
software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 1

THE CORDET FRAMEWORKS
Domain Design

Prepared by P&P Software GmbH
for the Study on Component Oriented Development Techniques

(ESA-Estec Contract 20463/06/NL/JD)

Written By: A. Pasetti

O. Rohlik

Date: 12 September 2008

Issue: 1.2

Reference: PP-FW-COR-0002

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 2

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 3

Table of Contents
1 GLOSSARY AND ACRONYMS...5
2 REFERENCES..7
3 INTRODUCTION...9

3.1 Objectives Of The CORDET Study...9
3.2 Objective Of This Document..9
3.3 Design Model Structure..10
3.4 Design Files..10
3.5 Terminology...11
3.6 Structure Of This Document..11

4 GENERAL DESIGN ISSUES...12
4.1 Naming Conventions..12
4.2 Classes and Interfaces..13
4.3 Primitive Types..14
4.4 Mapping to UML2 Elements..14

5 DH FRAMEWORK ARCHITECTURE...19
5.1 Target Domain..19
5.2 Design Heritage..20
5.3 Design Pattern Heritage..21
5.4 High-Level Functions...21
5.5 Telecommanding Function...21
5.6 Telemetry Function..23
5.7 Initialization and Configuration Function...24

6 DH FRAMEWORK – DOMAIN DICTIONARY MAPPING..26
6.1 Mapping of Dictionary Entries for Telecommand Concept..26
6.2 Mapping of Dictionary Entries for Telemetry Concept..27

7 DH FRAMEWORK – MAPPING OF SHARED PROPERTIES..29
7.1 Shared Properties for Telecommand Concept..29

7.1.1 Telecommand Execution...29
7.1.2 Telecommand Management...31
7.1.3 Telecommand Loading..31

7.2 Shared Properties for Telemetry Concept...32
7.2.1 Telemetry Packet Configuration..32
7.2.2 Telemetry Packets Execution..32
7.2.3 Telemetry Packet Management...33

8 DH FRAMEWORK – MAPPING OF FACTORS OF VARIATION...................................34
8.1 Attributes as Factors of Variation...34
8.2 Factors of Variation for Telecommand Concept..34
8.3 Factors of Variation for Telecommand Loading Concept..36
8.4 Factors of Variation for Telecommand Stream Concept..37
8.5 Factors of Variation for Telemetry Concept...37
8.6 Factors of Variation for Telemetry Stream Concept...38

9 CONTROL FRAMEWORK – UML2 MODEL ARCHITECTURE39
9.1 Target Domain..39
9.2 Design Pattern Heritage..39
9.3 High-Level Functions...40
9.4 Activity Management Function..40

10 CONTROL FRAMEWORK – DOMAIN DICTIONARY MAPPING...............................42
10.1 Mapping of Domain Dictionary Entries for Activity Concept......................................42

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 4

10.2 Mapping of Domain Dictionary Entries for Mode Management Concept....................42
10.3 Domain Dictionary Entries for Parameter Database Concept.......................................43
10.4 Domain Dictionary Entries for Data Pool Concept..44

11 CONTROL FRAMEWORK – MAPPING OF SHARED PROPERTIES...........................45
11.1 Shared Properties for Activity Concept..45

11.1.1 Activity Initialization Properties..45
11.1.2 Activity Execution...45
11.1.3 Holding and Resuming Activities..46
11.1.4 Enabling and Disabling of Activities...46

11.2 Shared Properties for Mode Management Concept..46
11.2.1 Activity Manager Activation...47
11.2.2 Current Operational Mode Changes..47

11.3 Shared Properties for Parameter Database Concept...48
11.4 Shared Properties for Data Pool Concept...48

12 CONTROL FRAMEWORK – FACTORS OF VARIATION...49
12.1 Attributes as Factors of Variation...49
12.2 Factors of Variation for Activity Concept..49
12.3 Factors of Variation for Mode Management Concept..51
12.4 Factors of Variation for Data Pool Concept...52

13 CONTROL FRAMEWORK – ACTIVITY EXAMPLES...53
13.1 The HealthCheck Activity..53
13.2 The Manoeuvre Activity...54

14 DATA POOL AND PARAMETER DATABASE META-MODEL...................................56
14.1 Data Pool Meta-Model...57
14.2 Parameter Database Meta-Model...58
14.3 Framework Configuration File...59

14.3.1 Data Pool Meta-Model Mapping...60
14.3.2 Parameter Database Meta-Model Mapping...61
14.3.3 Other Configuration Information...62

14.4 Code Generator for Data Pool and Parameter Database...64

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 5

1 GLOSSARY AND ACRONYMS
The table defines the most important technical terms and abbreviations used in this document.

Term Short Definition
Abstract Interface A definition of the signature and semantics of a set of logically related operations

without any implementation details.
AOCS The Attitude and Orbit Control Subsystem of satellites.
Control Framework A framework covering the AOCS subsystem (one of the two frameworks presented

in this document).
Application A software program that can be deployed and run as a single executable.
Application Instantiation The process whereby a component-based application is constructed by configuring

and linking individual components.
Component A unit of binary reuse that exposes one or more interfaces and that is seen by its

clients only in terms of these interfaces.
Component-Based
Framework

A software framework that has components as its building blocks.

Computational Node A computational resource that has memory and processing capabilities.
CORBA A widely used middleware infrastructure.
Design Pattern A description of an abstract design solution for a common .
DH Data Handling (one of the functional subsystems of an on-board system).
DH Framework A framework covering the DH subsystem (one of the two frameworks presented in

this document).
Domain A short-hand for either 'family domain' or 'framework domain'.
DSL Domain Specific Language (a language that is created to describe applications or

components in a very narrow domain).
DTD Document Type Definition. It defines the legal building blocks of an XML

document. It defines the document structure with a list of legal elements. Its purpose
is similar to the one of an XML Schema, although it is not as feature rich and the
syntax is different.

EMF Eclipse Modelling Framework: a modeling framework and code generation facility
for building tools and other applications based on a structured data model.

Family Domain The set of systems whose implementation is supported by a system or product
family.

FDIR Failure Detection Isolation and Recovery.

Feature A characteristics of a system or an application that is relevant to its users.

Feature Model A description of a set of features and their legal combinations.

Framework Domain The set of applications whose implementation is supported by the framework.
Framework Instantiation The process whereby a framework is adapted to the needs of a specific application

within its domain.
Functional Property A property that can be expressed as a logical relationship among the variables that

define the state of an application or system.
Generative Programming A software engineering paradigm that promotes the automatic generation of an

implementation from a set of specifications.
Generic Architecture A set of reusable and adaptable software assets to support the instantiation of

systems within a certain target domain. In the CORDET project, a generic
architecture consists of a system family, to model the non-functional aspects of
systems in the architecture's target domain, and a set of software frameworks, to
model their functional aspects. The objective of the CORDET Project is to define a
generic architecture for satellite on-board systems.

GNC Guidance Navigation and Control (a synonym for AOCS).
Interface An abstract specification of services to be provided by any concrete realisation of it.
JVM Java Virtual Machine.
Non-Functional Property A property other than a functional property.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 6

Object Oriented
Framework

A software framework that uses inheritance and object composition as its chief
adaptation mechanisms.

OBS The On-Board Software.
OBS Framework A prototype framework for on-board systems developed by P&P Software (see

[RD18]).
OtM Adaptability Outside-the-Model Adaptability. An adaptability mechanism that is defined outside

the UML2 model.
Product Family A set of applications or systems that can be built from a pool of shared assets.
Property Same as a 'feature' above.
Software Component A unit of binary reuse that exposes one or more interfaces and that is seen by its

clients only in terms of these interfaces.
Software Framework A kind of product family where the shared assets are software components

embedded within an architecture optimized for a certain domain and the 'product' is
a software application.

System A group of independent but interrelated hardware and software elements comprising
a unified whole.

System Family A kind of product family where the 'product' to be built using the reusable assets
provided by the family is the architectural infrastructure (the 'middleware') of a
complex system.

XML Extensible Markup Language. XML documents consist (mainly) of text and tags,
and the tags imply a tree structure upon the document. An XML document is said to
be valid if it conforms to an XML Schema or a DTD.

XML Schema The XML Schema language is also referred to as XML Schema Definition (XSD).
They provide a means for defining the structure, contents and semantics of XML
documents. XML Schemas are written in XML

WtM Adaptability Within-the-Model Adaptability Mechanism. An adaptability mechanism that is
defined within the UML2 model.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 7

2 REFERENCES

RD1 AOCS Framework Project Web Site,
control.ee.ethz.ch/~ceg/AocsFrameworkProject

RD2 RT Java AOCS Framework Project Web Site,
control.ee.ethz.ch/~ceg/RealTimeJavaFramework

RD3 Brauer (1999) Object Oriented Languages Study. Final Report for ESA contract
12889/NL/PA

RD4 Clemens P, Northrop L (2001) A Framework for Software Product Line Practice,
Software Engineering Institute, Carnegie Mellon University, Available from Internet
Web Site: www.sei.cmu.edu/activities/plp/framework.html

RD5 Donohoe P (ed), Software Product Lines – Experience and Research Directions,
Kluwer Academic Publisher

RD6 Fayad M, Schmidt D, R. Johnson R (eds), Building Application Frameworks –
Object Oriented Foundations of Framework Design, Wiley Computer Publishing,
1999

RD7 Gamma E, et al, Design Patterns – Elements of Reusable Object Oriented Software,
Addison-Wesley, Reading, Massachusetts

RD8 TimeSys Home Page, http://www.timesys.com/index.cfm
RD9 AERO Project Home Page, http://www.aero-project.org
RD10 Aicas Home Page, http://www.aicas.com
RD11 OBOSS Home Page, http://spd-web.terma.com/Projects/OBOSS/Home_Page/
RD12 Pasetti A, et al, An Object-Oriented Component-Based Framework for On-Board

Software, Proceedings of the Data Systems In Aerospace Conference, Nice, May
2001

RD13 Pasetti A., Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, 2001

RD14 Szyperski C, Component Software. Addison Wesley Longman Limited, Harrow
(UK), 1998

RD15 Czarnecki, K., Eisenecker, U.: Generative Programming – Methods, Tools, and
Applications, Addison-Wesley, 2000

RD16 Birrer I, Chevalley P, Pasetti A, Rohlik O, An Aspect Weaver for Qualifiable
Applications, Proceedings of the Data Systems in Aerospace (DASIA) Conference,
Nice 2004.

RD17 XWeaver Web Site: http://www.pnp-software.com/XWeaver
RD18 OBS Framework Web Site, http://www.pnp-software.com/ObsFramework
RD19 Introduction to Aspect Oriented Programming, http://www.pnp-

software.com/AspectOrientedProgramming.html
RD20 Birrer I, Pasetti A, Rohlik O, Implementing Adaptability in Embedded Software

through Aspect Programs, IEEE Proceedings of the Mechantronic & Robotics
Conference 2004, Aachen, Germany, Sept. 2004

RD21 Automated Framework Instantiation Project Web Site, http://www.pnp-
software.com/AutomatedFrameworkInstantiation

RD22 Cechticky V, Pasetti A, Rohlik O, Schaufelberger W, XML-Based Feature
Modelling, published in: J. Bosch, C. Kueger (eds), Software Reuse: Methods,

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 8

Techniques, and Tools, LNCS Vol 3107, Springer-Verlag, 2004
RD23 Cechticky V, Chevalley P, Pasetti A, Schaufelberger W, A Generative Approach to

Framework Instantiation, published in: F. Pfenning, Y. Smaragdakis (eds),
Generative Programming and Component Engineering, LNCS Vol 2830, Springer-
Verlag, 2003

RD24 ASSERT Project – HRI pilot project, Deliverable D6.3.1-1 : HRI System Family
Definition Report

RD25 ASSERT Project – HRI pilot project, Deliverable D6.3.2-1 : HRI Reference
Architecture Definition Report V1

RD26 C. Moreno, G. Garcia, Plug & Play architecture for on-board software components,
Proceedings of the DASIA 2002 conference, Nice 2002

RD27 ASSERT Project – ETH Deliverable D4.2.2-1 : Software Building Blocks
Adaptation Techniques – The FW Profile

RD28 ASSERT Project – ETH Deliverable D4.2.4-3 : Contribution to V2 Demonstrator
RD29 ASSERT Project – ETH Deliverable D4.2.4-4.1 : The ETH Demonstrator

Framework – Contribution to V3 Demonstrator, Part 1 (Domain Design)
RD30 ASSERT Project – ETH Deliverable D4.2.4-4.2 : The ETH Demonstrator

Framework – Contribution to V3 Demonstrator, Part 2 (Domain Implementation)
RD31 ASSERT Project – UPD Deliverable D3.1.1-3 : Catalogue of VM-level Containers
RD32 Egli M, Pasetti A, Rohlik O, Vardanega T, A UML2 Profile for Reusable and

Verifiable Real-Time Components, in: Morisio M (ed), Reuse of Off-The-Shelf
Components, LNCS Vol 4039, Springer-Verlag, 2006

RD33 ASSERT Project – ETH Deliverable D4.2.3-1 : Product Family Meta-Model
Definition – A Family Meta-Model for the XFeature Tool

RD34 GMV, Standard, Methods, and Tools Review for Domain Analysis and Domain
Design Execution, CORDET Deliverable GMV-CORDET-WP202-RP-01

RD35 P&P Software GmbH, The CORDET Methodology, CORDET Deliverable
Document PP-MR-COR-001, http://www.pnp-software.com/cordet

RD36 ECSS-E70-41A, Ground System and Operation – Telecommand and Telemetry
Packet Utilization, 30th January 2003

RD37 P&P Software GmbH, The CORDET Frameworks – Domain Analysis, CORDET
Deliverable Document PP-FW-COR-001, http://www.pnp-software.com/cordet

RD38 FW Profile Home Page, http://www.pnp-software.com/fwprofile

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 9

3 INTRODUCTION
This document is written as part of the ESA study on Component Oriented Development
Techniques or CORDET. The study is done under ESA contract 20463/06/NL/JD.

3.1 Objectives Of The CORDET Study
The general objective of the CORDET study is the definition of a generic architecture for on-
board satellite applications.

The term “generic architecture” is used to designate a set of reusable and adaptable software
assets to support the instantiation of systems within a certain target domain. In the CORDET
project, a generic architecture consists of a system family, to model the non-functional aspects
of systems in the architecture's target domain, and a set of software frameworks, to model their
functional aspects.

The terms “system family” and “software frameworks” are used to designate two kinds of
product families. A product family is a set of applications or systems that can be built from a
pool of shared assets. A system family is a kind of product family where the 'product' to be
built using the reusable assets provided by the family is the architectural infrastructure (the
'middleware') of a complex system. A software framework is a kind of product family where
the 'product' to be built is a software application and the shared assets are software
components embedded within an architecture optimized for a certain domain. The framework
thus provides the building blocks for the development of an application.

The generic architecture to be defined in this study is called the CORDET Generic
Architecture. The product families which constitute the CORDET Generic Architecture are
called the CORDET Product Families.

Against this background, the more specific objectives of the CORDET study are:

• To define a methodology for the development of the CORDET Generic Architecture
and, by implication, for product family-based development activities at both system-
and software-level for satellite on-board applications.

• To identify and to define at the level of their functional and non-functional interfaces
the product families that constitute the CORDET Generic Architecture.

• To demonstrate the proposed methodology and the proposed architecture by
instantiating a subset of its product families to build an end-to-end demonstrator of an
on-board system.

• To get feedback from the space community in order to reach as large an agreement as
possible on the outputs of the CORDET study.

The CORDET Methodology, covering the first of the four objectives listed above, is defined
in RD35. Familiarity with reference document RD35 is a pre-requisite for an appreciation of
the present document.

3.2 Objective Of This Document
The CORDET Methodology foresees that the CORDET Generic Architecture be split into a
functional and non-functional part and that each part be developed in three phases (domain
analysis, domain design, and domain implementation).

The present document covers the domain design phase for the functional part of the CORDET
Generic Architecture. The functional part of the CORDET Generic Architecture consists of a
set of software frameworks, one for each functional subsystem of an on-board system. This

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 10

document is concerned with the DH Framework, which covers the Data Handling (DH)
Subsystem, and with the Control Framework, which covers the Attitude and Orbit Control
(AOCS) Subsystem.

The results of the domain analysis phase for the CORDET Frameworks are presented in
RD-37. Familiarity with reference document RD-37 is a recommended pre-requisite for an
understanding of the present document.

The output of the domain design phase is a design model. This document presents the design
models for the DH and Control Frameworks of the CORDET Generic Architecture.

3.3 Design Model Structure
The CORDET Methodology in RD-35 identifies five possible forms of family-level design
models. The CORDET Frameworks use two of these five forms: the single-model form, and
the meta-model form.

The design model of the DH Framework takes the form of a single UML2 model. This model
covers all the functional properties and factors of variations specified in the domain model of
the DH Framework in RD-37.

The design model of the Control Framework is split into two parts. The first part consists of a
single UML2 model. This model covers the functional properties and factors of variations
specified for the activity and mode management concepts of the domain model of the Control
Framework in RD-37.

The second part of the of design model of the Control Framework consists of two meta-
models which cover the functional properties and factors of variations specified for the
parameter database and data pool concepts of the domain model of the Control Framework in
RD-37.

In order to promote the interoperability of the Control and DH Frameworks (see requirement
MR7.3-2 in RD-35), the two UML2 models are packaged and distributed as one single model.

The resulting structure of the design model of the CORDET Frameworks is illustrated in
figure 3.3-1.

Two Meta-Models covering
data pool and parameter

database concepts

Control Framework

Meta
Model

UML2
Model

UML2 Model covering
Activity and Mode

Management concepts

UML2
Model

UML2 Model covering
all parts of the
DH Framework

DH Framework

CORDET Framework Design Model

UML2 Models are
merged in one single

Fig. 3.3-1: Structure of CORDET Framework Design Model

3.4 Design Files
This document only gives an overview of the design model of the DH and Control
Frameworks. The design model of the two frameworks is formally defined in a set of design
files.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 11

The CORDET Frameworks design files can be accessed from the “Domain Design” page of
the CORDET Web Site1. The design files contain their own documentation at the detailed
design level. The purpose of the present document is therefore to give a high-level overview
of the CORDET Frameworks Design Model to put readers in a position to understand and use
the detailed design information in the design files.

The CORDET web site also specifies the licence terms under which the framework design
models are made available.

3.5 Terminology
The term “Control Framework” is used in this document to designate the framework that
covers the AOCS subsystem. This name was selected because, although the framework was
initially targeted at the AOCS, it would also more generally be suitable for on-board control
systems.

The term “DH Framework” is used in this document to designate the framework that covers
the DH subsystem. More specifically, the DH Framework covers the telecommand and
telemetry management within a PUS application.

The two frameworks are intended to be independent of each other. Note, however, that
methodological requirement MR7.3-2 in RD-35 requires the two frameworks to be inter-
operable in the sense that the reusable assets that they provide should be designed to be
deployable within the same application.

Interoperability is achieved by having the framework components adhere to the same general
design rules; by deriving them from the same basic components; and by packaging their
UML2 model into one single model.

3.6 Structure Of This Document
The next section describes the general design rules that have been adopted for the UML2
models of the two frameworks.

The following eight sections describe the UML2 models of the two frameworks. Sections 5 to
8 cover the DH Framework and sections 9 to 13 cover the Control Framework. For each
framework, a section is provided that describes the framework architecture and two additional
sections are provided that describe how the functional properties and factors of variations
defined at domain analysis level for each framework are mapped to design constructs in the
UML2 models.

Finally, section 14 covers the meta-model parts of the Control Framework.

1 http://www.pnp-software.com/cordet

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 12

4 GENERAL DESIGN ISSUES
This section covers general design issues that are common to both the DH and the Control
parts of the CORDET Frameworks Design Model.

4.1 Naming Conventions
Table 4.1-1 lists the conventions that have been used in naming the elements of the CORDET
Frameworks Design Model.

Naming conventions are useful because they increase the readability of the model, and
because they can give clues to the code generator that transforms the UML2 model into source
code.

Table 4.1-1: Naming Conventions adopted in the CORDET Frameworks Design Model
Element Description

Classes The first letters of class names is capitalized.
Interfaces The names of interfaces have the form: I<name> where <name> is

the name of the topmost class that implements interface I<name>.
For every class there must be an implementing class defined in the
framework even if the class is to be abstract.2

Getter Methods The names of getter methods (methods that return the value of a
non-boolean attribute) have the form: get<name> where <name> is
the name of the attribute.

Setter Methods The names of setter methods (methods that set the value of an
attribute) have the form: set<name> where <name> is the name of
the attribute.

Boolean Query
Methods

The names of boolean query methods (methods that return the value
of a boolean attribute) have the form: is<name> where <name> is
the name of the attribute.

State Query Methods The names of state query methods (methods that check whether a
state machine is in a certain state) have the form: isState<name>
where <name> is the name of the state.

State Machines The names of state machines have the form: SM_<name> where
<name> is the name of the class.

State Machine States The names of the states of state machines are written in capitals.
The names of state machine states are unique within the framework
i.e. no two states – even in different state machines – have the same
name. Exception to this rule are the states being extended in which
case the state being extended must bear the same name as the
corresponding state in the base state machine.

Primitive Types The names of primitive types that are defined in the model (as
opposed to being imported from the standard UML primitive type
package) have the form: TD<name> where <name> is the name of
the primitive type. One exception to this rule is the void type.

Call Event Call events are linked to trigger operations. Where there is no
danger of ambiguities, their name is the same as the name of the
trigger operation to which they are associated. Where there is a
possibility of ambiguity (namely where two call events are associated
to two operations in the same package with the same name), then
their names have the form: <class>.<operation> where

2UML to RCM gateway requires this.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 13

Element Description
<class> is the name of the class where the trigger operation is
defined and <operation> is the name of the trigger operation.

State Transitions For other state transitions the following naming convention is
recommended (but not required). The names of state transitions that
originate from the initial or history pseudo-states have the same
name: t0. The names of a state transition from state S1 to state S2
has the name S1_S2. If more than one state transition from S1 to S2
is present, then their names are characterized by a suffix of the form
_i where 'i' is the transition number (1, 2, 3, etc).

Transitions to and from choice pseudo-states follow the same
naming convention since the choice pseudo-states can also bear a
name.

Entry & Exit Actions Entry and Exit actions have no name.

4.2 Classes and Interfaces
Figure 4.2-1 illustrates the general class structure of the CORDET Frameworks Design Model.
For each class, an interface is defined that declares the public methods of the class. The name
of the interface adheres to the naming conventions stated in table 4.1-1.

The inheritance structure of the classes is duplicated at interface level. In other words, if
Class2 is derived from Class1, then interface IClass2 (the interface implemented by class
Class2) extends interface IClass1 (the interface implemented by class Class1).

Fig. 4.2-1: Classes and Interfaces

Classes are coupled to each other exclusively through interfaces. In other words, methods
never refer to other classes directly but only through their interfaces. This increases the
decoupling between concrete or abstract classes. At implementation level, however, use of
interfaces may introduced undesirable overheads. In such cases, the adoption of the naming
convention for the interfaces makes it easy to build a code generator that “by-passes”
interfaces and couples classes directly to each other (in this cases, interface would no longer
exist at implementation level).

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 14

Note that the use of the interfaces is, in a sense, superfluous. It is retained because it is
standard practice in object-oriented designs and because it facilitates a more natural coupling
of functional components to their non-functional containers.

4.3 Primitive Types
All the primitive types used in the CORDET Frameworks Design Model have been defined ex
novo. The standard UML primitive types were not used due to uncertainties about their
semantics. According to FW Profile [RD38], primitive data types of integer or boolean type
are stereotyped with either FwInteger or FwBoolean stereotype.

All the primitive types defined for the CORDET project are gathered together in a single
package called com.pnp-software.cordet.primitivetypes.

4.4 Mapping to UML2 Elements
This section explains how design elements were mapped to UML2 elements.

Element Description
Packages Packages are mapped to UML2 Package elements.

The Name attribute has to be set. Other attributes are not used.

Nested packages are not allowed. Package elements has to be children
of the Model element.

Classes Classes are mapped to UML2 Class elements.

Abstract classes have their Is Abstract attribute set to true. The Name
attribute has to be set. Other attributes of the Class element (including
Is Leaf) are not used.

If the class extends other class, Generalization subelement is used.

If the class implements an interface InterfaceRealization
subelement is used.

Classes are tagged with <<FwClass>> stereotype defined in the FW
Profile3.

Interfaces Interfaces are mapped to UML2 Interface elements.

The Name attribute has to be set. Other attributes are not used. Value of
Is Abstract attribute is ignored too – interfaces are always considered
abstract.

If the interface extends other interface, Generalization subelement is
used.

Interfaces must be tagged with <<FwInterface>> stereotype defined in the
FW Profile.

Attributes Class attributes are mapped to UML2 Property elements.

The following attributes must be set for Property element: Name, Type,
Visibility, Lower Bound, Upper Bound, Is Static. Other
attributes are not used. Lower Bound must be set to 1. If the Property
as an array or a list, the Upper Bound must set to number higher then 1
or to *. The star character is used if the size of the array is not know at the
design time or if the Property is a list.

3This stereotype should be automatically applied to all classes in the model. Note that the stereotype is also
applied to all UML2 elements that extends the Class element, for example StateMachine or OpaqueBehavior.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 15

Element Description
It is possible to define a default value using the Default attribute.

The UML2 Association and UML2 Aggregation elements are not used the
model design. Class attributes are used in their place.

 Operations Operations are mapped to UML2 Operation elements.

The following attributes must be set of Operation element: Name, Type,
Visibility, Lower Bound, Upper Bound, Is Static, Is
Abstract, Is Leaf. Lower Bound must be set to 1. If the Operation
returns an array or a list, the Upper Bound must set to number higher
then 1 or to *. The star character is used if the size of the array is not
know at the design time or if the Operation returns a list.

Operations may define behavior. If the behavior of the Operation is
defined in the model, the UML2 OpaqueBehavior element must be
used. This OpaqueBehavior element and Operation element must
have the same parent (Class element). Attribute Method of the
Operation must reference the OpaqueBehavior element. Attribute
Specification of the OpaqueBehavior element must reference the
Operation element. Along with the Specification attribute, the
OpaqueBehavior must also specify the Body attribute. The Body
attribute contains code in FW Profile Action Language [RD38]. All other
attributes of the OpaqueBehavior are ignored (including value of the
Language attribute).

Is Abstract attribute of Operation elements defined in interfaces is not
used.

Other attributes of Operation are not used.

Operations may have parameters which are UML2 Parameter elements.
The Parameter is children of the Operation. The following attributes
must be set for each Parameter: Name, Type, Lower Bound, Upper
Bound, Direction.

Constructors Constructors are mapped to UML2 Operation elements.

For constructors the same restrictions apply as for operations. In addition,
the name of the Operation must be the same as parent Class name.
The return type of constructor has to be void.

State Machine State machines are mapped to UML2 StateMachine elements.

The StateMachine element is a subelement of Class element. The
Name attribute has to be set. Other attributes are not used.

The StateMachine contains one UML2 Region element. The Region
element in turn contains State, Pseudostate and Transition
elements.

The notion of region is not defined in the Cordet Methodology; it is an
UML2 construct only. From this perspective it can be seen as a container
holding set of State, Pseudostate and Transition elements, while
(by definition) each state, pseudo state and transition must have Region
as its parent. Region thus is merely a mediator between state machine
and its states, pseudo states and transitions.

State machines must be tagged with <<FwStateMachine>> stereotype
defined in the FW Profile.

State States are mapped to UML2 State elements.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 16

Element Description
The State elements are subelements of Region elements. The Name
attribute has to be set. Other attributes are not used.

State may have an entry action and/or an exit action. Both actions are
OpaqueBehavior subelements of the State element. The Body
attribute of these respective OpaqueBehavior elements must contain
code in FW Profile Action Language.

States are tagged with <<FwState>> stereotype defined in the FW Profile.
Transitions Transitions are mapped to UML2 Transition elements.

The Transition elements are subelements of Region elements. No
attributes are used, but it is recommended to name the transition using
the Name attribute (following the naming conventions).

Transitions element must have one trigger subelement. The only
exception are transitions that originate in initial, history, or choice states.

Transitions may have guard and transition action.

Transitions are tagged with <<FwTransition>> stereotype defined in the
FW Profile.

Guard Guards are mapped to UML2 Constraint elements.

The Constraint element must be subelement of the Transition
element. The Constraint element must contain an OpaqueBehavior
element. The Body attribute of the OpaqueBehavior element must
contain code in FW Profile Action Language.

Other attributes of Constraint or OpaqueBehavior are not used.

Transition actions Transition actions are mapped to UML2 OpaqueBehavior elements.

The OpaqueBehavior element must be subelement of the Transition
element. The Body attribute of the OpaqueBehavior element must
contain code in FW Profile Action Language.

Other attributes are not used.
Triggers Each trigger is mapped to three UML2 elements at once: Trigger,

CallEvent, and Operation.

For each trigger in the state machine an Operation element of the same
name has to be defined in the Class where the state machine is defined.
This operation must have <<FwTrigger>> stereotype applied, has to be
final (Is Leaf attribute must be set to true), its return type must be
void, and the operation cannot have attached OpaqueBehavior.

For each trigger in the state machine an CallEvent element has to be
defined in the Package where the Class containing the state machine is
defined. The Operation attribute of the CallEvent element has to
reference the trigger operation. The Name attribute of the CallEvent
element has to be set.

For each trigger in the state machine a Trigger has to be added as
subelement of the transition. The Event attribute of the Trigger element
has to reference the CallEvent element above. The Name attribute of
the CallEvent element has to be the same as the name of the trigger
Operation above.

Embedded state Embedded state machines are mapped to UML2 StateMachine

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 17

Element Description
machines elements with the following structure.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 18

Element Description
Given state machine SM_C1 associated to class C1 and state machine
SM_C2 associated to class C2 and given that C2 extends C1 and SM_C2
extends state S defined in SM_C1. The mapping to UML2 is as follows.
Between state machine SM_C1 element and State S1 element there is a
unique sequence of Region elements and State elements. In order to
implement the extension in class C2, the state machine SM_C2 has to be
created. Then the sequence of Region elements and State elements
has to be created in SM_C2 as an exact copy of the sequence as it exists
in SM_C1 (the same names of regions and states). This process ends
with State S2 defined in SM_C2 the has the same name as S1. At this
point new Region element is added as subelement of State S2. Further,
new State, PseudoState, and Transition elements are added as
subelements of the region. This way the S2 state was extended. The
figure 4.4-2 illustrates this process. In the figure the name of both S1 and
S2 states is EXTEND.

Comments Description of classes, interfaces, operations, and attributes can be added
to the UML2 model using Comment elements.

The Comment element is always a child of the element being commented.
The Body attribute holds the comment itself which is a plain text that may
contain HTML tags. Is is also possible to use several special Javadoc-like
tags to describe e.g. operation parameters or return values. There is a
documentation generator that extracts the comments from the model and
build design documentation in a form of a website. The tool is
documented in [RD38]. UML2 allows comments to be added to any UML2
element, however, the tool only process comments attached to classes,
interfaces, operations, and attributes.

Fig. 4.4-2: Mapping of extended state machines

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 19

5 DH FRAMEWORK ARCHITECTURE
This section describes the architecture of the DH Framework. The framework architecture is
described in terms of the main components that are defined by the framework.

This section is intended to place the reader in a better position to understand the
documentation attached to the UML2 design model.

5.1 Target Domain
The target domain of the DH Framework is defined in RD37. For the convenience of the
reader, an outline of this domain is presented below.

The core of a DH subsystem is the handling of incoming telecommands and the generation of
outgoing telemetry data. A framework approach for the DH subsystem is only possible if the
format and content of the telecommands and telemetry data is, at least to some extent,
standardized.

The DH Framework assumes that telecommanding and telemetry is implemented in
accordance with the Packet Utilization Standard or PUS [RD-36]. Applicability to non-PUS
systems is not excluded (see discussion in RD37) but the PUS constitutes the conceptual
framework within which the DH Framework is defined.

The PUS defines the external interface of a DH application in terms of the services that the
application must provide to other applications. The services are in turn defined in terms of
telecommand packets that the application must be able to handle, and telemetry packets that
the application must be able to generate.

The PUS implicitly defines the concept of an abstract telecommand packet and an abstract
telemetry packet. This concept is independent of the particular service which the telecommand
packet or telemetry packet supports. The definition of the abstract telecommand packets and
abstract telemetry packets covers the features that are common to all PUS-compliant
telecommand packets and PUS-compliant telemetry packets.

The DH Framework provides software interfaces and software components that support the
implementation and manipulation at software level of abstract telecommand packets and
abstract telemetry packets.

The DH Framework, in other words, transposes the PUS to the software level. The PUS
standardizes the services to be provided by a DH application. The DH Framework
standardizes the software interfaces through which those services are accessed at software
level within a DH application.

The PUS also defines a taxonomy of specific services that may be provided by a DH
application. Each kind of service is identified by a type. The provision of that service by the
on-board application is supported by a number of telecommand and telemetry packets. Each
kind of telecommand packet or telemetry packet within the service type is identified by a
subtype.

The PUS pre-defines some service types. These pre-defined service types represent services
that are commonly used in on-board systems. For these pre-defined services, the PUS defines
both the physical layout and the functional interpretation of the associated telecommand and
telemetry packet subtypes.

Application designers can use the services pre-defined by the PUS or they can defined new
application-specific services.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 20

The DH Framework does not support the implementation of the pre-defined PUS service
types. Provision of this kind of support would be technically feasible and industrially desirable
but it is outside the scope of the CORDET Project.

Future extensions of the DH Framework might extend the interfaces and components provided
by the framework to support some or all of the PUS service types.

The DH Framework also does not support the routing of telecommand and telemetry packets
between applications. The framework is aimed at the processing of telecommands within a
PUS application and at the generation of telemetry packets from within a PUS application. It
does not explicitly cover the transmission of packets between PUS applications.

The concepts provided by the framework, however, could be used to implement such a
dispatching framework to link together PUS applications. In particular, the support offered by
the framework for the manipulation of abstract telecommands and telemetry packets would
facilitate the implementation of an application-independent infrastructure for routing
telecommand and telemetry packets.

5.2 Design Heritage
The design of the DH Framework is based on the design of the so-called ETH Demonstrator
Framework4 developed at ETH by the authors of this technical note in the ASSERT Project
(see [RD29] and [RD30]).

The design of the DH Framework differs from the design of the ETH Demonstrator
Framework in the following respects:

● The DH Framework conforms to the naming conventions defined in section 4.1. This
has led to several changes in names of UML2 elements.

● The ETH Demonstrator Framework conformed to the FW Profile as it had been
defined in the ASSERT Project. In the CORDET Project, this profile was extended
and the DH Framework conforms to this extended profile5.

● The DH Framework eliminates the IManagedMemory interface and the associated
ManagedMemory component. In the ETH Demonstrator Framework, this component
was one of the “basic components” of the framework.

● In order to compensate the elimination of the IManagedMemory interface and the
associated ManagedMemory component, the state machine of the telecommand
component was modified with the introduction of a new state.

● Also in order to compensate the elimination of the IManagedMemory interface and
the associated ManagedMemory component, the state machine of the telecommand
component was modified with the introduction of two new triggers (putInUse and
putOutOfUse).

● The trigger operations on class Telecommand has been simplified. This also had an
impact on the implementation of the telecommand loader.

● The TelecommandStream interface has been substantially re-designed with the
addition of several new methods

With reference to the elimination of the IManagedMemory interface and the associated
ManagedMemory component, it should be stressed that the function of the old

4
5 The extended FW Profile is available from: http://www.pnp-software.com/fwprofile. This web site also
describes the extension to the original FW Profile.

Copyright 2007 P&P Software GmbH � All Rights Reserved

http://www.pnp-software.com/fwprofile

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 21

MemoryManaged component is covered in the new FW by the new state NOTUSED. In other
words, the state machine hierarchy has been “flattened” with the elimination of one layer and
the introduction of one extra state. There is no therefore loss of functionality: the
MemoryManaged component was used to manage the usage state of a component by a factory
and the NOTUSED state has exactly the same function

5.3 Design Pattern Heritage
The design patterns used for the definition of the DH Framework design are the same as were
defined for the telecommand and telemetry management functions of the OBS Framework
[RD18]. Some of these design patterns are based on the design patterns of RD7. This in
particular applies to the Telecommand Pattern that is based on the Command Design Pattern
of RD7.

5.4 High-Level Functions
The components and interfaces defined by the DH Framework can be allocated to the
following high-level functions:

● Telecommanding Function: this function is responsible for the management of
incoming telecommands.

● Telemetry Function: this function is responsible for the management of outgoing
telemetry packets.

● Initialization and Configuration Function: this function is responsible for the
management of the initialization and configuration process of other framework
components (this purpose of this function is clarified in section 5.7).

Each framework component or framework interface is allocated to one and only one function.
The UML2 model of the DH Framework defines a dedicated package for each function as
indicated in table 5.4.1.

Each function is described in greater detail in a dedicated section below.

Table 5.4-1: Allocation of Functions to Packages
Function Package

Telecommanding Function Telecommand Package

Telemetry Function Telemetry Package

Initialization and Configuration Function Basic Package

5.5 Telecommanding Function
Figure 5.5-1 shows the architecture of the telecommanding function in an informal notation.
The boxes represent components or interfaces provided by the framework. The arrows
represent flows of control or of data.

The TcStream component is the primary interface between the telecommanding function and
the application within which it is embedded. It acts as a data stream from which raw
telecommand packets can be acquired. Conceptually, it resembles a Java input stream.

The TcStream is characterized in the DH Framework by interface ITelecommandStream.
The framework also defines a class implementing this interface and implementing the
invariant behaviour of TcStream (class TelecommandStream). Applications should extend

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 22

this class to implement their own TcStream. An application can only have one single instance
of TcStream.

Telecommands are manipulated within an application instantiated from the DH Framework as
components implementing interface ITelecommand. The de-serialization of a raw
telecommand (the creation of an instance of interface ITelecommand implementing the
telecommand defined in a sequence of bytes received from the TcStream) is done by the
TcLoader component.

The TcLoader is characterized in the DH Framework by interface ITelecommandLoader.
The framework also defines a class implementing this interface and implementing the
invariant behaviour of TcLoaders (class TelecommandLoader). Applications should extend
this class to implement their own TcLoader. An application can only have one single instance
of TcLoader.

The TcLoader loads the telecommand components into TcManager components which are
then responsible for controlling the execution of the telecommand. An application may have
one or more TcManager components (for instance, it may have one TcManager for each
telecommand priority level).

TcManager components are characterized by interface ITelecommandManager for which the
framework provides an implementation as class TelecommandManager. The TcManager
components are provided by the framework as final components that would not normally need
to be extended by applications (although applications can always decide to create their own
implementation of interface ITelecommandManager).

A TcFactory dynamically provides unconfigured telecommand components to the TcLoader.
After telecommands have completed their execution (or after they have been aborted), the
TcManager returns the components encapsulating them to the TcFactory.

TcFactory components are characterized by interface ITelecommandFactory. No invariant
behaviour can be associated to this interface and therefore no default or partial
implementation for this interface is provided by the framework.

TcStream

TcLoader

TcManager

Raw TC data are read
 by the TcLoader
from the TcStream

The TcLoader de-serializes the raw TC data
and constructs the TC components

PUS Application Process

The TC components are loaded into
the TcManager component(s)

The TcManager is responsible for
executing the TC components

TcFactory

The TcLoader takes
unconfigured TC
components from the
TcFactory

The TcManager returns completed
TC components to the TcFactory

Fig. 5.5-1: Architecture of Telecommanding Function

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 23

5.6 Telemetry Function
Figure 5.6-1 shows the architecture of the telemetry function in an informal notation. The
boxes represent components or interfaces provided by the framework. The arrows represent
flows of control or of data.

TmStream

AppComp

TmManager

PUS Application Process

TM packets are loaded and unloaded into the
TmManager by application components

The TmManager is responsible for managing the list of
pending TM packets and periodically asking them to update
themselves and serialize themselves to the TmStream

TmFactory

The TmFactory returns unconfigured
TM packet components

Each TmManager is associated
to the TmStream

Terminated
TM packets
are returned to
the TmFactory

TmRegistry

TmRegistry
filters
TM packets

Application component wish to
create and send a TM packet

Fig. 5.6-1: Architecture of Telemetry Function

The TmStream component is the primary interface between the telemetry function and the
application within which it is embedded. It acts as a data stream to which telemetry packets
are serialized. Conceptually, it resembles a Java output stream.

The TmStream is characterized in the DH Framework by interface ITelemetryStream. The
framework also defines a class implementing this interface and implementing the invariant
behaviour of TmStream (class TelemetryStream). Applications should extend this class to
implement their own TmStream. An application can only have one single instance of
TmStream.

Telemetry packets are manipulated within an application as components implementing
interface ITelemetry. When an application component finds that it needs to generate a
telemetry packet, it asks for an unconfigured instance of a telemetry packet component of the
right type and subtype from the TmFactory. It then configures it and hands it over to a
TmManager component.

Telemetry packet components are capable of serializing themselves to a TmStream. The
TmManager is responsible for managing the serialization process. It buffers up the telemetry
packets it receives from the application components and directs them to start the serialization
process.

TmManager components are characterized by interface ITelemetryManager for which the
framework provides an implementation as class TelemetryManager. The TmManager
components are provided by the framework as final components that would not normally need
to be extended by applications (although applications can always decide to create their own
implementation of interface ITelemetryManager).

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 24

In an application there may be several TmManager components corresponding to different
levels of priorities for handling the telemetry packets.

A telemetry packet can only be loaded onto one TmManager. If the same telemetry packets
must be sent to two destinations (e.g. to ground and to an on-board log), then either two
identical packets with the same content must be created or a TmStream component must be
provided that encapsulates two telemetry destinations.

Some telemetry packets are sporadic (they only need to be sent once – e.g. event reports)
whereas others are cyclical (they must be sent more than once – e.g. housekeeping packets).
The TmManager returns sporadic packets to the TmFactory immediately after they have been
serialized to the TmStream and it keeps cyclical packets in its queue of pending packets for
repeated serialization. Cyclical telemetry packets are capable to updating their own content in
between successive serializations. The TmManager is responsible for controlling the update
process and for correctly interleaving it with the serialization process.

Telemetry packets may be subject to a filtering process that changes their internal state while
they are being processed by the TmManager. Filtering information is stored in the
TmRegistry. The TmManager passes telemetry packet to the TmRegistry before processing it.
This gives the TmRegistry the opportunity to change the internal state of the telemetry packet
according to the information it contains.

Thus, for instance, if a telecommand wishes to disable a housekeeping telemetry packet, then
the telecommand would provide the information about the packet to the TmRegistry (it would
for instance provide the packet type and subtype and its SID) and then the TmRegistry would
reconfigure the telemetry packet when it receives it from the TmManager. In this way,
telemetry packets and the components that change their internal state (typically
telecommands) are decoupled.

The TmRegistry component is characterized by interface ITelemetryRegistry. No default
or partial implementation of this interface is provided by the DH Framework.

A TmFactory dynamically provides unconfigured telemetry packet components to the
application components that need to send telemetry data to the ground. After telemetry packets
have been serialized to the TmStream, the TmManager returns the components encapsulating
them to the TmFactory where they remain available for use by other application components.

The TmFactory component is characterized by interface ITelemetryFactory. No default
or partial implementation of this interface is provided by the DH Framework.

Note finally that, as already mentioned above and for reasons discussed at greater length in
RD37, an instantiation of the DH Framework can only have one single TmStream component.
Hence, routing to the destination is done by the application-specific TmStream instance
(namely it is done by creating an instance of interface TmStream that “knows” about how to
route packets to their destination).

5.7 Initialization and Configuration Function
The DH Framework assumes that framework components, when they are instantiated at
application initialization time, are completely unconfigured. In other words, it is assumed that
framework components do not contain any default values for their internal state variables.
This is a reasonable assumption in view of the fact that the components are intended to be
deployed in different contexts and in different applications.

The initialization and configuration function supports the process whereby a framework
component is made ready for operational use by the application instantiated from the
framework.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 25

Since the initialization and configuration process must in principle be performed by all
framework components, the framework maps it to an interface – interface IComponent – that
must be implemented by all other framework interfaces.

The framework provides an implementation of interface IComponent – class Component –
that implements the initialization and configuration process.

The DH Framework makes a distinction between initialization and configuration.
Components are first initialized and then configured. Initialization is an irreversible process
where the values of parameters that can only be set once is defined. Typically, in the
initialization process, the memory for the component's internal data structure is allocated.

Configuration is a process where the values of parameters that can be dynamically changed is
first defined. After a component is configured, it is ready to start its normal operation.

Component configuration must therefore be performed by the application initialization code
by loading values for all the component parameters. The component may perform legality
checks on the loaded values and, once all values have been loaded and their legality has been
confirmed, then the component is declared to be configured.

Components can be re-configured at run-time (but they cannot be re-initialized).

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 26

6 DH FRAMEWORK – DOMAIN DICTIONARY MAPPING
This section describes how the domain dictionary entries for the DH Framework are mapped
to elements in the UML2 design model of the framework.

The mapping is described by means of tables that, on the left-hand side, list the dictionary
entry together with its attributes, operations, actions, and checks and, on the right-hand side,
list the UML2 elements to which they are mapped. One table is provided for each dictionary
entry.

In most cases, the following general mapping rules apply:

● Dictionary entries are mapped to interfaces.

● The attributes of a dictionary entry are mapped either to getter methods defined on the
interface associated to the dictionary entry, or to UML2 attributes in the class that
implements the interface in the framework.

● The operations of a dictionary entry are mapped to non-virtual methods that are
defined on the interface associated to the dictionary entry,

● The actions of a dictionary entry are mapped to virtual methods that are defined in the
class that implements the interface in the framework.

● The checks of a dictionary entry are mapped to virtual methods that are defined in the
class that implements the interface in the framework.

In the case of operations, actions, and checks, the mapping is normally to one single method in
the UML2 model for each operation/action/check. In some cases, however, one
operation/action/check is mapped to a set of related methods defined on the same class or
interface in the UML2 model.

The next two sections define the mapping for the dictionary entries defined for the
telcommanding and telemetry concepts.

6.1 Mapping of Dictionary Entries for Telecommand Concept
This section defines the mapping to design elements for the domain dictionary entries related
to the framework telecommand concept.

Dictionary Term Framework Telecommand Interface ITelecommand
Attributes Type pusType attribute in Telecommand

Subtype pusSubType attribute in Telecommand
Source sequence counter sourceSequenceCounter attribute in

Telecommand
Telecommand State is* methods in ITelecommand

Operations Execute ready, accept, and execute methods in
ITelecommand

Abort abort method in ITelecommand
Actions Start Action doStart method in Telecommand

Progress Action doProgress method in Telecommand
Completion Action doComplete and doFinalize methods in

Telecommand

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 27

Abort Action doAbort method in Telecommand
Checks Acceptance Check doAcceptanceCheck method in

Telecommand
Ready Check doReadyCheck method in Telecommand
Start Check canStart method in Telecommand
Progress Check canProgress and hasProgressFailed

methods in Telecommand
Completion Check canProgress and hasProgressFailed

methods in Telecommand

Dictionary Term Telecommand Manager Interface ITelecommandManager
Attributes List of Pending Telecommands tcList attribute in

TelecommandManager
Operations Activate activate method in

TelecommandManager
Abort a Pending Telecommand abort method in

TelecommandManager
Abort all Pending Telecommands Not mapped.

Load a new Telecommand load method in
TelecommandManager

Dictionary Term Telecommand Loader Interface ITelecommandLoader
Attributes List of Telecommand Managers TcManagerList attribute in

TelecommandLoader
Telecommand Stream tcStream attribute in

TelecommandLoader.

Operations Activate activate method in
TelecommandLoader

Actions Telecommand Loading Action loadIntoTcManager method in
TelecommandLoader

Dictionary Term Telecommand Stream Interface ITelecommandStream
Operations Query for the presence of a new

packet
isPacketArrived method in
ITelecommandLoader

Read raw telecommand data read* methods in
ITelecommandLoader

6.2 Mapping of Dictionary Entries for Telemetry Concept
This section defines the mapping to design elements for the domain dictionary entries related
to the framework telemetry concept.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 28

Dictionary Term Framework Telemetry
Packet

Interface ITelemetry

Attributes Type pusType attribute in Telemetry
Subtype pusSubType attribute in Telemetry
Destination destination attribute in Telemetry
Time Stamp timeStamp attribute in Telemetry

Operations Execute Update, serialize and terminate
methods in Telemetry

Configure configure method in Telemetry
Enable/Disable setEnable method in Telemetry

Actions Configuration Action doConfigure method in Telemetry
Serialization Action doSerialize method in Telemetry
Update Action doUpdate method in Telemetry
Termination Action doTerminate method in Telemetry

Checks Enable Check isEnabled method in Telemetry
Termination Check canTerminate method in Telemetry
Hold Check isHeld method in Telemetry

Dictionary Term Telemetry Manager Interface ITelemetryManager
Attributes List of Pending Telemetry

Packets
tmList attribute in TelemetryManager

Operations Activate activate method in
TelemetryManager

Load a new Telemetry Packet load method in TelemetryManager

Dictionary Term Telemetry Stream Interface ITelemetryStream
Operations Query for readiness to receive

data
isReady method in
TelemetryStream

Write raw telemetry data writeParam method in
TelemetryStream

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 29

7 DH FRAMEWORK – MAPPING OF SHARED PROPERTIES
This section describes how the shared properties defined at domain analysis level for the DH
Framework have been mapped to the UML2 model of the framework.

Each shared property stated in the domain model is translated into a functional property on the
UML2 model of the DH Framework. These functional properties could in principle be
formally verified on the framework model.

For the convenience of the reader, the domain model properties are re-stated here in the same
form in which they were stated in [RD-37] and the formulation of the design-level functional
property is given immediately afterwards. The format is therefore as follows:

<Property Identifier> <Statement of Domain Model Property>

<Statement of Domain Design Property>

Some properties depend on certain pre-conditions being satisfied. In such cases, the pre-
condition is stated as part of the design-level properties.

7.1 Shared Properties for Telecommand Concept
This section describes the mapping of shared properties associated to the telecommand-related
entries in the domain dictionary of the DH Framework.

7.1.1 Telecommand Execution
The properties relative to the telecommand execution are implemented in the logic of the state
machine associated to the Telecommand class. Some of these properties additionally depend
on the state machine being triggered in certain ways. This pre-condition is captured by
assuming that the telecommand component is controlled by a telecommand manager.

In order to understand the mapping from the domain model to the design model properties, the
following points should be born in mind:

● The domain model execute operation is mapped in the design model to the methods
accept, ready, and execute.

● The domain model state COMPLETED is mapped in the design model to the state
machine states COMPLITING and TERMINATED

P7.1.1-1 A telecommand can change its internal state only in response to an execute or
to an abort operation being performed upon it.
The state machine associated to class Telecommand has the following trigger
methods: abort, accept, ready, execute.

P7.1.1-2 When a telecommand is executed for the first time, it enters state ACCEPTED if
its acceptance check is passed, otherwise it is aborted.
Precondition: the telecommand component is in state RECEIVED and has been
loaded into a telecommand manager.
If method activate is called on the telecommand manager, then the
telecommand state changes to ACCEPTED if method isAcceptanceCheck
return TRUE, otherwise it changes to ABORTED.

P7.1.1-3 If an ACCEPTED telecommand is executed, it performs its ready check and, if
this is passed, it attempts to enter state STARTED. If it is not successful, it

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 30

remains in state ACCEPTED.
Precondition: the telecommand component is in state ACCEPTED and has
been loaded into a telecommand manager.
If method activate is called on the telecommand manager, then the
telecommand state changes to STARTED if method isReadyCheckOK returns
TRUE, otherwise it re-enters state ACCEPTED.

P7.1.1-4 A telecommand can enter state INPROGRESS only if its start check is passed.
A necessary condition for state INPROGRESS in the state machine of class
Telecommand to be entered is that method canStart returns TRUE when the
transition into INPROGRESS is attempted.

P7.1.1-5 If a STARTED telecommand is executed, it performs the progress check and, if
this is passed, the telecommand enters state INPROGRESS, otherwise it is
aborted.
Precondition: the telecommand component is in state STARTED and has been
loaded into a telecommand manager.
If method activate is called on the telecommand manager, then the
telecommand state changes to ABORTED if method canProgress returns
FALSE.

P7.1.1-6 If an INPROGRESS telecommand is executed, it performs the progress check
and, depending on its outcome, it either re-enters state INPROGRESS, or it
attempts to enter state COMPLETED, or else it is aborted.
Precondition: the telecommand component is in state INPROGRESS and has
been loaded into a telecommand manager.
If method activate is called on the telecommand manager, then the
telecommand state changes to ABORTED if its method hasProgressFailed
returns TRUE, else it stays in state INPROGRESS if its method canProgress
returns TRUE, or it changes to COMPLETED if method canProgress returns
FALSE.

P7.1.1-7 A telecommand can enter state COMPLETED only if its completion check is
passed. Otherwise it is aborted.
A necessary condition for state TERMINATED in the state machine of class
Telecommand to be entered is that method canComplete returns TRUE when
the transition into state TERMINATED is attempted.

P7.1.1-8 When a telecommand becomes STARTED, it executes its start action.
When state STARTED in the state machine of class Telecommand is entered,
then method doStart is executed.

P7.1.1-9 Every time a telecommand enters state INPROGRESS, it executes its progress
action.
When state INPROGRESS in the state machine of class Telecommand is
entered, then method doProgress is executed.

P7.1.1-10 When a telecommand becomes COMPLETED, it executes its completion
action.
When state COMPLETED in the state machine of class Telecommand is
entered, then method doCompleted is executed.

P7.1.1-11 When a telecommand is aborted, it executes its abort action.
When state ABORTED in the state machine of class Telecommand is entered,
then method doAbort is executed.

P7.1.1-12 Execution of a telecommand that is aborted or COMPLETED has no effect.
The trigger methods accept, ready, and execute have no effect when the

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 31

state machine of class Telecommand is in state ABORTED or TERMINATED.

7.1.2 Telecommand Management
The properties relative to the telecommand management are implemented in the methods of
class TelecommandManager. The implementation of these methods is modelled using the
action language of the FW Profile.

P7.1.2-1 If a telecommand is loaded in a telecommand manager, then the telecommand
is added to the list of pending telecommands.
Precondition: the array tcList has at least one NULL element.
If method load is called on TelecommandManager, then its argument is
added to tcList.

P7.1.2-2 When a telecommand manager is activated, it executes all the telecommands in
its list of pending telecommands.
If method activate is called on TelecommandManager, then the methods
accept, ready, execute are called in sequence on each non-null entry in
tcList.

P7.1.2-3 When a telecommand manager is activated, it removes from the list of pending
telecommands the telecommands that have been aborted or that are in state
COMPLETED.
If method activate is called on TelecommandManager, then telecommand
entries in tcList that are in state ABORTED or TERMINATED are removed
from the list.

P7.1.2-4 When a telecommand manager is asked to abort one of its pending
telecommands, it aborts the telecommands and removes it from its list of
pending telecommands.
Precondition: the argument of method abort is in tcList.
If method abort is called on TelecommandManager, then method abort, is
called on its argument and the argument is removed from tcList.

7.1.3 Telecommand Loading
The telecommand loader reads the raw telecommand data from the telecommand stream, uses
them to build the corresponding framework telecommand component, and loads the newly
created telecommand component onto a telecommand manager.

Since there can be several telecommand managers within the same application, the
telecommand loader implements the logic that decides where each telecommand should be
loaded. This logic is encapsulated in the telecommand loading action.

The telecommand loader reads the raw telecommand data when it is activated. This should not
be taken to imply that a polling mechanism must be used to collect telecommands since the
activation signal might be linked to the arrival of a new raw telecommand. The logic that
decides when to activate the telecommand loader is outside the DH Framework. In this sense,
the DH Framework neither enforces nor assumes a particular mechanism for detecting and
responding to the arrival of raw telecommands.

P7.1.3-1 When a telecommand loader is activated, it reads the raw telecommand data (if
any are available) from the telecommand stream, it creates the framework
telecommand component, and it executes the telecommand loading action.
Precondition: the telecommand stream is in state PACKET_ARRIVED when

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 32

method activate is called on the telecommand loader.
When method activate is called on TelecommandLoader, then a
telecommand instance is retrieved from TelecommandFactory, its method
deserialize is called, and then method loadIntoTcManager is called.

7.2 Shared Properties for Telemetry Concept
This section describes the mapping of shared properties associated to the telemetry-related
entries in the domain dictionary of the DH Framework.

7.2.1 Telemetry Packet Configuration
The properties relative to the telemetry packet configuration are implemented in the logic of
the state machine associated to the Telemetry class.

P7.2.1-1 When a telemetry packet is configured, it performs its configuration action.
When state PACKET_CONFIGURE in the state machine associated to class
Telemetry is entered, then method doConfigured is executed.

7.2.2 Telemetry Packets Execution
The properties relative to the telemetry packet execution are implemented in the logic of the
state machine associated to the Telecommand class. Some of these properties additionally
depend on the state machine being triggered in certain ways. This pre-condition is captured by
assuming that the telecommand component is controlled by a telemetry manager.

In order to understand the mapping from the domain model to the design model properties, the
following points should be born in mind:

● The domain model execute operation is mapped in the design model to the methods
update, serialize, and terminate.

P7.2.2-1 Only telemetry packets that have been configured can be executed.
States PACKET_UPDATE and PACKET_SERIALIZE in the state machine
associated to class Telemetry can only be entered after state
PACKET_CONFIGURED has been entered.

P7.2.2-2 When a telemetry packet is executed, it performs its enable check to verify
whether the packet is enabled.
State PACKET_UPDATE in the state machine associated to class Telemetry
can only be entered if method isEnabled returns TRUE when the transition
into the state is attempted.

P7.2.2-3 When a telemetry packet is executed, it performs its hold check to verify
whether the packet is being held.
Precondition: the telemetry packet component is in state PACKET_SERIALIZE
or in state PACKET_HOLDING and it has been loaded into a telemetry
manager.
If method activate is called on the telemetry manager, then state
PACKET_UPDATE can only be entered if method isHeld returns FALSE.

P7.2.2-4 Execution of a telemetry packet that is neither disabled nor held results in the
telemetry packet performing first its update action, and then its serialization
action.
Precondition: the telemetry packet component is in state PACKET_SERIALIZE
or in state PACKET_HOLDING and it has been loaded into a telemetry

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 33

manager.
If method activate is called on the telemetry manager, and if its methods
isEnabled and isHeld return, respectively, TRUE and FALSE, then the telemetry
packet goes through states PACKET_UPDATE and PACKET_SERIALIZE.

P7.2.2-5 When a telemetry packet is serialized, it writes its content to the telemetry
stream associated to the telemetry manager that executes the packet.
When state PACKET_SERIALIZE in the state machine associated to class
Telemetry is entered, then its method doSerialize is executed.

P7.2.2-6 After performing the serialization action, a telemetry packet performs its
termination check to verify whether it is terminated.
Precondition: the telemetry packet component is in state PACKET_SERIALIZE
or in state PACKET_HOLDING and it has been loaded into a telemetry
manager.
If method activate is called on the telemetry manager, and if its method
canComplete returns TRUE then the telemetry packet enters state
TERMINATED.

P7.2.2-7 If the termination check indicates that the packet is terminated, then the
telemetry packet executes its termination action.
When state TERMINATED in the state machine associated to class
Telemetry is entered, then its method doTerminate is executed.

7.2.3 Telemetry Packet Management
The properties relative to the telemetry packet management are implemented in the methods of
class TelemetryManager. The implementation of these methods is modelled using the
action language of the FW Profile.

P7.2.3-1 If a telemetry packet is loaded in a telemetry manager and if the packet is
configured, then the telemetry packet is added to the list of pending telemetry
packets.
Precondition: the array tmList has at least one NULL element.
If method load is called on TelemetryManager, and its argument is in state
PACKET_CONFIGURED, then its argument is added to tmList.

P7.2.3-2 When a telemetry packet is activated, it executes all the telemetry packets in its
list of pending telemetry packets.
If method activate is called on TelemetryManager, then the methods
update, serialize, terminate are called in sequence on each non-null
entry in tmList.

P7.2.3-3 When a telemetry manager is activated, it removes from the list of pending
telemetry packets the packets that, after their execution, are terminated.
If method activate is called on TelemetryManager, then telecommand
entries in tmList that are in state TERMINATED are removed from the list.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 34

8 DH FRAMEWORK – MAPPING OF FACTORS OF VARIATION
This section describes how the factors of variation defined at domain analysis level for the DH
Framework are mapped to the UML2 design model of the framework.

Generally speaking, DH Framework factors of variation are mapped either to virtual methods
in one of the framework classes or to framework interfaces for which no implementation is
provided by the framework. In some cases, one single factor of variation may be mapped to
more than one methods in the same class. Where no default implementation is foreseen for the
factor of variation, the mapping is either to a pure virtual method or to an interface.

For the convenience of the reader, the domain model factors of variation are re-stated here in
the same form in which they were stated in [RD-37] and the mapping to the UML2 element is
added immediately afterwards. The format is therefore as follows:

<Identifier> <Name of the Factor of Variation>
Description <Description of the Factor of Variation>

Default <Default Value of the Factor of Variation>

Range <Legal Range of the Factor of Variation>

Mapping <Mapping to UML2 Element in Design Model>

8.1 Attributes as Factors of Variation
All the attributes attached to framework classes represent implicit factors of variation since
attribute values are intended to be defined by the application designer at framework
instantiation time.

Factors of variations linked to attributes are regarded as trivial and implicitly defined by the
domain model and are therefore not further considered in this section.

8.2 Factors of Variation for Telecommand Concept
This section describes the mapping for the factors of variation associated to the telecommand
concept.

FV8.2-1 Telecommand Start Action
Description The implementation of the start action used in property P7.1.1-8 is application-

specific.
Default The default implementation of the start action returns without taking action.

Range Unrestricted.

Mapping Method doStart in class Telecommand

FV8.2-2 Telecommand Progress Action
Description The implementation of the progress action used in property P7.1.1-9 is

application-specific.
Default There is no default implementation for the progress action.

Range Unrestricted.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 35

Mapping Method doProgress in class Telecommand

FV8.2-3 Telecommand Completion Action
Description The implementation of the completion action used in property P7.1.1-10 is

application-specific.
Default The default implementation of the completion action returns without taking

action.
Range Unrestricted.

Mapping Method doComplete in class Telecommand

FV8.2-4 Telecommand Abort Action
Description The implementation of the abort action used in property P7.1.1-11 is application-

specific.
Default The default implementation of the abort action returns without taking action.

Range Unrestricted.

Mapping Method doAbort in class Telecommand

FV8.2-4 Telecommand Acceptance Check
Description The implementation of the acceptance check used in property P7.1.1-2 is

application-specific.
Default The default implementation of the acceptance check returns TRUE

(telecommand is successfully accepted).
Range This check must return either TRUE (telecommand is successfully accepted) or

FALSE (telecommand is not accepted).
Mapping Methods doAcceptanceCheck (implementation of check) and

isAcceptanceCheckOK (outcome of check) in class Telecommand

FV8.2-4 Telecommand Ready Check
Description The implementation of the ready check used in property P7.1.1-3 is application-

specific.
Default The default implementation of the ready check returns TRUE (telecommand is

ready to start execution).
Range This check must return either TRUE (telecommand is ready to start execution)

or FALSE (telecommand is not yet ready to start execution).
Mapping Methods doReadyCheck (implementation of check) and isReadyCheckOK

(outcome of check) in class Telecommand

FV8.2-4 Telecommand Start Check
Description The implementation of the start check used in property P7.1.1-4 is application-

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 36

specific.
Default The default implementation of the start check returns TRUE (telecommand

execution can start successfully).
Range This check must return either TRUE (telecommand execution can start) or

FALSE (telecommand execution cannot be started).
Mapping Methods canStart in class Telecommand

FV8.2-4 Telecommand Progress Check
Description The implementation of the progress check used in properties P7.1.1-5 and

P7.1.1-6 is application-specific.
Default The default implementation of the progress check returns “telecommand has

successfully completed its progress”.
Range This check must return one of three values indicating: (1) telecommand

execution is proceeding successfully but has not yet completed; (2)
telecommand has successfully completed its progress; (3) telecommand cannot
continue its execution.

Mapping Methods canProgress (checks whether progress has been completed) and
hasProgressFailed (check whether progress has failed) in class
Telecommand

FV8.2-4 Telecommand Completion Check
Description The implementation of the completion check used in property P7.1.1-7 is

application-specific.
Default The default implementation of the completion check returns TRUE

(telecommand can successfully complete execution).
Range This check must return either TRUE (telecommand completed execution

successfully) or FALSE (telecommand did not complete execution successfully).
Mapping Methods canComplete in class Telecommand

8.3 Factors of Variation for Telecommand Loading Concept
This section describes the mapping for the factors of variation associated to the telecommand
loading concept.

FV8.3-1 Telecommand Loading Action
Description The implementation of the telecommand loading action used in property

P7.1.3-1 is application-specific.
Default There is no default implementation for the telecommand loading action.

Range This action must result in the framework telecommand component created by
the telecommand loader being loaded in at least one telecommand manager.

Mapping Method loadIntoTcManager in class TelecommandLoader

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 37

8.4 Factors of Variation for Telecommand Stream Concept
This section describes the mapping for the factors of variation associated to the telecommand
stream concept.

FV8.4-1 Telecommand Stream
Description The implementation of all the operations defined on the telecommand stream

and used in property P7.1.3-1 is application-specific.
Default There is no default implementation for the telecommand stream operations.

Range Unrestricted.

Mapping Interface ITelecommandStream

8.5 Factors of Variation for Telemetry Concept
This section describes the mapping for the factors of variation associated to the telemetry
concept.

FV8.5-1 Telemetry Configuration Action
Description The implementation of the telemetry configuration action used in property

P7.2.1-1 is application-specific.
Default The default implementation of this action returns without taking any action.

Range Unrestricted.

Mapping Method doConfigureTm in class Telemetry

FV8.5-2 Telemetry Update Action
Description The implementation of the telemetry update action used in property P7.2.2-4 is

application-specific.
Default The default implementation of this action returns without taking any action.

Range Unrestricted.

Mapping Method doUpdate in class Telemetry

FV8.5-3 Telemetry Serialization Action
Description The implementation of the telemetry update action used in property P7.2.2-4 is

application-specific.
Default There is no default implementation for this action.

Range Unrestricted.

Mapping Method doSerialize in class Telemetry

FV8.5-4 Telemetry Termination Action
Description The implementation of the telemetry termination action used in property

P7.2.2-7 is application-specific.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 38

Default The default implementation of this action returns without taking any action.

Range Unrestricted.

Mapping Method doTerminate in class Telemetry

FV8.5-5 Telemetry Hold Check
Description The implementation of the telemetry hold check used in property P7.2.2-3 is

application-specific.
Default The default implementation of this check returns FALSE (packet is not held).

Range This check must return either TRUE (telemetry packet is being held) or FALSE
(telemetry packet is not being held).

Mapping Method isHeld in class Telemetry

FV8.5-5 Telemetry Termination Check
Description The implementation of the telemetry termination check used in property

P7.2.2-6 is application-specific.
Default The default implementation of this check returns TRUE (packet has terminated).

Range This check must return either TRUE (telemetry packet has terminated) or
FALSE (telemetry packet has not yet terminated).

Mapping Method canTerminate in class Telemetry

8.6 Factors of Variation for Telemetry Stream Concept
This section describes the mapping for the factors of variation associated to the telemetry
stream concept.

FV8.6-1 Telemetry Stream
Description The implementation of all the operations defined on the telemetry stream and

used in property P7.2.2-1 is application-specific.
Default There is no default implementation for the telemetry stream operations.

Range Unrestricted.

Mapping Interface ITelemetryStream

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 39

9 CONTROL FRAMEWORK – UML2 MODEL ARCHITECTURE
This section describes the architecture of the UML2 model of the Control Framework. The
framework architecture is described in terms of the main components that are defined by the
framework UML2 model.

This section is intended to place the reader in a better position to understand the
documentation attached to the UML2 design model.

9.1 Target Domain
The target domain of the Control Framework is defined in RD37. For the convenience of the
reader, an outline of this domain is presented below.

The core of an AOCS application is the implementation of transfer functions that transform
measurements from a set of sensors into commands for a set of actuators. Such transfer
functions are implemented as digital filters that are characterized by a set of inputs, a set of
outputs, an internal state, and an algorithm to compute the next set of outputs from the latest
set of inputs and the current internal state.

Peripheral functionalities that are often found in AOCS applications are:

• Management of AOCS operational modes;
• Management of the external sensors and actuators;
• Implementation of failure detection and isolation checks and recovery actions (FDIR);
• Execution of AOCS-specific telecommands;
• Generation of AOCS-specific telemetry packets.

The Control Framework directly covers the management of the AOCS operational mode
through the operation mode concept and the activity manager concept (see RD37 for an
exhaustive discussion).

The Control Framework does not cover the management of the external sensors and actuators.
This is due to the fact that the interfaces of AOCS sensors and actuators are neither
standardized nor do they exhibit any significant commonalities in existing missions.
Standardization of interfaces to external units (not just for the AOCS subsystem) is possible
but this is done at the bus interface level, not at the functional level. Such functionalities are
therefore not specific to the AOCS and are best left out of a framework targeted at the AOCS.

The FDIR functionalities are not directly included in the Control Framework in its present
form. It is believed that such functionalities present sufficient commonalities to be
implemented in reusable and adaptable component and they might be included in a future
release of the Control Framework.

The management of the AOCS telecommands and AOCS telemetry is not directly included in
the Control Framework. However, the DH Framework is interoperable with the Control
Framework and hence these functionalities are supported by the two frameworks taken
together.

9.2 Design Pattern Heritage
The definition of the Control Framework design uses the design patterns dealing with the
implementation and management of control blocks, data items, data pools, and parameter
database in the OBS Framework [RD18].

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 40

9.3 High-Level Functions
The components and interfaces defined by the Control Framework can be allocated to the
following high-level functions:

● Activity Management Function: this function is responsible for the management of
control activities. Note that control activities are organized in “activity sets” which are
in turn controlled by “operational modes”. These concepts and their mutual
relationships are described in greater detail in RD37.

● Initialization and Configuration Function: this function is responsible for the
management of the initialization and configuration process of other framework
components.

Each framework component or framework interface is allocated to one and only one function.
The UML2 model of the Control Framework defines a dedicated package for each function as
indicated in table 9.3.1.

The Initialization and Configuration Function is shared with the DH Framework. The same
package is used by both frameworks. These two functions are therefore not described further
in this section. The next section describes the Activity Management Function.

Table 9.3-1: Allocation of Functions to Packages
Function Package

Activity Management Function Activity Package

Initialization and Configuration Function Basic Package

9.4 Activity Management Function
Figure 9.4-1 shows the architecture of the Activity Management Function in an informal
notation. The boxes represent components or interfaces provided by the framework. The
arrows represent flows of control or of data.

The core component is the activity component. An activity component encapsulates a control
algorithm or some other sequential flow of actions to be executed by the control applications.
Activities are characterized in the Control Framework by interface IActivity. The
framework also defines a class implementing this interface and implementing the invariant
behaviour of activities (class Activity).

Activities should normally only be manipulated by the activity manager and by the activity
registry.

The activity manager component is responsible for executing activities. This component is
characterized in the Control Framework by interface IActivityManager. The framework
implements this component in full through three classes: ActivityManager,
OperationalMode, and ActivitySet.

Class ActivityManager implements the logic for triggering changes in the internal states of
an activity. Class OperationalMode implements a collection of activity sets representing an
operational mode. Class ActivitySet implements a collection of activities representing an
activity set. These three classes are intended to be accessed exclusively through the
IActivityManager interface.

The Activity Registry component behaves as a filter. At every activation, before executing an
activity, the activity manager passes the activity through the Activity Registry. This gives it
the chance to change its enable and held status. This mechanism ensures that changes to the

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 41

enable and held status of an activity are synchronized with the execution of an activity and
that they occur at a well-defined point in the execution cycle of the activity.

Other components (either inside or outside the control part of an application) who wish to
change the enable or held status of an activity, should do so by making a request to the activity
registry. When such a request is made, the activity is identified by its name (namely by the
activity identifier). The activity registry translates the activity name into a reference to the
component implementing the activity and it buffers the request for the change in the activity
status. The change is performed at the next execution cycle of the activity. Thus, the filter
directly operates on the activity (by, for instance, changing its enable state).

The Activity Registry component is characterized in the Control Framework by interface
IActivityRegistry. There is no default or partial implementation for this interface in the
framework since no invariant behaviour can be associated to activity registries.

Applications may need to define activities that have other dynamically settable state properties
in addition to the enable and held status. In such a case, the applications should extend
interface IActivityRegistry to handle these additional aspects of the activity state.

In a control application, there can only be one single instance of Activity Registry.

In figure 9.4-1, the data pool and parameter database components are shown in dashed boxes
to represent the fact that they are not defined in the UML2 model of the Control Framework.
These two components are defined by a meta-model that is documented in section 14.

DataPool

Activity

Activity Manager Component

Control Part of Application

At each activation, the activity registry
can change the enable and hold state
of the activities

The activity manager controls the
execution of the activities

Activities read their configuration
data from the parameter database

ActivityRegistry

ParDatabase

ActivityManager

OperationalMode

ActivitySet

Activities store their state
data in the data pool

Activities encapsulate the control
algorithms and other tasks to be
executed by the control application

Fig. 9.4-1: Architecture of Activity Management Function

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 42

10 CONTROL FRAMEWORK – DOMAIN DICTIONARY MAPPING
This section describes how the domain dictionary entries for the Control Framework are
mapped to elements in the UML2 design model of the framework.

The format in which the mapping is described is the same as for the DH Framework domain
dictionary entry (see section 6). The general considerations made in the introduction to section
6 for the DH Framework also apply to the Control Framework.

10.1 Mapping of Domain Dictionary Entries for Activity Concept
This section defines the mapping to design elements for the domain dictionary entries related
to the activity concept.

Note that the operations, actions, and checks relative to the activity initialization are mapped
to methods in the base class Component. In other words, the activity initialization properties
and factors of variation are implemented at the level of the Component super-class.

Dictionary Term Activity Interface IActivity
Attributes Type activityType attribute in Activity

Subtype activitySubType attribute in Activity
Identifier activityID attribute in Activity

Operations Initialize initialize, and reset methods in
IComponent

Execute ReadInputs, writeOuptut, and
Propagate methods in IActivity

Enable Enable method in IActivity
Disable Disable method in IActivity
Hold Hold method in IActivity
Resume Release method in IActivity

Actions Initialization Action doInitialize and doConfigure
methods in IComponent

Input Read Action doReadInput method in Activity
Output Write Action doWriteInput method in Activity
Propagation Action doPropagate method in Activity
Start Action doStart method in Activity
End Action doEnd method in Activity

Checks Initialization Check canInitialize and canConfigure
methods in IComponent

Propagation Check canPropagate method in Activity

10.2 Mapping of Domain Dictionary Entries for Mode Management Concept
This section defines the mapping to design elements for the domain dictionary entries related
to the mode management concept.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 43

Mode management is encapsulated in one single component characterized by interface
IActivityManager. This component consists of three classes: ActvityManager,
OperationalMode, and ActivitySet. The mode management concept is mapped to all
three classes.

Dictionary Term Operational Mode Classes Operational Mode and ActivitySet
Attributes Identifier operationalModeID attribute in

OperationalMode
Max number of activity sets ActivitySetCounts attribute in

OperationalMode
Max number of activities in
each set

activityCount attribute in ActivitySet

Operations Query for list of activities getActivitySets method in
OperationalMode

Load an Activity load method in OperationalMode
Unload an Activity unload method in OperationalMode

Actions Mode Entry Action modeEntryAction method in
OperationalMode

Mode Exit Action modeExitAction method in
OperationalMode

Checks Mode Entry Check canEnter method in OperationalMode
Mode Exit Check canExit method in OperationalMode

Dictionary Term Activity Manager Class ActivityManager
Attributes Identifier activityManagerID attribute in

ActivityManager
Current Mode currentMode attribute in

ActivityManager
Operations Activate activate method in ActivityManager

Request mode transition changeMode method in
ActivityManager

Actions Mode Update Action modeUpdateAction method in
ActivityManager

Checks Mode Update Check isModeChangeNeeded method in
ActivityManager

Mode Transition Check canChangeMode method in
OperationalMode

10.3 Domain Dictionary Entries for Parameter Database Concept
Unlike the activity and mode management concepts, the parameter database concept is not
mapped to the UML2 part of the Control Framework. It is instead mapped to the parameter
database meta-model which is discussed in section 14.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 44

10.4 Domain Dictionary Entries for Data Pool Concept
Unlike the activity and mode management concepts, the parameter database concept is not
mapped to the UML2 part of the Control Framework. It is instead mapped to the parameter
database meta-model which is discussed in section 14.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 45

11 CONTROL FRAMEWORK – MAPPING OF SHARED PROPERTIES
This section describes how the shared properties defined at domain analysis level for the
Control Framework have been mapped to the UML2 model of the framework. The formal with
which the mapping is described is the same as used for the DH Framework and as described in
the introduction to section 7.

11.1 Shared Properties for Activity Concept
This section describes the mapping of the shared properties associated to the activity concept
of the Control Framework.

11.1.1 Activity Initialization Properties
The properties relative to the activity initialization are implemented in the state machine of
class Component. This state machine is the parent state machine of all activities. The activity
state machine is embedded within state CONFIGURED in the Component state machine.

P11.1.1-1 The initialization operation on an activity is only successful if the initialization
check returns TRUE. If this is not the case, then the initialization operation on
the activity has no effect.
(1) State INITIALIZED in the state machine associated to class Component can
only be entered if method canInitialize in the same class returns TRUE
when the transition into the state is attempted.
(2) State CONFIGURED in the state machine associated to class Component
can only be entered if method canConfigure in the same class returns TRUE
when the transition into the state is attempted.

P11.1.1-2 If the initialization operation on an activity is successful, then the activity
performs its initialization action.
When state INITIALIZED in the state machine associated to class Component
is entered, then method doInitialize is executed.
When state CONFIGURED in the state machine associated to class
Component is entered, then method doConfigure is executed.

P11.1.1-3 Unless an activity has been successfully initialized, all other operations
performed upon it have no effect.
The trigger methods defined by class Activity trigger a state transition only
when the state machine associated to the class is in state CONFIGURED.

11.1.2 Activity Execution
The properties relative to the activity execution are implemented in the state machine of class
Activity. The execution of an activity is performed by an activity manager and it consists in
the execution of three methods in sequence: readInputs, propagate, and writeOutputs.

P11.1.2-1 When an activity that is neither disabled nor held is executed, it performs its
propagation check and, if this returns TRUE, then the activity performs its input
read operation, its propagation action , and its output write operation.
Pre-condition: the activity is loaded in the ActivityManager.
If method activate is called on the activity manager, and if the call does not
result in a change in operational mode, and if the activity is in state ACTIVE,
then the activity goes through states EXECUTE1, EXECUTE2, and then
returns to state ACTIVE.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 46

11.1.3 Holding and Resuming Activities
The properties relative to the activity execution are implemented in the state machine of class
Activity. The execution of an activity is performed by an activity manager and it consists in
the execution of three methods in sequence: readInputs, propagate, and writeOutputs.

P11.1.3-1 An execute operation performed upon an activity that is held has no effect.
Pre-condition: the activity is loaded in the ActivityManager.
If method activate is called on the activity manager, and if the call does not
result in a change in operational mode, and if the activity is in state HELD, then
the activity remains in this state.

P11.1.3-2 If a resume operation is performed upon an activity that is held, then the activity
is no longer held (ie it is resumed).
If method resume is called on an activity that is in state HELD, then the activity
makes the transition to state ACTIVE.

P11.1.3-3 If a hold operation is performed upon an activity that is not held, then the activity
is held.
If method held is called on an activity that is in state ACTIVE, then the activity
makes the transition to state HELD.

11.1.4 Enabling and Disabling of Activities
The properties relative to the activity execution are implemented in the state machine of class
Activity. The execution of an activity is performed by an activity manager and it consists in
the execution of three methods in sequence: readInputs, propagate, and writeOutputs.

P11.1.4-1 When an activity is disabled, it performs its end action.
When an activity enters state DISABLED, then it executes method
doEndAction.

P11.1.4-2 When an activity is enabled, it performs its start action.
When an activity leaves state DISABLED, then it executes method
doStartAction.

P11.1.4-3 An execute operation performed on an activity that is disabled has no effect.
Pre-condition: the activity is loaded in the ActivityManager .
If method activate is called on the activity manager, and if the call does not
result in a change in operational mode, and if the activity is in state DISABLED,
then the activity remains in this state.

P11.1.4-4 If a disable operation is performed upon an activity that is enabled, then the
activity becomes disabled.
If method disable is called on an activity that is in state ACTIVE, then the
activity makes the transition to state DISABLED.

P11.1.4-5 If an enabled operation is performed upon an activity that is disabled, then the
activity becomes enabled.
If method enable is called on an activity that is in state DISABLED, then the
activity makes the transition to state ACTIVE.

11.2 Shared Properties for Mode Management Concept
This section describes the mapping of the shared properties associated to the operational mode
and activity manager concepts.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 47

11.2.1 Activity Manager Activation
The properties relative to the activity manager activation are implemented in the methods of
class ActivityManager. The implementation of these methods is modelled using the action
language of the FW Profile.

P11.2.1-1 When an activity manager is activated, it first performs the mode update
check. It then performs a change in current operational mode (if this is
required by the outcome of the mode update check), and it finally executes all
the activities in the current operational mode.
When method activate is called on an activity manager, then method
isModeChangeNeeded is called. If this returns true, then method
changeMode is called with its argument equal to the return value of method
getTargetMode. Finally, method activate is called on all activities in the
current operational mode.

11.2.2 Current Operational Mode Changes
The current operational mode of an activity manager can change either as a result of a request
from some outside entity (mode transition request) or as a result of an autonomous decision of
the activity manager itself (mode update check).

In both cases, the change in current mode can only take place under certain conditions. More
specifically, there are three types of checks that are performed by an operational mode:

• The mode exit check verifies that the current operational mode can be exited.
• The mode entry check verifies that the target operational mode can be entered.
• The mode transition check verifies that the transition from the current to the target

operational mode can be performed (ie it verifies the legality of the transition across
two modes)

The change in operational mode is only performed if all three checks are positive. When an
activity manager changes its operational mode, then it executes its mode update action.

When an operational mode is phased out from being the current mode, then the activity
manager executes the end actions associated to all its activities. Similarly, when an
operational mode is phased in as new current mode, the activity manager executes all its start
actions.

Note that the order in which the start and end actions of the activities in an operational mode
are executed is undefined because the operational mode is a set of activities (as opposed to an
ordered list). The start and end actions of activities are factors of variation of the Control
Framework and their content is defined by the application designer during the framework
instantiation process. However, in order to preserve determinism of behaviour, they are
restricted to modify only the internal state of the activity itself (see section 12.2).

Changes to the global state of the framework (namely to the content of the data pool) that
should take place when an operational mode changes, must be encapsulated in the entry and
exit actions of the operational mode themselves.

P11.2.2-1 A change in current operational mode from a source to a destination operational
mode is only performed if the mode exit check of the source mode, the mode
entry check of the destination mode, and the mode transition check on the
[source,destination] pair are successful.
A call to method activate on ActivityManager can only result in a change
in current operational mode if all the following conditions hold: method canExit

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 48

in the source mode returns TRUE, method canEnter in the destination mode
returns TRUE, and method canChangeMode on the [source, destination] mode
returns TRUE.

P11.2.2-2 When an operational mode is phased out from being the current mode of an
activity manager, the activity manager executes the end action of all its
activities.
If a call to method activate on ActivityManager results in a change in
current operational mode, then method end is executed on all activities of the
source mode and this results in method doEndAction being executed on
them.

P11.2.2-3 When an operational mode is phased in as new current mode of an activity
manager, the activity manager executes the start action of all its activities.
If a call to method activate on ActivityManager results in a change in
current operational mode, then method start is executed on all activities of the
source mode and this results in method doStartAction being executed on
them.

P11.2.2-4 When an activity manager changes its current mode, then it executes its mode
update action.
If a call to method activate on ActivityManager results in a change in
current operational mode, then its method modeUpdateAction is executed.

P11.2.2-5 When an operational mode becomes the new current mode, it executes its
mode entry action.
If a call to method activate on ActivityManager results in a change in
current operational mode, then method modeEntryAction is executed on the
new operational mode.

P11.2.2-6 When an operational mode is phased out from being the current mode, it
executes its mode exit action.
If a call to method activate on ActivityManager results in a change in
current operational mode, then method modeExitAction is executed on the
old operational mode.

11.3 Shared Properties for Parameter Database Concept
Unlike the activity and mode management concepts, the parameter database concept is not
mapped to the UML2 part of the Control Framework. It is instead mapped to the parameter
database meta-model which is discussed in section 14. The shared properties associated to it
are discussed in this section.

11.4 Shared Properties for Data Pool Concept
Unlike the activity and mode management concepts, the data pool concept is not mapped to
the UML2 part of the Control Framework. It is instead mapped to the data pool meta-model
which is discussed in section 14. The shared properties associated to it are discussed in this
section.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 49

12 CONTROL FRAMEWORK – FACTORS OF VARIATION
This section describes how the factors of variation defined at domain analysis level for the
Control Framework are mapped to the UML2 design model of the framework. The format of
the description of the mapping is the same as described in the introduction to section 8. The
general considerations made in that section for the DH Framework also apply to the Control
Framework.

12.1 Attributes as Factors of Variation
All the attributes attached to framework classes represent implicit factors of variation since
attribute values are intended to be defined by the application designer at framework
instantiation time.

Factors of variations linked to attributes are regarded as trivial and implicitly defined by the
domain model and are therefore not further considered in this section.

12.2 Factors of Variation for Activity Concept
This section describes the mapping of the factors of variation associated to the activity
concept.

With respect to the initialization check and actions, it should be recalled that activity
initialization is mapped to the generic initialization and configuration mechanism offered by
the Component super-class.

FV12.2-1 Activity Initialization Check
Description The implementation of the initialization check used in property P11.1.1-1 is

application-specific.
Default The default implementation of the initialization check returns TRUE if all the

attributes of the activity have legal values.
Range This check must return either TRUE (activity has been successfully initialized)

or FALSE (activity has not been successfully initialized).
Mapping Method canInitialize and canConfigure in class Component

FV12.2-2 Activity Initialization Action
Description The implementation of the initialization action used in property P11.1.1-2 is

application-specific.
Default The default implementation of the initialization action does nothing.

Range Unrestricted.

Mapping Method doInitialize and doConfigure in class Component

FV12.2-3 Activity Propagation Check
Description The implementation of the propagation check used in property P11.1.2-1 is

application-specific.
Default The default implementation of the propagation check returns TRUE.

Range This check must return either TRUE (activity can be propagated) or FALSE

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 50

(activity cannot be propagated).
Mapping Method canPropagate in class Activity

FV12.2-4 Activity Propagation Action
Description The implementation of the propagation action used in property P11.1.2-1 is

application-specific.
Default There is no default implementation for the propagation action.

Range Unrestricted.

Mapping Method doPropagate in class Activity

FV12.2-5 Activity Input Read Action
Description The implementation of the input read action used in property P11.1.2-1 is

application-specific.
Default There is no default implementation for the input read action.

Range Unrestricted.

Mapping Method doReadInputs in class Activity

FV12.2-6 Activity Output Write Action
Description The implementation of the output write action used in property P11.1.2-1 is

application-specific.
Default There is no default implementation for the output write action.

Range Unrestricted.

Mapping Method doWriteOutputs in class Activity

FV12.2-7 Activity Start Action
Description The implementation of the start action used in property P11.1.4-2 is application-

specific.
Default The default implementation of the start action does nothing.

Range This action can only affect the internal state of the activity (ie it cannot change
the value of an entry in a data pool). See discussion in section 11.2.2.

Mapping Method doStartAction in class Activity

FV12.2-8 Activity End Action
Description The implementation of the end action used in property P11.1.4-1 is application-

specific.
Default The default implementation of the end action does nothing.

Range This action can only affect the internal state of the activity (ie it cannot change
the value of an entry in a data pool). See discussion in section 11.2.2.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 51

Mapping Method doEndAction in class Activity

12.3 Factors of Variation for Mode Management Concept
This section describes the mapping of the factors of variation associated to the mode
management concept.

FV12.3-1 Mode Update Check
Description The implementation of the mode update check used in property P11.2.1-1 is

application-specific.
Default The default implementation of the mode update check returns: 'no mode update

required'.
Range This check must return either TRUE (mode update is required) or FALSE (no

mode update is required).
Mapping Method isModeChangeNeeded in class ActivityManager

FV12.3-2 Mode Exit Check
Description The implementation of the mode exit check used in property P11.2.2-1 is

application-specific.
Default The default implementation of the mode exit check returns: 'mode exit allowed'.

Range This check must return either TRUE (mode exit is allowed) or FALSE (mode exit
is not allowed).

Mapping Method canExit in class OperationalMode

FV12.3-3 Mode Entry Check
Description The implementation of the mode entry check used in property P11.2.2-1 is

application-specific.
Default The default implementation of the mode entry check returns: 'mode entry

allowed'.
Range This check must return either TRUE (mode entry is allowed) or FALSE (mode

entry is not allowed).
Mapping Method canEnter in class OperationalMode

FV12.3-4 Mode Transition Check
Description The implementation of the mode transition check used in property P11.2.2-1 is

application-specific.
Default The default implementation of the mode transition check returns: 'mode

transition allowed'.
Range This check must return either TRUE (mode transition is allowed) or FALSE

(mode transition is not allowed).
Mapping Method canChangeMode in class ActivityManager

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 52

FV12.3-5 Mode Update Action
Description The implementation of the mode update action used in property P11.2.2-4 is

application-specific.
Default The default implementation of the mode update action returns without doing

anything.
Range Unrestricted.

Mapping Method ModeUpdateAction in class ActivityManager

FV12.3-2 Mode Exit Action
Description The implementation of the mode exit action used in property P11.2.2-6 is

application-specific.
Default The default implementation of this action returns without doing anything.

Range Unrestricted.

Mapping Method ModeExitAction in class OperationalMode

FV12.3-3 Mode Entry Action
Description The implementation of the mode entry action used in property P11.2.2-5 is

application-specific.
Default The default implementation of this action returns without doing anything.

Range Unrestricted.

Mapping Method ModeEbtryAction in class OperationalMode

12.4 Factors of Variation for Data Pool Concept
Unlike the activity and mode management concepts, the data pool concept is not mapped to
the UML2 part of the Control Framework. It is instead mapped to the parameter database
meta-model which is discussed in section 14. The factors of variation associated to it are
discussed in that section too.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 53

13 CONTROL FRAMEWORK – ACTIVITY EXAMPLES
The activity concept is perhaps the most novel among the concepts proposed by the CORDET
Framework. It is therefore useful to illustrate its use and versatility through two examples. The
example show how the activity concept can be extended to represent other concepts of
common usage within the control domain.

13.1 The HealthCheck Activity
The need to perform health check is very common within the control domain in general and
the AOCS domain in particular.

Health checks are often defined to periodically monitor some variable of interest and to check
whether the behaviour of the variable indicates an anomaly. If an anomaly is detected, then the
variable is declared to be 'suspected'. If the variable remains in this state more than a certain
number of consecutive monitoring cycle, then a failure is declared.

This behaviour can be encapsulated in a component that extends the generic activity
component offered by the Control Framework. Figure 13.1-1 shows the corresponding state
machine using an informal notation. This state machine should be embedded within the state
machine of the EXECUTE_2 state in the Activity component.

 FAILED

 HEALTHY

 SUSPECTED

 writeOutputs [n == nThreshold]

 H

 propagate [wasAnomalyFound]

 propagate [!wasAnomalyFound]

Entry: n = n + 1

Entry: n = 0

 propagate [!wasAnomalyFound]

Fig. 13.1-1: State Machine of HealthCheck Activity (Informal Notation)

The state machine basically works as follows:

● The health check is encapsulated in method doPropagation (which is defined in the
base component Activity and must be overridden by the HealthCheck component)

● Method wasAnomalyFound reports the outcome of the check.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 54

● Every time an anomaly is found, a counter n is incremented.
● A failure is declared if nThreshold consecutive anomalies are found.
● A declaration of failure is reversible.
● If the activity is disabled or ended, then the health check is reset and its state goes

back to HEALTHY.
● Method doEndAction is defined in the base component Activity and must be

overridden to reset the history state.

Application designers can further extend this activity to define their own specific health-
checks. The advantage for them is that they inherit the general health check logic: they only
have to define the specific anomaly detection checks.

Note that it is possible to define other types of 'reasonable' health check logic. Possible
differences from the logic shown in the previous figure are:

● A declaration of failure could be made irreversible;
● A failed check where the anomaly disappears becomes SUSPECTED before

becoming again HEALTHY
● Disabling and re-enabling the health check does not reset the health check
● Execution of a recovery action is embedded in state FAILED

Still other solutions are possible. The fact that no general health check logic can be define
implies that the definition of health checks cannot really be done at the level of the Control
Framework but is best left to lower levels of design.

13.2 The Manoeuvre Activity
The execution of manoeuvres (sequences of actions to achieve some high-level goal such as
slewing the spacecraft or switching on or off a complex unit) are another common task in
control systems in general and in AOCS in particular. For this purpose, too, it may be useful to
define a dedicated component as an extension of the generic Activity component.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 55

 TERMINATED

 READY

 IN_PROGRESS

 writeOutputs [hasFinished]

 H

 propagate [canStart] | doManoeuvreStep

 propagate [hasManoeuvreFailed]

Entry: nStep++

Entry: nStep = 0
Exit: initializeManoeuvre

 ABORTED

 Entry: doAbortAction

 propagate [!hasManoeuvreFailed]

Entry: finalizeManoeuvre

Fig. 13.2-1: State Machine of Manoeuvre Activity (Informal Notation)

The behaviour of a generic manoeuvre can be summarized as follows:

● The manoeuvre starts when its “start check” authorizes it.
● The manoeuvre executes in a number of steps.
● The manoeuvre can abort itself.
● A manoeuvre that is disabled, is reset.
● A manoeuvre can only be executed once before being reset.
● Method doEndAction must be overridden to reset the history state of the manoeuvre.

This component therefore encapsulates a generic manoeuvre management logic while at the
same time offering adaptation points where application-specific behaviour can be added.

Again, as in the case of the health check component, it would be possible to define different –
but still reasonable and useful – manoeuvre management logic. Possible alternative choices
are:

● Manoeuvres that can be executed more than once without being reset
● Manoeuvres that are capable of undoing one or more of its steps
● Manoeuvres that have explicit branching logic
● Manoeuvres that have a fixed number of steps

The fact that different logic can be define within the same control domain suggests that this
type of component exists at a level of abstraction lower than the level at which the more
general activity or operational mode concepts are defined.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 56

14 DATA POOL AND PARAMETER DATABASE META-MODEL
There are three reasons why the data pool and parameter database concepts were not mapped
to the UML2 model used for the rest of the Control Framework:

1. UML2 is well-suited to modelling software entities with a fixed structure. Functional
variability is modelled by leaving 'holes' in the structure under the guise of virtual or
pure virtual methods. The variability associated to the data pool and parameter
database concepts tends to be structural: it concerns the mode of access to the data
items and parameter values and the structure of the information behind each single
data item.

2. The designers of on-board applications normally represent the on-board data using
spreadsheets or database that describe the structure and content of each data item.

3. One implication of the activity concept proposed by the Control Framework is that
access to the data pool is likely to constitute a performance bottleneck for applications
instantiated from the framework. Language- and platform-specific optimizations may
therefore be necessary when defining both the design and the implementation of the
data pool. To a lesser extent, this may also apply to the parameter database design and
implementation. A design based on a meta-model that only capture the essential
structural features of the data pool and parameter database is preferable because it
facilitates the optimization during application development.

In principle, the difficulty mentioned at point 1 could be overcome by having a very complex
UML2-based model of a data pool or parameter database interface. Such an interface would
have to cover all possible structural variants of the data pool and database concept. An
implementation would only use a subset of the operations defined on this interface.

This approach would be complex but seems over-complex. Instead an alternative approach
was selected which allowed to remain closer to current practice. In the selected approach, at
design level, a meta-model is defined for the data pool and parameter database concepts. The
meta-model is formally expressed as a feature model but this is then mapped to a spreadsheet
with a fixed structure.

Note that the other parts of the Control Framework do not interact with the data pool and
parameter database concepts. This is makes it possible to select a different representation for
their design models.

Activities constitute the link between the part of the Control Framework modelled with UML2
and the data pool and parameter database parts of the framework. The link with the data pool
is encapsulated in methods readInputs and writeOutputs in the Activity component.
These are pure virtual methods which are likely to be instantiated only at the lowest level of
abstraction (namely on the final classes created during the framework instantiation process).
This means that the decoupling between the data pool model and the UML2 model of the
framework classes can be maintained until the end of the application design process.

The Control Framework does not model the link between activities and the parameter database
but application designer could use an approach similar to that used for the data pool with the
same objective of maintaining the decoupling with the parameter database model until the end
of the application design process.

The data pool and parameter database meta-models are conceptually separate but, in practice
and for the sake of simplicity, they are implemented as one single feature model.

Sections 14-1 and 14-2 describe the data pool and parameter database meta-models,
respectively. These meta-models are implemented as feature models. The following

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 57

subsection describes how these feature models can be mapped to the framework configuration
file.

14.1 Data Pool Meta-Model
The data pool meta-model is expressed as a feature model. The feature model is defined using
the XFeature tool6 with the “FD Configuration”. In other words, the same tool with the same
configuration is used for the data pool meta-model as was used for the domain model feature
models described in reference RD-37.

The feature model representing the data pool meta-model is shown in figure 14.1-1.

Fig. 14.1-1: Feature Model for the Data Pool Meta-Model

The following clarifications are in order with reference to the feature model of figure 14.1-1:

● There may be several data pools in the same applications. Each data pool has a name
(the data pool identifier) and a description. Each data pool holds a number of data
items.

● There are two modes of access to data pool items: either by copy or by pointer. It is
possible either to specify a mode of access at data pool level that applies to all items
in the data pool, or it is possible to specify a mode of access at data item level that
applies to each individual data item. Note that the feature model of the data pool meta-

6 The tool can be downloaded as free and open software from its home page at this address: http://www.pnp-
software.com/XFeature/

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 58

model defines an XFeature global constraint (which is, of course, not visible in figure
14.1-1) to express the fact that, if the mode of access is defined at data pool level, then
it cannot be defined at data item level.

● Each data item has a name (its identifier) and a description. The name should be
unique. Note that this constraint cannot be expressed in the feature model. .

● Data items have a structural type which may be: scalar, vector, matrix, or quaternion.
For matrices and vectors, the size must be specified too.

● The syntactical type of data items is expressed using the PTC and PFC fields defined
by the PUS.

● To each data pool item, a default value may be associated.

14.2 Parameter Database Meta-Model
The parameter database meta-model is expressed as a feature model. The feature model is
defined using the XFeature tool7 with the “FD Configuration”. In other words, the same tool
with the same configuration is used for the parameter database meta-model as was used for the
domain model feature models described in reference RD-37.

In practice, the feature model for the parameter database meta-model is embedded within the
same feature model that hosts the data pool meta-model.

The feature model representing the data pool meta-model is shown in figure 14.2-1.

Fig. 14.2-1: Feature Model for the Parameter Database Meta-Model

7 The tool can be downloaded as free and open software from its home page at this address: http://www.pnp-
software.com/XFeature/

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 59

The following clarifications are in order with reference to the feature model of figure 14.2-1:

● There may be several parameter databases in the same applications. Each parameter
database has a name (the parameter database identifier) and a description. Each
parameter database holds a number of parameters.

● There are two modes of access to parameters: either by copy or by pointer. It is
possible either to specify a mode of access at parameter database level that applies to
all items in the parameter database, or it is possible to specify a mode of access at
parameter level that applies to each individual parameter. Note that the feature model
of the data pool meta-model defines an XFeature global constraint (which is, of
course, not visible in figure 14.2-1) to express the fact that, if the mode of access is
defined at parameter database level, then it cannot be defined at parameter level.

● Each parameter has a name (its identifier) and a description. The name should be
unique. Note that this constraint cannot be expressed in the feature model. .

● Parameters have a structural type which may be: scalar, vector, matrix, or quaternion.
For matrices and vectors, the size must be specified too.

● The syntactical type of parameters is expressed using the PTC and PFC fields defined
by the PUS.

● To each parameter, a value must be associated.

14.3 Framework Configuration File
The meta-models in the previous two sections have been defined as family-level models
within the XFeature graphical environment. The advantage of this choice is that XFeature
family-level models can be automatically transformed into application meta-models. The
meta-models are implemented as XSD schemas.

These XSD-based meta-models can be used by application designer to define their specific
and concrete data pool and parameter database models. The definition can either be done
within the XFeature environment or in any XML editor. In the former case, the application-
level models are built as feature models within the XFeature graphical environment. The
graphical representation is, of course, automatically serialized to an XML-file that complies
with the XSD schema. In the latter case, they are built as text-based XML files that co,ply
with the XSD schema.

The two options are ultimately equivalent (they both result in the same XML-based
representation) and both are possible. In practice, however, both conflict with current practice
and would be awkward to use with the typical size of on-board data pools or parameter
database. As already mentioned at the beginning of this section, current practice is based is
based on the use of spreadsheets. This is convenient primarily because on-board data pool and
parameter databases will often have thousands of entries and hence a purely graphical
representation (XFeature solution) or a purely XML solution would be impractical.

Hence, in the CORDET project, a mixed solution is adopted where the data pool and
parameter database meta-models are formally defined as XFeature family-level feature models
but these are then not transformed into an XSD-based feature meta-model. Instead, they are
mapped to a spreadsheet and the spreadsheet is used during framework instantiation to define
the data pool and parameter database for a specific and concrete application.

The spreadsheet to which the data pool and parameter database meta-models are mapped is
called Framework Configuration File. This name has been chosen because this same file can
also be used to describe other aspects of a framework instantiation in addition to the data pool
and parameter database configuration.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 60

Figure 14.3-1 illustrates the previous discussion by showing the way in which a family-level
feature model representing the variability within a framework can be transformed into
application level configuration information.

XFeature Family-Level Model)

XSD Schema

Application Meta-Model

Automatic
Generation
in XFeature

Mapping
 Rules

Framework Configuration File
(Spreadsheet)

XML File

Application-Level
Feature Model

XML Editor

XFeature
Environment

Fig. 14.3-1: Generation of Application-Level Configuration Informationt

The next two subsections describe how the data pool meta-model was mapped to the
Framework Configuration File. Note that a sample Framework Configuration File is available
with the design data package of the CORDET Frameworks.

14.3.1 Data Pool Meta-Model Mapping
Spreadsheets have no explicit mechanisms for representing variability. Hence, the solution
chosen for the data pool meta-model is to partially “flatten” the feature model and to map each
terminal feature to a field in the spreadsheet.

Figure 14.3.1-1 shows a snapshot of the data pool part of the sample Framework
Configuration File. The figure is nearly self-explanatory. The specific mapping rules for the
data pool meta-model are:

● A data pool feature is mapped to set of consecutive records.

● A data item feature is mapped to a record

● The children sub-features of the data item feature are mapped to fields in the data item
record

● The SyntacticalType field is split into two sub-fields representing the two sub-features
of the SyntacticalType feature.

● The sub-features of the StructuralType and DataItemAccessMode features are mapped
to enumerated values that are the only legal values of the homonymous fields in the
data item records.

● The 'Size' features are mapped to enumerated values that are appended to the
StructuralType and DataItemAccessMode values (in other words, they are just used as
part of the names entered in the StructuralType and DataItemAccessMode fields).

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 61

● The 'current value' feature is not mapped to the spreadsheet since the value of this
feature is not defined at design time.

● The global constraint on the access mode is mapped to a rule whereby the access
mode can be defined either for the data pool as a whole (in the data pool record – as
was done for the data pool 2 in figure 14.3.1-1) or for each data item (in the data item
record – as was done for data pool 1 in figure 14.3.1-1).

Fig. 14.3.1-1: Snapshot of Data Pool Configuration Spreadsheet

14.3.2 Parameter Database Meta-Model Mapping
The mapping of the parameter database meta-model to the spreadsheet in the Framework
Configuration File was done in manner analogous as for the data pool meta-model. The result
is illustrated in figure 14.3.2-1 which shows a snapshot of the database part of the sample
Framework Configuration File.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 62

Fig. 14.3.2-1: Snapshot of Parameter Database Configuration Spreadsheet

14.3.3 Other Configuration Information
As indicated above, the Framework Configuration File is intended to hold configuration
information about other parts of the framework in addition to the data pool and parameter
database. In all cases, the principle is the same: part of the feature model that defines the
framework is mapped to a spreadsheet. This spreadsheet is intended for the application
designer as a means to define the configuration of his application in terms of the features
offered by the framework.

The sample Framework Configuration File contains three additional spreadsheets in addition
to those for the data pool and parameter database:

● The OperationalMode spreadsheet defines the configuration of the operational modes
in an application.

● The Activity spreadsheet defines the configuration of the activities in an application.

● The HealthChecks spreadsheet defines the configuration of the health checks in an
application.

Note that whereas the spreadsheets for the data pool and database are intended to capture all
the information required to define the data pool and database of an application, in the cases
above, instead, the spreadsheet are intended to only indicate which of the variable features
offered by the framework are effectively used at application level.

The specific mapping rules for the parameter database meta-model are:

● A parameter database feature is mapped to set of consecutive records.

● A parameter feature is mapped to a record

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 63

● The children sub-features of the parameter feature are mapped to fields in the
parameter record

● The SyntacticalType field is split into two sub-fields representing the two sub-features
of the SyntacticalType feature.

● The sub-features of the StructuralType and ParameterAccessMode features are
mapped to enumerated values that are the only legal values of the homonymous fields
in the parameter records.

● The 'Size' features are mapped to enumerated values that are appended to the
StructuralType and ParameterAccessMode values (in other words, they are just used
as part of the names entered in the StructuralType and ParameterAccessMode fields).

● The global constraint on the access mode is mapped to a rule whereby the access
mode can be defined either for the database as a whole (in the parameter database
record – as was done for the database 2 in figure 14.3.3-1) or for each parameter (in
the parameter – as was done for database 1 in figure 14.3.3-1).

Fig. 14.3.3-1: Snapshot of Operational Model Configuration Spreadsheet

As an example, figure 14.3.3-1 shows the configuration spreadsheet for the operational modes.
This spreadsheet shows at a glance which operational modes have been defined for a certain
application, which activities are attached to each operational mode, and which checks and
actions are implemented for each operational mode. The spreadsheet could be further
expanded to give a specification (or perhaps a pointer to a specification) of the checks and
actions.

As a final example, figure 14.3.3-2 shows the configuration spreadsheet for the activities.
Note that the information in the various spreadsheet can be cross-linked to ensure consistency
(thus, for instance, the activity entries in figure 14.3.3-1 are pointers to the activity definitions
in figure 14.3.3-2).

Fig. 14.3.3-2: Snapshot of Activity Configuration Spreadsheet

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: Framework Domain Design
Ref:: PP-FW-COR-0002
Date: 12 September 2008
Project: CORDET
Issue: 1.2
Page: 64

14.4 Code Generator for Data Pool and Parameter Database
The Control Framework proposes a design-level model for the data pool and parameter
database concepts that is based on a meta-model. This implies that the data pool and parameter
database design models to be used in a concrete application should be obtained by
instantiating this meta-model.

The instantiation of the meta-model can be done either manually or automatically using a code
generator. The issue naturally arises of whether the decision as to which technique to use –
manual or automatic generation – should be done at framework or at application level. Also,
in the case where a code generator is to be used, the related issue arises of whether this should
be defined at framework or at application level.

The OBS Framework, one of the predecessors of the Control Framework (see reference
RD-18), took the view that the data pool and parameter database ought to be built
automatically from their design-level models and that the code generator ought to be defined
at framework level. There are now two facts that militate against the same choice for the
CORDET Control Framework:

1. The experience from the OBS Framework Project is that framework-level code
generator are very complex to build (because they must encompass all possible
structural choices for the target data pool or parameter database)

2. Since the time when the OBS Framework was defined (2003-4), the use of code
generators has become more widespread and more widely accepted by programmers.

For the CORDET Project, the decision has therefore been taken to treat the generation of data
pool and parameter databases as an application-level issue. The data pools and parameter
databases, in other words, are treated in the same way as the non-functional containers:
namely as structures that are generated at application-instantiation time from a meta-model
defined at framework level.

Copyright 2007 P&P Software GmbH � All Rights Reserved

	1GLOSSARY AND ACRONYMS
	2REFERENCES
	3INTRODUCTION
	3.1Objectives Of The CORDET Study
	3.2Objective Of This Document
	3.3Design Model Structure
	3.4Design Files
	3.5Terminology
	3.6Structure Of This Document

	4GENERAL DESIGN ISSUES
	4.1Naming Conventions
	4.2Classes and Interfaces
	4.3Primitive Types
	4.4Mapping to UML2 Elements

	5DH FRAMEWORK ARCHITECTURE
	5.1Target Domain
	5.2Design Heritage
	5.3Design Pattern Heritage
	5.4High-Level Functions
	5.5Telecommanding Function
	5.6Telemetry Function
	5.7Initialization and Configuration Function

	6DH FRAMEWORK – DOMAIN DICTIONARY MAPPING
	6.1Mapping of Dictionary Entries for Telecommand Concept
	6.2Mapping of Dictionary Entries for Telemetry Concept

	7DH FRAMEWORK – MAPPING OF SHARED PROPERTIES
	7.1Shared Properties for Telecommand Concept
	7.1.1Telecommand Execution
	7.1.2Telecommand Management
	7.1.3Telecommand Loading

	7.2Shared Properties for Telemetry Concept
	7.2.1Telemetry Packet Configuration
	7.2.2Telemetry Packets Execution
	7.2.3Telemetry Packet Management

	8DH FRAMEWORK – MAPPING OF FACTORS OF VARIATION
	8.1Attributes as Factors of Variation
	8.2Factors of Variation for Telecommand Concept
	8.3Factors of Variation for Telecommand Loading Concept
	8.4Factors of Variation for Telecommand Stream Concept
	8.5Factors of Variation for Telemetry Concept
	8.6Factors of Variation for Telemetry Stream Concept

	9CONTROL FRAMEWORK – UML2 MODEL ARCHITECTURE
	9.1Target Domain
	9.2Design Pattern Heritage
	9.3High-Level Functions
	9.4Activity Management Function

	10CONTROL FRAMEWORK – DOMAIN DICTIONARY MAPPING
	10.1Mapping of Domain Dictionary Entries for Activity Concept
	10.2Mapping of Domain Dictionary Entries for Mode Management Concept
	10.3Domain Dictionary Entries for Parameter Database Concept
	10.4Domain Dictionary Entries for Data Pool Concept

	11CONTROL FRAMEWORK – MAPPING OF SHARED PROPERTIES
	11.1Shared Properties for Activity Concept
	11.1.1Activity Initialization Properties
	11.1.2Activity Execution
	11.1.3Holding and Resuming Activities
	11.1.4Enabling and Disabling of Activities

	11.2Shared Properties for Mode Management Concept
	11.2.1Activity Manager Activation
	11.2.2Current Operational Mode Changes

	11.3Shared Properties for Parameter Database Concept
	11.4Shared Properties for Data Pool Concept

	12CONTROL FRAMEWORK – FACTORS OF VARIATION
	12.1Attributes as Factors of Variation
	12.2Factors of Variation for Activity Concept
	12.3Factors of Variation for Mode Management Concept
	12.4Factors of Variation for Data Pool Concept

	13CONTROL FRAMEWORK – ACTIVITY EXAMPLES
	13.1The HealthCheck Activity
	13.2The Manoeuvre Activity

	14DATA POOL AND PARAMETER DATABASE META-MODEL
	14.1Data Pool Meta-Model
	14.2Parameter Database Meta-Model
	14.3Framework Configuration File
	14.3.1Data Pool Meta-Model Mapping
	14.3.2Parameter Database Meta-Model Mapping
	14.3.3Other Configuration Information

	14.4Code Generator for Data Pool and Parameter Database

