 19 of listing 2.7, parameter Release is passed to procedure Get Request and it is updated during the
execution of the delegation chain of Get Request so as to store the actual release time of the activation of the
thread.

The reader can appreciate the difference between the cyclic and sporadic behavior of the corresponding two
archetypes: while the former is released and executes at each time instant that is a multiple of its period, the latter
executes only after the stipulated MIAT has arrived and when there is at least a pending execution request in the
OBCS.

2.2.4 Functional behaviour of the OBCS
The code generation strategy defines two distinct types of synchronization behaviour for the OBCS: the one that is
used for the OBCS of Cyclic VMLC (Cyclic OBCS) and the latter, for the Sporadic VMLC (Sporadic OBCS).

The distinct behaviours are defined using two Ada types that inherit from a common abstract type (OBCS T).
The following listing shows the specification and implementation of the Sporadic OBCS.

Listing 2.8: Specification of OBCS and Sporadic OBCS

1 type Request T is (NO REQ, ATC REQ, START REQ ) ;
2
3 type Param Type is abstract tagged record
4 In Use : Boolean := False ;
5 end record ;
6 type Param Type Ref is access a l l Param Type ’ Class ;
7
8 type Request Descr ip tor T is record
9 Request : Request T ;

10 Params : Param Type Ref ;
11 end record ;
12
13 −− Abst rac t i n t e r f a c e o f OBCS
14
15 type OBCS T is abstract new Con t ro l l ed with nul l record ;
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16 type OBCS T Ref is access a l l OBCS T ’ Class ;
17
18 procedure Put ( Se l f : in out OBCS T;
19 Req : Request T ;
20 P : Param Type Ref ) is abstract ;
21
22 procedure Get ( Se l f : in out OBCS T;
23 R : out Request Descr ip tor T ) is abstract ;
24
25 −− Concrete type of sporad ic OBCS
26
27 Sporadic OBCS ( Size : I n tege r ) is new OBCS T with record
28 START Param Buffer : Param Arr ( 1 . . Size ) ;
29 START Insert Index : I n tege r ;
30 START Extract Index : I n tege r ;
31 START Pending : I n tege r ;
32 ATC Param Buffer : Param Arr ( 1 . . Size ) ;
33 ATC Inser t Index : I n tege r ;
34 ATC Extract Index : I n tege r ;
35 ATC Pending : I n tege r ;
36 Pending : I n tege r ;
37 end record ;
38
39 overriding
40 procedure I n i t i a l i z e ( Se l f : in out Sporadic OBCS ) ;
41
42 overriding
43 procedure Put ( Se l f : in out Sporadic OBCS ;
44 Req : Request T ;
45 P : Param Type Ref ) ;
46
47 overriding
48 procedure Get ( Se l f : in out Sporadic OBCS ;
49 R : out Request Descr ip tor T ) ;

Listing 2.9: Implementation of procedure Put and Get in the sporadic OBCS

1 −− I n t e r f a c e opera t ions o f sporad ic OBCS
2 procedure Put ( Se l f : in out Sporadic OBCS ;
3 Req : Request T ;
4 P : Param Type Ref ) is
5 begin
6 case Req is
7 when START REQ =>
8 Se l f . START Param Buffer ( Se l f . START Insert Index ) := P ;
9 Se l f . START Insert Index := Se l f . START Insert Index + 1;

10 i f Se l f . START Insert Index > Se l f . START Param Buffer ’ Last then
11 Se l f . START Insert Index := Se l f . START Param Buffer ’ F i r s t ;
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12 end i f ;
13 −− increment the counter o f pending requests w i thou t ove r f l ow ing
14 i f Se l f . START Pending < Se l f . START Param Buffer ’ Last then
15 Se l f . START Pending := Se l f . START Pending + 1;
16 end i f ;
17 when ATC REQ =>
18 Se l f . ATC Param Buffer ( Se l f . ATC Inser t Index ) := P ;
19 Se l f . ATC Inser t Index := Se l f . ATC Inser t Index + 1;
20 i f Se l f . ATC Inser t Index > Se l f . ATC Param Buffer ’ Last then
21 Se l f . ATC Inser t Index := Se l f . ATC Param Buffer ’ F i r s t ;
22 end i f ;
23 −− increment the counter o f pending requests w i thou t ove r f l ow ing
24 i f Se l f . ATC Pending < Se l f . ATC Param Buffer ’ Last then
25 Se l f . ATC Pending := Se l f . ATC Pending + 1;
26 end i f ;
27 when others =>
28 −− e r r o r handl ing
29 end case ;
30 Se l f . Pending := Se l f . START Pending + Se l f . ATC Pending ;
31 end Put ;
32
33 procedure Get ( Se l f : in out Sporadic OBCS ;
34 R : out Request Descr ip tor T ) is
35 begin
36 i f Se l f . ATC Pending > 0 then
37 R := (ATC REQ,
38 Se l f . ATC Param Buffer ( Se l f . ATC Extract Index ) ) ;
39 Se l f . ATC Extract Index := Se l f . ATC Extract Index + 1;
40 i f Se l f . ATC Extract Index > Se l f . ATC Param Buffer ’ Last then
41 Se l f . ATC Extract Index := Se l f . ATC Param Buffer ’ F i r s t ;
42 end i f ;
43 Se l f . ATC Pending := Se l f . ATC Pending − 1;
44 else
45 i f Se l f . START Pending > 0 then
46 R := (START REQ,
47 Se l f . START Param Buffer ( Se l f . START Extract Index ) ) ;
48 Se l f . START Extract Index := Se l f . START Extract Index + 1;
49 i f Se l f . START Extract Index > Se l f . START Param Buffer ’ Last then
50 Se l f . START Extract Index := Se l f . START Param Buffer ’ F i r s t ;
51 end i f ;
52 Se l f . START Pending := Se l f . START Pending − 1;
53 end i f ;
54 end i f ;
55 −− the parameter i s i n use
56 R. Params . In Use := True ;
57 Se l f . Pending := Se l f . START Pending + Se l f . ATC Pending ;
58 end Get ;

The Sporadic OBCS embeds two circular buffers: one buffer contains all requests of execution of nominal oper-
ations (START Param Buffer); the other contains all requests of execution of modifier operations (ATC Param Buffer).
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When posting an execution request in the OBCS, procedure Put discriminates on the request type to locate
the correct destination buffer. When fetching a request from the OBCS, the ATC buffer is inspected first. If ATC
requests are pending, the first of them is extracted and inserted in a request descriptor which specifies the type of
the request. Otherwise the first START pending request is extracted. The default queuing policy is FIFO, which is
known to be fair and statically analyzable. Other policies might be contemplated, but none other would be fair.

The code of the Cyclic OBCS is not reported here, but it is quite simple to evoke since it is a simplification of
the Sporadic OBCS. It consists in a single circular buffer to store ATC requests. When procedure Get is called,
down in the delegation chain of the Get Request call made by a thread, it inspects the ATC buffer. If there are
pending requests, the first of them is fetched into a request descriptor whose type specifies that an ATC REQ is
included. Otherwise a request descriptor with NO REQ request type is generated. The descriptor will determine
the execution of the nominal cyclic operation for the current task activation (cf. 2.2.2).

Record member Self.Pending, updated at lines 31 and 58 of listing 2.9, is used in the guard expression attached
to the entry of the OBCS archetype.

2.3 Complete structure of VMLC

In this section we examine the complete structure of each type of VMLC to review how code archetypes are
combined together to form an aggregate of run-time entities which comply with the RCM and exhibit the intended
concurrent semantics.

2.3.1 Passive VMLC

A passive VMLC is the simplest type of VMLC. It does not exhibit any concurrent semantics and thus does not
require any real-time attribute.

Figure 2.1: Passive VMLC

The structure of a passive VMLC is depicted in fig. 2.1. The VMLC exposes a PI and a RI. The services of the
PI simply perform an indirection to the services offered by the OPCS of the VMLC.

In the current code generation strategy the mapping of a passive VMLC to code is thus very straightforward.
Figure 2.2 is a graphical representation of the implemented mapping.
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Figure 2.2: Architectural mapping of passive VMLC

Listing 2.10: Specification of passive VMLC

1 package <VMLC Name> is
2 generic
3 My ID : Deployment . En t i t y Type ;
4 OPCS Instance : <OPCS Type> S t a t i c R e f ;
5 −− <OPCS Type> Ref i s access type to the c lass
6 −−+ con ta in ing the OPCS of the con ta ine r
7 package <VMLC Name> Fac tory is
8 −− f o r each opera t ion i n the PI
9 procedure / function <OP Name> (<Parameter Signature >);

10 private
11 −− . . .
12 end <VMLC Name> Fac tory ;
13 end <VMLC Name>;

The use of the generic construct of the Ada language [ISO05] is used to make the structure of the VMLC
parametric on the type of the reference to the specific OPCS to be embedded in the VMLC.

Listing 2.11: Implementation of a passive VMLC

1 package body <VMLC Name> is
2 package body <VMLC Name> Fac tory is
3 −− f o r each opera t ion i n the PI
4 procedure / function <OP Name> (<Parameter Signature >) is
5 begin
6 −− simple c a l l i n d i r e c t i o n
7 OPCS Instance.<OP Name>(<Parameter Values >);
8 end <OP Name>
9 end <VMLC Name> Fac tory ;

10 end <VMLC Name>;
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The unit body includes the implementation of all the procedures published in the relevant PI, realized as a
simple call indirection to the concrete OPCS instance, which in fact is passed as the actual parameter to the generic
instantiation.

This mapping schema is retained for all other types of VMLC. The rationale to this choice is to adopt a
recurrent, recognizable pattern through all the code generation strategy, thus making the overall approach more
coherent and recognizable. However, this choice does not preclude future optimizations in case the overhead of
the indirection was deemed undesirable.

2.3.2 Protected VMLC
A protected VMLC extends the Passive VMLC by interposing a synchronization agent in the form of an OBCS,
between the actual PI interface and the OPCS where the sequential code resides. The mapping of protected VMLC
to code thus extends the generation pattern provided for passive VMLC.

Figure 2.3: Protected VMLC

Figure 2.4 is a graphical representation of the implemented mapping.

Figure 2.4: Architectural mapping of protected VMLC
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Listing 2.12: Specification of Protected VMLC

1 package <VMLC Name> is
2 generic
3 My ID : Deployment . En t i t y Type ;
4 C e i l i n g : P r i o r i t y ;
5 OPCS Instance : <OPCS Type> S t a t i c R e f ;
6 package <VMLC Name> Fac tory is
7 −− f o r each opera t ion i n the PI
8 procedure / function <OP Name> (<Parameter Signature >);
9 private

10 −− . . .
11 end <VMLC Name> Fac tory ;
12 private
13 protected type OBCS ( C e i l i n g : P r i o r i t y ;
14 O : <OPCS Type> Ref ) is
15 pragma P r i o r i t y ( C e i l i n g ) ;
16 −− f o r each opera t ion i n PI
17 procedure / function <OP Name> (<Parameter Signature >);
18 private
19 OPCS : <OPCS Type> S t a t i c R e f := O;
20 end OBCS;
21 end <VMLC Name>;

Listing 2.13: Implementation of Protected VMLC

1 package body <VMLC Name> is
2 protected body OBCS is
3 −− f o r each opera t ion i n the PI
4 procedure / function <OP Name> (<Parameter Signature >) is
5 begin
6 −− c a l l i n d i r e c t i o n
7 OPCS.<Op Name> (<Parameter Values >);
8 end <OP Name>;
9 end OBCS;

10
11 package body <VMLC Name> Fac tory is
12 −− the OBCS ins tance
13 Pro toco l : aliased OBCS ( Ce i l i ng , OPCS Instance ) ;
14 −− f o r each opera t ion i n PI
15 procedure / function <OP Name> (<Parameter Signature >) is
16 begin
17 −− simple c a l l i n d i r e c t i o n to the OBCS
18 Pro toco l .<OP Name> (<Parameter Values >);
19 end <OP Name>;
20 end <VMLC Name> Fac tory ;
21 end <VMLC Name>;
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The unit body includes the definition of a protected type to realize the required non-functional semantics. The
functional behaviour of the protected body is simply a call indirection to its OPCS (line 7 of listing 2.13). Note that
the protected type is defined inside the package but outside the generic body: in this manner it is possible to use the
same type in multiple instances of the same container, without recurring to compile-time object code duplication,
typical of the compilation model of Ada generics. The generic body contains an instance of the protected type (the
instantiation of protected objects at library level is an Ada Ravenscar constraint), and a set of call indirections from
the PI of the VMLC to the protected object. Each call to the PI of the protected VMLC is thus subject to Ceiling
Locking, which governs synchronization in protected objects under the Ravenscar Profile.

2.3.3 Threaded VMLC

Figure 2.5: Threaded VMLC

Figure 2.5 depicts the structure of a threaded VMLC. A threaded VMLC consists in a queue of preallocated
request descriptors that are used up to store the incoming execution requests. The preallocation of request descrip-
tors complies with the static exhistence constraints of the RCM. The thread of the VMLC extracts a request from
the queue and executes the corresponding functional code. The request queue belongs to the OBCS of the VMLC,
which provides for protection against concurrent access (since the queue is accessed by the thread and all the
callers of the PI of the VMLC). The general structure of the mapping is depicted in figure 2.6. In the following we
comment pn the code of a Sporadic VMLC and subsequently we outline the differences between Sporadic VMLC
and Cyclic VMLC.

Sporadic VMLC

Listing 2.14: Specification of Sporadic VMLC

1 package <VMLC Name> is
2 generic
3 My ID : Deployment . En t i t y Type ;
4 T h r e a d P r i o r i t y : P r i o r i t y ;
5 C e i l i n g : A n y P r i o r i t y ;
6 MIAT : Standard . I n tege r ;
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Figure 2.6: Architectural mapping of threaded VMLC

7 OPCS Instance : <OPCS Type> Ref ;
8 package <VMLC Name> Fac tory is
9 −− f o r each mod i f i e r opera t ion i n the PI

10 procedure / function <OP Name> (<Parameter Signature >);
11 private
12 −− . . .
13 end <VMLC Name> Fac tory ;
14 private
15 Param Queue Size : constant Standard . I n tege r := <Queue Size>;
16 OBCS Queue Size : constant Standard . I n tege r := Param Queue Size ∗ 1;
17
18 −− f o r each opera t ion i n the PI
19 type <OP Name> Param T is new Param Type with
20 record
21 OPCS Instance : <OPCS Type> S t a t i c R e f ;
22 −− f o r each p r i m i t i v e parameter
23 <Param1 Name> : <Param1 Type>;
24 −− f o r each non−p r i m i t i v e parameter
25 <Param2 Name> : <Param2 Type> Ref ;
26 end record ;
27
28 type <OP Name> Param T Ref is access a l l <OP Name> Param T ;
29 type <OP Name> Param Arr is array ( Standard . I n tege r range <>) of
30 aliased <OP Name> Param T ;
31
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32 overriding
33 procedure My OPCS( Se l f : in out <OP Name> Param T ) ;
34 −− end f o r each
35
36 protected type OBCS ( C e i l i n g : A n y P r i o r i t y ;
37 <OP Name1> Params Arr Ref P : Param Arr Ref ;
38 <OP NameN> Params Arr Ref P : Param Arr Ref ) is
39 pragma P r i o r i t y ( C e i l i n g ) ;
40 entry Get Request (Req : out Request Descr ip tor T ,
41 Release : out Time ) ;
42
43 −− f o r each mod i f i e r opera t ion i n the PI
44 procedure <OP Name> (<Parameter Signature >);
45 private
46 OBCS Queue : Sporadic OBCS ( OBCS Queue Size ) ;
47 Pending : Standard . Boolean := False ;
48 −− f o r each opera t ion i n PI
49 <OP Name> Params : Param Buffer T ( Param Queue Size ) :=
50 ( Size => Param Queue Size , Index => <I >,
51 Buf fe r => <OP Name> Params Arr Ref P . a l l ) ;
52 end OBCS;
53 end <VMLC Name>;

The OBCS of the VMLC is the usual protected type declared in the package body, yet outside the enclosed
generic unit, and instantiated inside the latter. The OBCS exposes a method for each PI of the VMLC (cf. figure
2.5). The generic instantiation parameters are the thread priority, the ceiling of the istance of OBCS, the MIAT of
the thread and the OPCS instance.

Listing 2.15: Implementation of Sporadic VMLC

1 package body <VMLC Name> is
2 −− f o r each opera t ion i n the PI
3 procedure My OPCS( Se l f : in out <OP Name> Param T ) is
4 begin
5 Se l f . OPCS Instance.<OP Name>(<Parameters Signature >);
6 Se l f . In Use := False ;
7 end My OPCS;
8
9 protected body OBCS is

10 procedure Update Bar r ie r is
11 begin
12 −− A d d i t i o n a l cond i t i ons omi t ted
13 Pending := Obcs Queue . Pending > 0;
14 end Update Bar r ie r ;
15
16 entry Get Request (Req : out Request Descr ip tor T ,
17 Release : out Time ) when Pending is
18 begin
19 Release := Clock ;
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20 Get ( Obcs Queue , Req ) ;
21 Update Bar r ie r ;
22 end Get Request ;
23
24 −− f o r each opera t ion i n the PI
25 procedure <Op Name> (<Parameter1>) is
26 begin
27 i f <Op Name> Params . Bu f fe r (<Op Name> Params . Index ) . In Use then
28 Increase Index (<Op Name> Params ) ;
29 end i f ;
30 <Op Name> Param T Ref (<Op Name> Params . Bu f fe r
31 (<Op Name> Params . Index )). <Parameter1>
32 := <Parameter1>;
33 Put ( Obcs Queue ,
34 <OP TYPE>,
35 <Op Name> Params . Bu f fe r (<Op Name> Params . Index ) ) ;
36 Increase Index (<Op Name> Params ) ;
37 Update Bar r ie r ;
38 end <Op Name>;
39 end OBCS;
40
41 package body <VMLC Name> Fac tory is
42 <Op Name1> Par Ar r : <OP Name1> Param Arr ( 1 . . Param Queue Size ) :=
43 ( others => ( fa l se , OPCS Instance ) ) ;
44 <Op Name1> Ref Par Ar r : aliased Param Arr :=
45 (<OP Name1> Par Ar r ( 1 ) ’ access ,
46 <OP Name1> Par Ar r ( 2 ) ’ access ,
47 <OP Name1> Par Ar r ( 3 ) ’ access ) ;
48 <Op NameN> Par Ar r : <OP NameN> Param Arr ( 1 . . Param Queue Size ) :=
49 ( others => ( fa l se , OPCS Instance ) ) ;
50 <Op NameN> Ref Par Ar r : aliased Param Arr :=
51 (<OP NameN> Par Ar r ( 1 ) ’ access ,
52 <OP NameN> Par Ar r ( 2 ) ’ access ,
53 <OP NameN> Par Ar r ( 3 ) ’ access ) ;
54 Nominal Params : aliased Nominal Param Type := <Nominal Params>;
55
56 Pro toco l : aliased OBCS ( Ce i l i ng ,
57 <OP Name1> Ref Par Ar r ’ access ,
58 <OP NameN> Ref Par Ar r ’ access ,
59 Nominal Params ’ Access ) ;
60
61 procedure Get ter (Req : out Request Descr ip tor T ,
62 Release : out Time ) is
63 begin
64 Pro toco l . Get Request (Req , Release ) ;
65 end Get ter ;
66
67 package My Sporadic Task is new Sporadic Task ( Get ter ) ;
68
69 Thread : My Sporadic Task . Thread T ( Th read Pr i o r i t y , MIAT ) ;
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70
71 −− f o r each opera t ion i n PI
72 procedure <OP Name> (<Parameter Signature >) is
73 begin
74 Pro toco l .<OP Name> (<Parameter Signature >);
75 end <OP Name>;
76
77 end <VMLC Name> Fac tory ;
78 end <VMLC Name>;

The VMLC uses the sporadic thread archetype discussed in section 2.2.3). The thread is instantiated inside the
generic package, using the instantiation parameters of the generic. The thread accesses the queue of the OBCS
through the Getter operation specified at lines 61-65 of listing 2.15)

The code generation strategy uses the reification of the execution requests directed to deferred PI operations.
The invocation (type and actual parameters) is recorded in a language-level structure and stored in the OBCS. The
client of the sporadic VMLC invokes PI operations, which are encoded as at lines 72-75 of listing 2.15). Each
such operations is a simple redirection to an operation with the same name and parameters of the OBCS (cf. lines
25-38 of listing 2.15). Each parameter of the invocation is copied into a parameter buffer (cf. lines 30-32 of listing
2.15), which is subsequently posted to the OBCS (lines 33-35) with tag OP TYPE set to either START REQ or
ATC REQ according to whether the requested operation is the nominal sporadic operation or else a modifier. The
code for procedure Put of the Sporadic OBCS is shown in listing 2.9.

The OBCS is thus the repository of the history of the pending requests and it is thus a crucial element of the
implementation of the asynchronous communication paradigm prescribed by the RCM.

Entry Get Request at lines 16-22 of listing 2.15). The barrier to the entry is composed of the single Boolean
variable Pending, again in compliance with the restrictions of the RCM. Procedure Update Barrier is provided to
allow multiple-variable conditions to be composed into a legal RCM guard.

Still at line 19 of entry Get Reuqest, return parameter Release is set, so that it can be used in the sporadic
thread archetype code to enforce the MIAT (cf. listing 2.7).

Cyclic VM-level Container

The mapping of a cyclic VMLC is very similar to that of the sporadic VMLC. The cyclic VMLC is composed of
the same entities (OBCS, thread, OPCS). The sole differences to its sibling are as follows:

• The instantiation parameters of the generic unit include the Period instead of the MIAT.

• OBCS Queue is an instance of Cyclic OBCS, thus following the functional behavior specified in section
2.2.4.

• An additional parameterless operation Cyclic Operation is defined in the package (which redirects to the
correct operation of OPCS Instance in analogy with procedure My OPCS of listing 2.15 at lines 3-7. When
the thread executes procedure Get Request and is redirected to the Get Request entry, it executes the next
request for a pending modifier operation (corresponding to an ATC REQ), if any (cf. listing 2.6 at line 23).
If the queue of pending requests is empty, the thread executes Cyclic Operation (cf. listing 2.6 at line 20).
In contrast to the Sporadic VMLC therefore, for Cyclic VMLC the number of pending requests does not
constitute a condition that influences the value of the barrier of the OBCS entry.
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Chapter 3

Mapping of AP-level Containers

In this section we discuss the mapping to code of Application-level Containers (APLC). Though APLC are non-
executable entities, their mapping is important, since it is instrumental to ensuring complete traceability between
the user model and the source code. APLC types and instances must therefore be present, as non-executable ar-
chitectural artefacts, in the source code. In order to achieve this goal, we must be prepared to pay some (marginal)
performance penalty in the executable. To begin our discussion, let us examine a reduced version of the specifica-
tion of an APLC.

3.1 APLC types

Listing 3.1: Generic specification of an APLC (with omitted fragments)

1 package <APLC Name> is
2 generic
3 −− l i s t o f i n s t a n t i a t i o n parameters omi t ted
4 package <APLC Name> Fac tory is
5 −− code omi t ted
6 end <APLC Name> Fac tory
7 private
8 −− f o r each f u n c t i o n a l s t a te i n the APLC
9 type <State Name> T is new <OPCS Type> with record

10 −− f o r each PI i n the <OPCS Type> superc lass
11 <Operation Name> 0 Ref : access procedure / function (<Operat ion Parameters >);
12 end record ;
13 −− f o r each PI opera t ion i n f u n c t i o n a l s t a te <OPCS Type>
14 overriding
15 procedure / function <Operation Name> ( This : in out <State Name> T ;
16 <Operat ion Parameters >);
17 end <APLC Name>;
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Similarly to VMLC, APLC are mapped using the generic construct of Ada. We defer the discussion of the
instantiation parameters themselves. For now, suffice it to note that they are used to instantiate the inner package
(the Factory). The instantiation process is discussed in section 3.2.

Listing 3.1 omits some fragments of code to better highlight the definition of functional states. APLC embeds
one or more functional states, which are comprised of the cohesive set of static variables on which the PI of the
APLC operate (whether individually or as a group thereof). Functional states are typed to non-abstract classes
defined in the Functional View (cf. section 2.1). In order to implement functional states, the APLC defines a new
type (lines 9-12) of each of them, which extends the base class specified in the Functional View: the new type
contains an access procedure/function for each operation of the original class; the access procedure has the same
signature as the original operation on the corresponding functional state (and as published in the relevant PI of
the APLC). As shown at lines 15-16 of listing 3.1, the PI of the APLC publishes a procedure or function for each
public service that operates on the functional states embedded in the APLC.

Listing 3.2: Generic implementation of an APLC (with omitted code)

1 package body <APLC Name> is
2 −− f o r each PI opera t ion
3 procedure / function <Operation Name>(This : in out <State Name> T ;
4 <Operat ion Parameters >) is
5 begin
6 This .<Operation Name> 0 Ref . a l l (<Operat ion Parameters >);
7 end <Operation Name>;
8
9 package body <APLC Name> Fac tory is

10 −− f o r each f u n c t i o n a l s t a te
11 <State Name> I ns tance : aliased <State Name> T ;
12 −− f o r each VMLC invo lved i n the implementat ion o f the APLC
13 My <State Name> <Operation Name> <VMLC kind> is new
14 <State Name> <Operation Name> <VMLC kind>.
15 <VM Container> Fac tory (<Gener i c Ins tan t i a t i on Paramete rs >);
16 −− code fragments omi t ted
17 begin
18 −− f o r each PI opera t ion
19 −− <State Name> I ns tance .<Operation Name> 0 Ref :=
20 −− <VMLC Instance>.<Operation Name>’access ;
21 end <APLC Name> Fac tory ;
22 end <APLC Name>;

As shown at lines 13-15 of listing 3.2, all of the VMLC that are needed to provide the required concurrency
semantics for the PI operations of the APLC are instantiated in the body of the APLC. Subsequently, at lines 19-20,
the access procedures defined in each functional state of the APLC are redirect to the corresponding operations in
the VMLC instances that implement them. This is the first step taken in the code generation strategy to ensure the
correct delegation chain of invocations from the PI of an APLC to the PI of the VMLC that implements it.
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3.2 APLC instances
The instances of APLC are declared in the specification of their partition of residence. To understand how APLC
are instantiated we must briefly return to their definition and their istantiation parameters. A set of real-time
attributes are used as parameters of the generics, in particular:

• for each cyclic operation: period, priority and ceiling to set on the OBCS of the realising VMLC;

• for each sporadic operation: MIAT, priority and ceiling to set on the OBCS of the realising VMLC;

• for each functional state decorated with a non-void synchronization protocol: ceiling to set on the OBCS of
the realising VMLC.

The value of most of those attributes is determined by way of model transformation in order that the user is not
required to provide information that does not really belong in the PIM space.

Listing 3.3: Generic specification of an APLC (with omitted code)

1 package <APLC Name> is generic
2 My ID : Deployment .Map. ProducerAP Instances ;
3 −− f o r each c y c l i c opera t ion
4 <OP Name> P r i o r i t y : P r i o r i t y ;
5 <OP Name> Per iod : I n tege r ;
6 <OP Name> C e i l i n g : A n y P r i o r i t y ;
7 −− f o r each sporad ic opera t ion
8 <OP Name> P r i o r i t y : P r i o r i t y ;
9 <OP Name> MIAT : In tege r ;

10 <OP Name> C e i l i n g : A n y P r i o r i t y ;
11 −− f o r each pro tec ted s ta te accessed by at l e a s t one opera t ion
12 <State Name> C e i l i n g : A n y P r i o r i t y ;
13 package <APLC Name> Fac tory is
14 −− code fragments omi t ted
15 end <APLC Name> Fac tory ;
16 −− code fragments omi t ted
17 end <APLC Name>;

Listing 3.4: Instantiation of an APLC

1 package <Node Name>.<Part i t ion Name> is
2 procedure I n i t i a l i z e ;
3 −− f o r each APLC ins tance deployed on the p a r t i t i o n
4 <APLC Instance Name> is new
5 <APLC Name>.<APLC Name> Fac tory
6 ( My ID => <ID>,
7 I n s t a n t i a t i o n P a r a m e t e r 1 => <Value>,
8 I ns tan t i a t i on Parame te r N => <Value >);
9 end <Node Name>.<Part i t ion Name >;
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Finally, before commenting on procedure Initialize shown in listing 3.4 we must return one last time to the
generic definition of the APLC type in listing 3.3, to look at the implementation of the operations defined in
generic package <APLC Name> Factory.

Listing 3.5: Getters and Fulfill RI

1 package body <APLC Name> Fac tory
2 −− f o r each f u n c t i o n a l s t a te
3 function Get <State Name> As <State Type> return <State Type> Ref is
4 begin
5 return <State Name> Ins tance ’ access ;
6 end Get <State Name> As <State Type >;
7
8 function Get <State Name> As <State SuperClass Type>
9 return <State SuperClass Type> Ref is

10 begin
11 return <State Name> Ins tance ’ access ;
12 end Get <State Name> As <State SuperClass Type >;
13 −− end f o r each
14
15 procedure F u l f i l l R I
16 (<State Name1> <S t a t e A t t r i b u t e 1> : <OPCS Type 1> Ref ;
17 −− . . .
18 <State Name1> <Sta te A t t r i bu teM> : <OPCS Type M> Ref ;
19 −− . . .
20 <State NameN> <S t a t e A t t r i b u t e 1> : <OPCS Type S> Ref ;
21 −− . . .
22 <State NameN> <S ta t e A t t r i b u te K> : <OPCS Type T> Ref ) is
23 begin
24 <State Name1> I ns tance . Set <S t a t e A t t r i b u t e 1> (<At t r i bu te Va lue >);
25 −− . . .
26 <State Name1> I ns tance . Set <Sta te A t t r i bu teM> (<At t r i bu te Va lue >);
27 −− . . .
28 <State NameN> I ns tance . Set <S t a t e A t t r i b u t e 1> (<At t r i bu te Va lue >);
29 <State NameN> I ns tance . Set <S ta t e A t t r i b u te K> (<At t r i bu te Va lue >);
30 end F u l f i l l R I ;
31 end <APLC Name> Fac tory

For each functional state we define a set of getters which return the embedded states of the APLC cast to the
applicable superclass as defined in the Functional View (whether a class or an interface).

Procedure Fulfill RI instead is used to set the class attributes of the functional states toward which the RI of the
APLC are directed. Procedure Set State Attribute is directly inherited from the OPCS superclass of the functional
state of interest (cf. lines 21-22 of listing 2.2). As a result of the execution of procedure Fulfill RI the APLC for
which it was invoked will be bound, correctly and exclusively, to the desired RI.
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Listing 3.6: Initialization of an APLC instance

1 package body <Node Name>.<Part i t ion Name> is
2 procedure I n i t i a l i z e is
3 begin
4 −− For each APLC wi th non−vo id RI
5 <APLC Instance Name>. F u l f i l l R I
6 (<State Name> <S t a t e A t t r i b u t e> =>
7 <OPCS Type> Ref
8 (<APLC Istance Name>.Get <State Name> As <OPCS Type> ) ) ;
9 end I n i t i a l i z e ;

10 end <Node Name>.<Part i t ion Name >;

In the initialization code of the partition, procedure Fulfill RI assigns the functional state attributes of each
resident APLC a reference to the APLC instance that satisfies the RI. The reference is cast to the <OPCS Type>
specified by the signature of the PI that has been bound to the RI of interest, in order that all functional calls be
eventually treated as they were meant in the Functional View.
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Chapter 4

An Illustrative Example

In order to shed more light on the operational aspects of the code generation strategy we shall use a simple example
as a case study. We will model a tiny system composed of a producer and a consumer.

The Functional View of the system, which specifies the sequential behaviour of the system will be as follows:

Figure 4.1: Case study: Functional View

Operation Produce requires to invoke operation Consume. The required call is performed on a reference to
interface IConsumer. Operation SkipAndCheck requires to invoke operation Check. The required call is performed
on a reference to class StatusChecker.

Let us now briefly examine some fragments of code generated for the Functional View of the example:
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Listing 4.1: Definition of type Producer

1 type Producer is new Con t ro l l ed and IProducers . IProducer with record
2 i c : IConsumers . IConsumer Ref ;
3 sc : StatusCheckers . StatusChecker Ref ;
4 end record ;

Class Producer implements interface IProducer and contains references to an object that implements the ICon-
sumer interface and the StatusChecker class respectively.

Listing 4.2: Class members of Producer

1 procedure SkipAndCheck ( This : in out Producer ) is
2 −− Invoked RI
3 −−+ sc . Check : 1 i nvoca t i on
4 begin
5 −− User−def ined code here
6 P r i n t ( ” Producer#SkipAndCheck ” ) ;
7 This . sc . Check ;
8 end SkipAndCheck ;
9

10 procedure Produce ( This : in out Producer ) is
11 use Datas ;
12 −− Invoked RI
13 −−+ i c . Consume : 1 invoca t i on
14 begin
15 −− User−def ined code here−−
16 P r i n t ( ” Producer#Produce ” ) ;
17 This . i c . Consume ( Data Defau l t Va lue ) ;
18 end Produce ;

Looking at the code generated for methods Produce and SkipAndCheck of class Producer, we observe that the
invocation on the respective RI simply consists of a call to the applicable methods of the relevant appropriate class
member of IConsumer and Producer respectively.

Now let us design the APLC for the example system.
We want APLC ProducerAP to embed a functional state typed to class Producer and a functional state typed

to class StatusChecker. The PI and RI of that APLC are automatically derived from the applicable specifications
in the Functional View. APLC ConsumerAP instead embeds a functional state typed to class Consumer. We
complete the modeling of the example system by specifying the desired concurrent behaviour of the PI (and RI) of
each APLC.

We stipulate that operation Produce of APLC ProducerAP must be performed cyclically. We also allow that
clients of APLC ProducerAP can issue deferred requests for the execution of operation SkipAndCheck. Now, since
PI operation SkipAndCheck invokes operation Check, which also is published as a PI of the same APLC, we must
protect the execution of operation Check against concurrent invocations. synchronization protocol. We complete
the design of the Interface View by requiring operation Consume published in the PI of APLC ConsumerAP to
have a sporadic behavior.
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Figure 4.2: Case study: APLC types

In figure 4.3 we create a single instance of each APLC defined in the system. We then interconnect RI Consume
of APLC instance ProducerAP Inst to PI Consume of APLC instance ConsumerAP Inst. The interconnection is
permissible because the profile of the RI and the corresponding PI are compatible. Thanks to this interconnection,
the RI of ProducerAP Inst is satisfied and thus that APLC instance can fully and correctly discharge its func-
tional obligations toward the system. The only other interconnection in the system is traced between RI Check in
ProducerAP Inst (required by operation SkipAndCheck) published in the PI of the same APLC instance) and PI
Check subsumed by the incorporation of class StatusChecker in ProducerAP Inst. We had seen that already when
specifying APLC type ProducerAP.

After transformation, the following set of VMLC is generated:

• a cyclic VMLC with a modifiers for ProducerAP Inst, with Produce as the nominal operation and SkipAnd-
Check as the modifier;

• a protected VMLC for ProducerAP Inst, with Check in its PI;

• a sporadic VMLC for ConsumerAP Inst, with Consume as the nominal operation.

We can now follow the delegation chain from the PI of ProducerAP Inst down to the VMLC embedded in its
implementation. The specification of ProducerAP two new types are defined:
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Figure 4.3: Case study: APLC instances

Listing 4.3: Definition of Functional States

1 −− i n the s p e c i f i c a t i o n o f ProducerAP
2 type p1 T is new Producers . Producer with record
3 SkipAndCheck 0 Ref : access procedure ;
4 end record ;
5
6 overriding
7 procedure SkipAndCheck ( This : in out p1 T ) ;
8
9 type sc1 T is new StatusCheckers . StatusChecker with record

10 Check 0 Ref : access procedure ;
11 end record ;
12
13 overriding
14 procedure Check ( This : in out sc1 T ) ;

The PI of ProducerAP can then expose procedures that are an indirection to the access procedure types just
defined. For example:

Listing 4.4: Implementation of an operation in the PI of ProducerAP

1 −− i n the body of ProducerAP
2 procedure SkipAndCheck ( This : in out p1 T ) is
3 begin
4 This . SkipAndCheck 0 Ref . a l l ;
5 end SkipAndCheck ;
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Let us now focus on the definition of the cyclic VMLC embedded in the implementation of ProducerAP Inst.

Listing 4.5: Definition of cyclic VMLC embedded in ProducerAP Inst

1 −− i n the s p e c i f i c a t i o n o f Cyc l i c VMLC p1 Produce cyc l i c
2 procedure SkipAndCheck ;
3
4 overriding
5 procedure My OPCS ( Se l f : in out SkipAndCheck Param T ) ;
6
7 −− i n the body of p1 Produce cyc l i c
8 procedure My OPCS ( Se l f : in out SkipAndCheck Param T ) is
9 begin

10 Se l f . OPCS Instance . SkipAndCheck ;
11 Se l f . In Use := False ;
12 end My OPCS;
13
14 procedure Get ter (Req : out Request Descr ip tor T ) is
15 begin
16 Pro toco l . Get Request (Req ) ;
17 end Get ter ;
18
19 procedure Cyc l i c Opera t ion is
20 begin
21 OPCS Instance . Produce ;
22 end Cyc l i c Opera t ion ;
23
24 procedure SkipAndCheck is
25 begin
26 Pro toco l . SkipAndCheck ;
27 end SkipAndCheck ;
28
29 package My Cycl ic Task is new Cyclic Task ATC ( Cyc l i c Opera t ion , Get te r ) ;

When procedure SkipAndCheck in the PI of the VMLC is called, it performs a call indirection to the OBCS
(Protocol) where the posting of the request takes place.

Procedures Getter and Cyclic Operation are first defined and then passed as instantiation parameters to the
Cyclic Thread with modifier that we have seen included in the shared library of archetypes (cf. section 2.2.2). If
Getter fetches from the OBCS (Protocol) and returns a request descriptor with ATC REQ tag the Thread executes
procedure My OPCS, which resolves in OPCS Instance to the modifier operation SkipAndCheck that was passed
as an actual parameter to the instantiation of the VMLC. If Getter returns a NO REQ descriptor instead, the Thread
executes procedure Cyclic Operation.

In order to have a complete overview of the full call chain of the PI of ProducerAP we must understand how
the link between the PI of the APLC and the PI of the VMLC embedded in it are set up. In other words, we have
to understand the principles of the delegation chain as realized by the code generation rules.

The delegation chain in question is established in the package body that implements ProducerAP.
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Listing 4.6: APLC PI delegation to VMLC PI

1 package ProducerAP
2 −− code omi t ted
3 package body ProducerAP Factory is
4 −− code omi t ted
5 begin
6 p1 Instance . SkipAndCheck 0 Ref :=
7 My p1 Produce Cycl ic Conta iner . SkipAndCheck ’ access ;
8 sc1 Ins tance . Check 0 Ref :=
9 My sc1 Protected Conta iner . Check ’ access ;

10 −− code omi t ted
11 end ProducerAP Factory ;
12 end ProducerAP ;

The reader can now appreciate that when calling operation ProducerAP.SkipAndCheck an indirection to the
procedure pointed by access pointer p1 Instance.SkipAndCheck 0 Ref occurs. That pointer is assigned to proce-
dure SkipAndCheck of the Cyclic VMLC with modifier, which in turn redirects the call to the OBCS of the VMLC,
where the invocation request is reified and stored.

Next we want to show how an APLC instance can issue calls to its own RI. In other words, we wan to understand
how instances are informed about which APLC instance satisfies their RI. In this way we will appreciate the
differences in the handling of the case in which the RI operation is satisfied by a PI operation published by the
issuing or a distinct APLC.

Let us commence by examining the declaration of APLC instances as it is realized in the initialization code
generated for the partition where they are deployed on:

Listing 4.7: Initialization code (with example values)

1 −− In the i n i t i a l i z a t i o n code of the p a r t i t i o n o f res idence ( spec )
2 package ProducerAP Inst is new
3 ProducerAP . ProducerAP Factory
4 ( My ID => Deployment .Map. ProducerAP Inst ,
5 p1 Produce Cyc l i c Th read Pr io r i t y => 1 ,
6 p1 Produce Cyc l ic Obcs Cei l ing => 1 ,
7 p1 Produce Cyc l ic Per iod => 4 000 ,
8 sc1 Pro tec ted Ce i l i ng => 1 ) ;
9

10 package ConsumerAP Inst is new
11 ConsumerAP . ConsumerAP Factory
12 ( y ID => Deployment .Map. ConsumerAP Inst ,
13 c1 Consume Sporadic Thread Pr ior i ty => 2 ,
14 c1 Consume Sporadic Obcs Ceil ing => 2 ,
15 c1 Consume Sporadic MIAT => 2 000 ) ;
16
17 −− In the i n i t i a l i z a t i o n code of the p a r t i t i o n o f res idence ( body )
18 procedure I n i t i a l i z e is
19 begin
20 ProducerAP Inst . F u l f i l l R I
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21 ( p1 i c => IConsumers . IConsumer Ref
22 ( ConsumerAP Inst . Get c1 as IConsumer ) ) ;
23 end I n i t i a l i z e ;

The istantiation is straightforward and contains all parameters required by the APLC type. The RI of Produc-
erAP Inst is satisfied by providing the reference to ConsumerAP Inst.

Procedure Fulfill RI is defined in the body of ProducerAP.

Listing 4.8: Procedure Fulfill RI

1 −− i n Producer APLC ( body )
2 procedure F u l f i l l R I ( p1 i c : IConsumers . IConsumer Ref ) is
3 begin
4 p1 Instance . S e t i c ( p1 i c ) ;
5 end F u l f i l l R I ;

Procedure Set ic simply sets the reference to IConsumer Ref to which invocations of the RI operation have to
be directed.

Listing 4.9: The Setter procedure that binds the target of RI invocations

1 −− i n the body of type Producer ( f u n c t i o n a l s p e c i f i c a t i o n ) .
2 procedure S e t i c ( This : in out Producers . Producer ;
3 v : IConsumers . IConsumer Ref ) is
4 begin
5 i f This . i c = nul l then
6 This . i c := v ;
7 end i f ;
8 end S e t i c ;

At this point we have returned to the functional specification from which where our example begun. We should
now therefore fully understand that in the implementation of operation Produce which we saw in listing 4.2,
member ic (line 13 in that listing) is a reference to a specific APLC instance, ConsumerAP Inst in this particular
case. This implies that This.ic.Consume is a call to the PI of ConsumerAP, which is in turn resolved to the
appropriate delegation chain.

Let us now look at how the RI for operation Check is satisfied. A link was set at APLC type level which satisfies
the RI with an operation of the same APLC. That condition is reflected directly in the definition of the APLC type,
as follows:

Listing 4.10: Intra-component RI/PI binding

1 package ProducerAP is
2 −− code omi t ted
3 package body ProducerAP Factory is
4 −−code omi t ted
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5 begin
6 −− code omi t ted
7 sc1 Ins tance . Check 0 Ref := My sc1 Protected Conta iner . Check ’ access ;
8 p1 Instance . Set sc ( sc1 Instance ’ access ) ;
9 end ProducerAP Factory ;

10 end ProducerAP ;

This setting implies that even if operation Check is actually satisfied by a PI of the APLC of belonging, it is subject
to the appropriate concurrent semantics (protected concurrent kind in the case in question).

We may finally follow the delegation chain of RI invocation This.ic.Consume made at line 17 in listing 4.2.

Listing 4.11: Definition of functional state c1 T for the Consumer class

1 type c1 T is new Consumers . Consumer with record
2 Consume 1 Ref : access procedure ( d : in Datas . Data ) ;
3 end record ;
4
5 overriding
6 procedure Consume ( This : in out c1 T ; d : in Datas . Data ) ;

In listing 4.11 we show the definition of the functional state for the Consumer class in the specification of
APLC ConsumerAP.

Listing 4.12: Implementation of the Consumer AP (code omitted)

1 package body ConsumerAP is
2 procedure Consume ( This : in out c1 T ;
3 d : in Datas . Data ) is
4 begin
5 This . Consume 1 Ref . a l l ( d ) ;
6 end Consume ;
7
8 package body ConsumerAP Factory is
9 c1 Ins tance : aliased c1 T ;

10
11 package My c1 Consume Sporadic Container is new
12 c1 Consume Sporadic . c1 Consume Sporadic Factory
13 ( My ID => Deployment .Map. ConsumerAP APLC To VMLC ( My ID )
14 ( Deployment .Map. My c1 Consume Sporadic ) ,
15 T h r e a d P r i o r i t y => c1 Consume Sporadic Thread Pr ior i ty ,
16 C e i l i n g => c1 Consume Sporadic Obcs Ceil ing ,
17 MIAT=> c1 Consume Sporadic MIAT ,
18 OPCS Instance => Consumers . Consumer ( c1 Ins tance ) ’ access ) ;
19
20 function Get c1 As IConsumer return IConsumers . IConsumer Ref is
21 begin
22 return c1 Instance ’ access ;
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23 end Get c1 As IConsumer ;
24
25 begin
26 c1 Ins tance . Consume 1 Ref :=
27 My c1 Consume Sporadic Container . Consume ’ access ;
28 end ConsumerAP Factory ;
29 end ConsumerAP ;

The overriden operation Consume at lines 2-6 in listing 4.12 uses an access procedure to perform a delegation to
the PI of the implementing Sporadic VMLC (My c1 Consume Sporadic Container, lines 11-18). The instantiation
parameters of the VMLC at lines 13-18 are the instantiation parameters of the instance of ConsumerAP as we saw
them at lines 12-15 of listing 4.7.

Listing 4.13: Implementation of the Consumer Sporadic VMLC (code omitted)

1 package body c1 Consume Sporadic is
2 procedure My OPCS ( Se l f : in out consume Param T ) is
3 begin
4 Se l f . OPCS Instance . Consume ( Se l f . d ) ;
5 Se l f . In Use := False ;
6 end My OPCS;
7
8 protected body OBCS is
9 procedure Update Bar r ie r is

10 begin
11 Pending := ( Obcs Queue . Pending > 0 ) ;
12 end Update Bar r ie r ;
13
14 entry Get Request (Req : out Request Descr ip tor T ;
15 Release : out Time ) when Pending is
16 begin
17 Release := Clock ;
18 Get ( Obcs Queue , Req ) ;
19 Update Bar r ie r ;
20 end Get Request ;
21
22 procedure Consume ( d : in Datas . Data ) is
23 begin
24 i f Consume Params . Bu f fe r ( Consume Params . Index ) . In Use then
25 Increase Index ( Consume Params ) ;
26 end i f ;
27 Consume Param T Ref ( Consume Params . Bu f fe r
28 ( Consume Params . Index ) ) . d := d ;
29 Put ( Obcs Queue ,
30 START REQ,
31 Consume Params . Bu f fe r ( Consume Params . Index ) ) ;
32 Increase Index ( Consume Params ) ;
33 Update Bar r ie r ;
34 end Consume ;
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35 end OBCS;
36
37 package body c1 Consume Sporadic Factory is
38 −− code omi t ted
39 Pro toco l : aliased OBCS ( Ce i l i ng ,
40 Consume Ref Par Arr ’ access ) ;
41 procedure Get ter (Req : out Request Descr ip tor T ;
42 Release : out Time ) is
43 begin
44 Pro toco l . Get Request (Req , Release ) ;
45 end Get ter ;
46
47 package My Sporadic Task is new Sporadic Task ( Get ter ) ;
48 Thread : My Sporadic Task . Thread T ( Th read Pr i o r i t y , MIAT ) ;
49
50 procedure Consume ( d : in Datas . Data ) is
51 begin
52 Pro toco l . Consume ( d ) ;
53 end Consume ;
54 end c1 Consume Sporadic Factory ;
55 end c1 Consume Sporadic ;

Operation Consume (lines 50-54 of listing 4.13) in the PI of the Sporadic VMLC is simply an indirection to
the operation by the same name in the OBCS at line 22-34. That operation uses reification: parameterd of the
invocation is stored in the parameter buffer (lines 27-28) at the appropriate index (Consume Params.Index) and
it is then put in the OBCS circular buffer (lines 29-31). At its next activation, the sporadic Thread will invoke
procedure Getter (cf. line 19 of listing 2.7) which is redirected to the entry of the OBCS (lines 14-20 of listing
4.13).

For the sake of simplicity, suppose that there are no further invocations after the one we are analysing. Barrier
Pending is opened, since the OBCS queue holds one execution request. Procedure Get of the OBCS constructs
a request descriptor using the stored parameter buffer (lines 46-47 in listing 2.9) and updates the Self.Pending
variable (line 57 in the same listing) which is used for the barrier of the OBCS.

When returning from procedure Get (line 18 of listing 4.13), out parameter Req contains the parameter buffer
in which the parameters of the original invocation are stored. When the sporadic Thread will access the request
parameters (line 19 in listing 2.7), it invokes procedure My OPCS of the sporadic VMLC using the parameters
buffer of the original invocation (lines 27-28 of listing 4.13). Finally, procedure My OPCS extracts parameter d
of the original invocation (Self.d at line 4 in listing 4.13) and uses it in the invocation of operation Consume on
OPCS Instance where the sequential behaviour of the system is defined (procedure Consumer.Consume (d : Data)
in that particular case).
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Chapter 5

Open Issues

Functional behaviour of the OBCS. In the current code generation strategy the sporadic OBCS embeds two
separate queues for incoming requests: one queue accepts START requests, that is to say, requests of execution
for the nominal operation; the other accepts ATC requests, that is to say, requests of execution for any modifier
operation published in the PI.

This choice is made in accordance with the original concept of a sporadic operation as it derives from HRT-
HOOD, the modeling language from which RCM strongly inherits. To better understand that concept, we should
look back at analogous concept of cyclic operation with modifiers.

A cyclic VMLC exposes a (private) cyclic operation and zero or more modifier operations; for our discussion,
the case that matters is when the PI includes at least one modifier operation. The behavior of the cyclic VMLC
prescribes that the Thread cyclically executes an operation. If a request for a modifier operation has been posted
in the OBCS of the cyclic VMLC, then at the subsequent activation the Thread will execute the modifier operation
in preference to the nominal one. In this situation it is evident that the modifier operation is considered more
important than the nominal operation, and as such it is executed in preference. A consequence of this behaviour is
that if there should be a continuous inbound flow of ATC invocation requests, then the VMLC would continue to
service them requests and would consequently skip the execution of the nominal operation.

Let us now complete the analogy with the sporadic VMLC. The sporadic VMLC exposes a nominal sporadic
operation and zero or more modifier operations. As in the previous case, we are interested in a situation with one
or more modifier operations published in the PI of the VMLC. The functional behaviour of the sporadic OBCS
illustrated in section 2.2.4) shows that requests for START operation can be executed only if there are no pending
ATC requests. This behavior mirrors that of the Cyclic VMLC. This situation however is more delicate. If in fact
a continuous inbound flow of requests for modifier operations was directed to a Sporadic VMLC, then all pending
requests for nominal sporadic operations would run the risk of starvation. As modifier operations are considered
more important, they are always executed first: it is then possible that nominal sporadic operations are delayed
indefinitely.

Again, this situation derives from the HRT-HOOD inheritance. However, it is possible that for some system
this specific behaviour is not appropriate, since the designer may want to design cohesive operations that have the
same ”implicit importance” or urgency. The sporadic VMLC instead always induces potential starvation in the
nominal operation because it is considered implicitely ”less important” or ”less urgent”.

To remedy this situation and avoid the risk of starvation a more complex synchronization agent is required
for Threaded VMLC. The current implementation of the OBCS is rather simple and future work on RCM code
generation shall consider suitable protocol extensions.
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Code generation of APLC. The current mapping for APLC has a number of advantages. The concept of APLC
is easy to recognize, as the designer views it at model level and retrieves in the generated code. This mapping
strategy also succesfully renders the dichotomy between APLC types and instances. VMLC instances are instanti-
ated inside APLC instances, together with OPCS (which can be shared and used by multiple VMLC). The use of a
package, coupled with an inner generic package is used to declare types in the main package and instantiate them
in the generic package, thereby avoiding code duplication.

The current mapping was deemed the most appropriate since the generated code should also comply with the
constraints of the Ada Ravenscar Profile (RP) [BDR98]. In particular, the restriction:

1 pragma R e s t r i c t i o n s ( N o I m p l i c i t H e a p A l l o c a t i o n ) ;

severely limits the feasibility of other possible approaches (use of record types for example).
Some problems exist with this strategy however, which should be addressed in future work. The rigid enforce-

ment of the separation of concerns principle has been realized with massive use of dynamic binding. In some
situations the use of dynamic binding could be avoided. Consider that for each functional class there is always a
derived class (the functional state) that is used to enforce the desired concurrent semantics. This derived class is
always created and used even when it is not strictly required.

Figure 5.1: Example entailing the deadlock problem

Deadlock in Protected VMLC. Suppose we are in the situation depicted in figure 5.1. The APLC is imple-
mented by a single Protected VMLC that exposes operations op1 and op2 in its PI. Now suppose that the execution
of op2 calls op1 in of the same Protected VMLC.

In the current code generation strategy the call to op2 is resolved as follows:

• the operation is subject to the Ceiling Locking Policy of the protected object;

• when the flow of control executing op2 enters the protected object, an indirection to the OPCS is performed;

• a call to op1 is performed, using dynamic dispatching, inside the OPCS of op2;

• the flow of control tries to acquire again the lock to the protected object that it already possess, which incurs
a deadlock. The reason why deadlock occurs is that the code generator uses a call indirection mechanism
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which causes the call to op2 to be prefixed as if it were performed from outside of the protected object which
was the point of call, and thus outside of the control of the Ceiling Locking Policy.

A revision of the code generation strategy should recognise the case that op1 is published by the PI of the same
protected VMLC as the caller, and so that the call should be readily redirected to the OPCS without passing from
the PI of the VMLC (which obviously guarantees the intended concurrent semantics). It is important to notice that
this is not a limit of RCM, but simply of the current code generation.

It is equally important to also observe that HRT-UML/RCM, in obedience to the general principle of high-
integrity systems to ban direct and indirect recursion, prohibits the formation of cycles in call chains in the Interface
View; a call chain starts at a deferred operation (i.e., one that is marked either sporadic, cyclic or modifier) and
ends at an operation with either a void RI or an RI satisfied by a deferred PI. The check to assure the absence of
such call cycles is performed both whenever a new RI-to-PI link is traced and when the user wishes to commit the
system model.
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Appendix A

Extended Thread Archetypes

In the body of this report we have shown source code in which all constructs devoted to support execution-time
monitoring and handling of violation events were omitted. The simplification was meant to let the reader concen-
trate on the most important concepts of the code generation. Execution-time monitoring and handling of violation
events are very important features to the guarantee of property preservation from model to execution.

In this appendix we briefly outline the constructs that are used for execution-time monitoring. The archetypes
of the cyclic and sporadic Threads obviousy need to be augmented. We shall only examine the archetype of the
sporadic Thread, since the extension of the cyclic Thread follows by analogy.

Listing A.1: Archetype for the Sporadic Thread comprehensive of WCET monitoring (impementation)

1 package body Sporadic Task is
2 task body Thread T is
3 Req Desc : Request Descr ip tor T ;
4 Next Time : Time := System Start Time + Task Ac t i va t ion De lay ;
5 Release : Time ;
6 Id : aliased Task Id := Current Task ;
7 WCET Timer : Timer ( Id ’ Access ) ;
8 I t e r a t i o n : I n tege r := 0 ;
9 begin

10 loop
11 delay u n t i l Next Time ;
12 Get Request ( Req Desc , Release ) ;
13 Set Handler ( WCET Timer ,
14 Mi l l i seconds ( Req Desc . Params .WCET) ,
15 WCET Violat ion Handler ) ;
16 case Req Desc . Request is
17 when ATC REQ | START REQ =>
18 My OPCS ( Req Desc . Params . a l l , Release , I t e r a t i o n ) ;
19 when NO REQ =>
20 −− i n t e n t i o n a l i d l i n g
21 when others =>
22 −− e r r o r handl ing
23 end case ;
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24 I t e r a t i o n := I t e r a t i o n + 1;
25 Next Time := Release + Mi l l i seconds ( I n t e r v a l ) ;
26 end loop ;
27 end Thread T ;
28 end Sporadic Task ;

In order to monitor the execution time, we use Execution Time Timers, a novel feature of the Ada 2005 lan-
guage. In the task body we declare an Execution Time Timer (line 7) that measures the execution time consumed
by the thread to which it is attached. Timer managament is done via procedure Set Handler (lines 13-15), which
specified the maximum execution time that the thread is allowed to consume and the action to perform in case that
limit was exceeded (WCET Violation Handler). Handler procedure WCET Violation Handler is to be specified as
an instantiation parameter of the generic unit in which the archetype of the Thread resides (see listing A.2). Proce-
dure Set Handler monitors the execution of the Thread operation. (The current placement assumes a single WCET
value for all nominal and modifier operations. Should the actual values differ significantly, the code archetype
should change accordingly and Set Handler set in each corresponding branch of the case structure.) To this end,
the maximum execution time that can be consumed by the current activation (which depends on the operation
actually invoked), the request descriptor should be augmented to include the contractual WCET stipulation (line
14).

Listing A.2: Archetype for the Sporadic Thread comprehensive of WCET monitoring (specification)

1 generic
2 with procedure Get Request (Req : out Request Descr ip tor T ;
3 Release : out Time ) ;
4 package Sporadic Task is
5 task type Thread T
6 ( T h r e a d P r i o r i t y : A n y P r i o r i t y ;
7 I n t e r v a l : I n tege r ;
8 WCET Violat ion Handler : Timer Handler ) is
9 pragma P r i o r i t y ( T h r e a d P r i o r i t y ) ;

10 end Thread T ;
11 end Sporadic Task ;

VMLC extensions. The following listing shows an example of sporadic VMLC that includes execution-time
monitoring and handling of violations.

Listing A.3: Example of sporadic VMLC with WCET enforcement (with omitted code)

1 package body c1 Consume Sporadic is
2 −− code omi t ted
3 protected body OBCS is
4 procedure Update Bar r ie r is
5 begin
6 Pending := ( Obcs Queue . Pending > 0) and My Mode ;
7 end Update Bar r ie r ;
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8
9 entry Get Request (Req : out Request Descr ip tor T ;

10 Release : out Time ) when Pending is
11 begin
12 Release := Clock ;
13 Get ( Obcs Queue , Req ) ;
14 Update Bar r ie r ;
15 end Get Request ;
16
17 procedure Switch To Safe Mode is
18 begin
19 My Mode := True ;
20 Update Bar r ie r ;
21 end Switch To Safe Mode ;
22
23 −− code omi t ted
24 end OBCS;
25
26 package body c1 Consume Sporadic Factory is
27 −− code omi t ted
28 Thread : My Sporadic Task . Thread T
29 ( Th read Pr i o r i t y ,
30 MIAT ,
31 Ins tances . WCET Handlers ( Deployment . VM Table ( My ID ) ) ) ;
32
33 procedure Switch To Safe Mode is
34 begin
35 Pro toco l . Switch To Safe Mode ;
36 end Switch To Safe Mode ;
37
38 −− code omi t ted
39 end c1 Consume Sporadic Factory ;
40 end c1 Consume Sporadic ;

Line 29-31 instantiate the Thread augmented with WCET enforcement. The specific WCET Violation handler
procedure passed as the generic instantiation parameter is specified in the deployment information of the system.

For the time being, the policy to handling WCET violations is to set in ”safe mode” the partition of residence
of the offending task. In ”safe mode” all threaded VMLC of the partition are set to the ”safe mode”: the WCET
handler calls procedure Switch To Safe Mode (line 33), which in turn calls the Switch To Safe Mode procedure
of the OBCS (line 17).

In the current code generation, the strategy for handling of WCET overruns is intentionally kept rather simple.
Future work shall devise more powerful policies, most probably taking advantage of extensions of the OBCS
protocol, that was briefly mentioned in section 5.
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