
software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 1

THE CORDET METHODOLOGY

Prepared by P&P Software GmbH
for the Study on Component Oriented Development Techniques

(ESA-Estec Contract 20463/06/NL/JD)

Written By: A. Pasetti

O. Rohlik

Date: 12 September 2008

Issue: 1.3

Reference: PP-MR-COR-0001

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 2

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 3

Table of Contents
1 GLOSSARY AND ACRONYMS...5
2 REFERENCES..7
3 INTRODUCTION...9

3.1 Objectives of the CORDET Study..9
3.2 Objectives of This Document...9
3.3 Methodology Survey..10
3.4 Structure of This Document..11
3.5 Status of This Document..11

4 BASIC CONCEPTS AND TERMINOLOGY...12
4.1 Application and Domain Engineering...12
4.2 System Families and Software Frameworks...14

5 BASIC ASSUMPTIONS...18
5.1 Structure of CORDET Target Systems...18
5.2 The Commonalities of CORDET Product Families..21
5.3 The Variability within CORDET Product Families..22

6 THE CORDET METHODOLOGY – PART I..23
6.1 General...23
6.2 The Domain Analysis Activity...24
6.3 The Domain Design Activity..25

6.3.1 Typology of Design Models..26
6.4 The Domain Implementation Activity..28

7 THE CORDET METHODOLOGY – PART II...30
7.1 Methodological Constraints..30
7.2 Methodological Requirements – Domain Analysis...30

7.2.1 Identification of Functional Domains..31
7.2.2 Bottom-Up vs Top-Down Approach..31
7.2.3 Domain Model – Shared Properties...32
7.2.4 Domain Model – Factors of Variation...33
7.2.5 Feature Models..34
7.2.6 Content of Domain Model...35
7.2.7 Iterative Definition of Domain Models..35

7.3 Methodological Requirements – Domain Design...36
7.3.1 Mapping Shared Properties to the Design Level..36
7.3.2 Mapping Domain-Level Variability to Design-Level Adaptability..........................38
7.3.3 Design Methodology – Software Frameworks...40
7.3.4 Design Methodology – System Family..42
7.3.5 Merging the Functional and Non-Functional Designs...44
7.3.6 Iterative Definition of Design Model...45

7.4 Methodological Requirements – Domain Implementation...45
8 THE CORDET TOOL CHAIN...47

8.1 Tool Selection Criteria..47
8.2 Tool Selection – Domain Analysis Phase...47
8.3 Tool Selection – Domain Design Phase..47
8.4 Tool Selection – Domain Implementation Phase..48
8.5 Other Tools...48

9 SUMMARY TABLE...49

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 4

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 5

1 GLOSSARY AND ACRONYMS
The table defines the most important technical terms and abbreviations used in this document.

Term Short Definition
Abstract Interface A definition of the signature and semantics of a set of logically related operations

without any implementation details.
AOCS The Attitude and Orbit Control Subsystem of satellites.
Application A software program that can be deployed and run as a single executable.
Application Instantiation The process whereby a component-based application is constructed by configuring

and linking individual components.
Component A unit of binary reuse that exposes one or more interfaces and that is seen by its

clients only in terms of these interfaces.
Component-Based
Framework

A software framework that has components as its building blocks.

Computational Node A computational resource that has memory and processing capabilities.
CORBA A widely used middleware infrastructure.
Design Pattern A description of an abstract design solution for a common
Domain A short-hand for either 'family domain' or 'framework domain'
DSL Domain Specific Language (a language that is created to describe applications or

components in a very narrow domain).
DTD Document Type Definition. It defines the legal building blocks of an XML

document. It defines the document structure with a list of legal elements. Its purpose
is similar to the one of an XML Schema, although it is not as feature rich and the
syntax is different.

EMF Eclipse Modelling Framework: a modeling framework and code generation facility
for building tools and other applications based on a structured data model.

Family Domain The set of systems whose implementation is supported by a system or product
family.

Feature A characteristics of a system or an application that is relevant to its users.

Feature Model A description of a set of features and their legal combinations.

Framework Domain The set of applications whose implementation is supported by the framework.
Framework Instantiation The process whereby a framework is adapted to the needs of a specific application

within its domain.
Functional Property A property that can be expressed as a logical relationship among the variables that

define the state of an application or system.
Generative Programming A software engineering paradigm that promotes the automatic generation of an

implementation from a set of specifications.
Generic Architecture A set of reusable and adaptable software assets to support the instantiation of

systems within a certain target domain. In the CORDET project, a generic
architecture consists of a system family, to model the non-functional aspects of
systems in the architecture's target domain, and a set of software frameworks, to
model their functional aspects. The objective of the CORDET Project is to define a
generic architecture for satellite on-board systems.

GNC Guidance Navigation and Control (a synonym for AOCS).
Interface An abstract specification of services to be provided by any concrete realisation of it.
JVM Java Virtual Machine.
Non-Functional Property A property other than a functional property.
Object Oriented
Framework

A software framework that uses inheritance and object composition as its chief
adaptation mechanisms.

OBS The On-Board Software.
OtM Adaptability Outside-the-Model Adaptability. An adaptability mechanism that is defined outside

the UML2 model.
Product Family A set of applications or systems that can be built from a pool of shared assets.
Property Same as a 'feature' above.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 6

Software Component A unit of binary reuse that exposes one or more interfaces and that is seen by its
clients only in terms of these interfaces.

Software Framework A kind of product family where the shared assets are software components
embedded within an architecture optimized for a certain domain and the 'product' is
a software application.

System A group of independent but interrelated hardware and software elements comprising
a unified whole.

System Family A kind of product family where the 'product' to be built using the reusable assets
provided by the family is the architectural infrastructure (the 'middleware') of a
complex system.

XML Extensible Markup Language. XML documents consist (mainly) of text and tags,
and the tags imply a tree structure upon the document. An XML document is said to
be valid if it conforms to an XML Schema or a DTD.

XML Schema The XML Schema language is also referred to as XML Schema Definition (XSD).
They provide a means for defining the structure, contents and semantics of XML
documents. XML Schemas are written in XML

WtM Adaptability Within-the-Model Adaptability Mechanism. An adaptability mechanism that is
defined within the UML2 model.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 7

2 REFERENCES

RD1 AOCS Framework Project Web Site, control.ee.ethz.ch/~ceg/AocsFrameworkProject
RD2 RT Java AOCS Framework Project Web Site,

control.ee.ethz.ch/~ceg/RealTimeJavaFramework
RD3 Brauer (1999) Object Oriented Languages Study. Final Report for ESA contract

12889/NL/PA
RD4 Clemens P, Northrop L (2001) A Framework for Software Product Line Practice,

Software Engineering Institute, Carnegie Mellon University, Available from Internet
Web Site: www.sei.cmu.edu/activities/plp/framework.html

RD5 Donohoe P (ed), Software Product Lines – Experience and Research Directions,
Kluwer Academic Publisher

RD6 Fayad M, Schmidt D, R. Johnson R (eds), Building Application Frameworks –
Object Oriented Foundations of Framework Design, Wiley Computer Publishing,
1999

RD7 Gamma E, et al, Design Patterns – Elements of Reusable Object Oriented Software,
Addison-Wesley, Reading, Massachusetts

RD8 TimeSys Home Page, http://www.timesys.com/index.cfm
RD9 AERO Project Home Page, http://www.aero-project.org
RD10 Aicas Home Page, http://www.aicas.com
RD11 OBOSS Home Page, http://spd-web.terma.com/Projects/OBOSS/Home_Page/
RD12 Pasetti A, et al, An Object-Oriented Component-Based Framework for On-Board

Software, Proceedings of the Data Systems In Aerospace Conference, Nice, May
2001

RD13 Pasetti A., Software Frameworks and Embedded Control Systems, LNCS Series,
Springer-Verlag, 2001

RD14 Szyperski C, Component Software. Addison Wesley Longman Limited, Harrow
(UK), 1998

RD15 Czarnecki, K., Eisenecker, U.: Generative Programming – Methods, Tools, and
Applications, Addison-Wesley, 2000

RD16 Birrer I, Chevalley P, Pasetti A, Rohlik O, An Aspect Weaver for Qualifiable
Applications, Proceedings of the Data Systems in Aerospace (DASIA) Conference,
Nice 2004.

RD17 XWeaver Web Site: http://www.pnp-software.com/XWeaver
RD18 OBS Framework Web Site, http://www.pnp-software.com/ObsFramework
RD19 Introduction to Aspect Oriented Programming, http://www.pnp-

software.com/AspectOrientedProgramming.html
RD20 Birrer I, Pasetti A, Rohlik O, Implementing Adaptability in Embedded Software

through Aspect Programs, IEEE Proceedings of the Mechantronic & Robotics
Conference 2004, Aachen, Germany, Sept. 2004

RD21 Automated Framework Instantiation Project Web Site, http://www.pnp-
software.com/AutomatedFrameworkInstantiation

RD22 Cechticky V, Pasetti A, Rohlik O, Schaufelberger W, XML-Based Feature
Modelling, published in: J. Bosch, C. Kueger (eds), Software Reuse: Methods,
Techniques, and Tools, LNCS Vol 3107, Springer-Verlag, 2004

RD23 Cechticky V, Chevalley P, Pasetti A, Schaufelberger W, A Generative Approach to

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 8

Framework Instantiation, published in: F. Pfenning, Y. Smaragdakis (eds),
Generative Programming and Component Engineering, LNCS Vol 2830, Springer-
Verlag, 2003

RD24 ASSERT Project – HRI pilot project, Deliverable D6.3.1-1 : HRI System Family
Definition Report

RD25 ASSERT Project – HRI pilot project, Deliverable D6.3.2-1 : HRI Reference
Architecture Definition Report V1

RD26 C. Moreno, G. Garcia, Plug & Play architecture for on-board software components,
Proceedings of the DASIA 2002 conference, Nice 2002

RD27 ASSERT Project – ETH Deliverable D4.2.2-1 : Software Building Blocks Adaptation
Techniques – The FW Profile

RD28 ASSERT Project – ETH Deliverable D4.2.4-3 : Contribution to V2 Demonstrator
RD29 ASSERT Project – ETH Deliverable D4.2.4-4.1 : The ETH Demonstrator

Framework – Contribution to V3 Demonstrator, Part 1 (Domain Design)
RD30 ASSERT Project – ETH Deliverable D4.2.4-4.2 : The ETH Demonstrator

Framework – Contribution to V3 Demonstrator, Part 2 (Domain Implementation)
RD31 Panunzio M, Vardanega T, An Approach to the Timing Analysis of Hierarchical

Systems, Proceedings of the 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, August 2007

RD32 Egli M, Pasetti A, Rohlik O, Vardanega T, A UML2 Profile for Reusable and
Verifiable Real-Time Components, in: Morisio M (ed), Reuse of Off-The-Shelf
Components, LNCS Vol 4039, Springer-Verlag, 2006

RD33 ASSERT Project – ETH Deliverable D4.2.3-1 : Product Family Meta-Model
Definition – A Family Meta-Model for the XFeature Tool

RD34 GMV, Domain Engineering Methodologies Survey, CORDET Deliverable GMV-
CORDET-WP202-RP-01

RD35 ASSERT Project – ETH Deliverable D4.2.4-4.3 : The ETH Demonstrator
Framework – Contribution to V3 Demonstrator, Part 3 (Design Contracts)

RD36 Panunzio M, Vardanega T, A Metamodel-Driven Process Featuring Advanced
Model-Based Timing Analysis, Proceedings of the 12th Conference on Reliable
Software Technologies – Ada-Europe'07, Geneva, Switzerland, Springer Verlag.
June 2007.

RD37 Bordin M, Vardanega T, Correctness by Construction for High-Integrity Real-Time
Systems: A Metamodel-Driven Approach, Proceedings of the 12th Conference on
Reliable Software Technologies – Ada-Europe'07, Geneva, Switzerland, Springer
Verlag. June 2007

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 9

3 INTRODUCTION
This document is written as part of the ESA study on Component Oriented Development
Techniques or CORDET. The study is done under ESA contract 20463/06/NL/JD.

3.1 Objectives of the CORDET Study
The general objective of the CORDET study is the definition of a generic architecture for on-
board satellite applications.

The term “generic architecture” is used to designate a set of reusable and adaptable software
assets to support the instantiation of software systems within a certain target domain. In the
CORDET project, a generic architecture consists of a system family, to model the non-
functional aspects of systems in the architecture's target domain, and a set of software
frameworks, to model their functional aspects.

The terms “system family” and “software frameworks” are used to designate two kinds of
product families. A product family is a set of applications or systems that can be built from a
pool of shared assets. A system family is a kind of product family where the 'product' to be
built using the reusable assets provided by the family is the architectural infrastructure (the
'middleware') of a complex system. A software framework is a kind of product family where
the 'product' to be built is a software application and the shared assets are software components
embedded within an architecture optimized for a certain domain.

The generic architecture to be defined in this study is called the CORDET Generic
Architecture. The product families which constitute the CORDET Generic Architecture are
called the CORDET Product Families.

Against this background, the more specific objectives of the CORDET study are:

• To define a methodology for the development of the CORDET Generic Architecture
and, by implication, for product family-based development activities at both system-
and software-level for satellite on-board applications.

• To identify and to define at the level of their functional and non-functional interfaces
the product families that constitute the CORDET Generic Architecture.

• To demonstrate the proposed methodology and the proposed architecture by
instantiating a subset of its product families to build an end-to-end demonstrator of an
on-board system.

• To get feedback from the space community in order to reach as large an agreement as
possible on the outputs of the CORDET study.

3.2 Objectives of This Document
This document fulfills the first of the four specific objectives identified in the previous section.
The document defines the CORDET Methodology, namely the methodology to be followed to
develop the CORDET Generic Architecture. Additionally, this document also defines the
CORDET Tool Chain, namely the set of support tools to be used in the CORDET Project to
implement the CORDET Methodology.

The CORDET Methodology implements a subset of the domain engineering part of the
ISO/IEC 12207 process. Broadly speaking, the CORDET Methodology can be divided into
two parts.

The first part of the CORDET Methodology defines the activities to be performed during the
development of the Generic Architecture in terms of their sub-activities, their objectives, and
their outputs. It defines, in other words, what should be done to build the Generic Architecture.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 10

The second part of the CORDET Methodology defines a set of rules that guide and constrain
the development of the CORDET Generic Architecture and that help the designer to achieve
the objectives laid down in the first part of the methodology. This part of the CORDET
Methodology, in other words, defines how the Generic Architecture should be built.

The second part of the CORDET Methodology depends on a particular choice of software
technologies or on a particular way of using a certain software technology. The first part of the
methodology, by contrast, is intended to be more abstract and to capture the essential - non-
technology related - aspects of the development of a generic architecture.

A software methodology is only useful if tools exist to support its practical application. This
document accordingly identifies the support tools proposed for the CORDET Methodology.
The support tools identified in this document are those proposed for use in the CORDET
Project. Obviously, whereas the methodology is intended to be general, the choice of tools is
contingent and may evolve over time.

The specific aim of the CORDET Methodology is to support the creation of the CORDET
Generic Architecture. More generally, however, the CORDET methodology can be used to
support the creation of generic architectures for systems that satisfy the basic assumptions
defined in section 5. The most important assumption is that it must be possible to decompose
the software of the target system into two layers of which one – the middleware layer –
implements the system's non-functional requirements whereas the other – the application layer
– implements its functional requirements.

3.3 Methodology Survey
The methodology proposed in this document is eclectic and does not conform to any pre-
existent domain engineering methodology. It does, however, have two main sources of
inspirations in the FODA Methodology for the domain analysis phase, and in the FW and
RCM Methodologies from the ASSERT Project for the domain design phase.

The approach proposed for the domain analysis phase is similar to the classical FODA
approach in two major respects. Firstly, like FODA, the CORDET Methodology sees the
primary objective of the domain analysis phase in the identification of commonalities and
variabilities within a family of related applications. Secondly, like FODA, the CORDET
Methodology proposes feature models as one of the means to describe the domain model of a
product family. It should, however, be stressed that, in the CORDET Methodology, feature
models play a less prominent role than in FODA. In the latter approach, the feature model is
the primary formalism used to define the domain model. In the CORDET Methodology,
instead, feature models are used to describe variability within the target family whereas
commonality is captured by so-called shared properties.

The approach proposed for the domain design phase draws heavily on the work done in the
ASSERT Project. In particular, the CORDET Methodology takes over unchanged the FW
Methodology for the design of the functional part of the generic architecture and it proposes a
modified version of the RCM Methodology for the non-functional part of the generic
architecture.

No attempt is made in this document to present a general survey of domain engineering
standards, methods and tools since this can be found in a companion CORDET Deliverable
written by GMV (see reference RD-34).

The GMV deliverable, in addition to presenting a methodological survey, also makes
methodological recommendations which are based on the work done by GMV in other related
projects (in particular in the DOMENG Project). The GMV methodological recommendations
are made from a more general standpoint than those presented in this document. It is
noteworthy that they are broadly in line with the CORDET Methodology as it is defined in this

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 11

document. The main similarities are the reliance on FODA as an umbrella methodology for the
domain analysis phase, and the selection of UML2-based approaches for the domain design
phase. The main difference is perhaps the emphasis GMV places on the use of sysML as a
modelling language for the domain analysis phase whereas the CORDET Methodology
advocates the use of natural language as a means to express the domain model. This difference
is due to the narrower scope of the CORDET Project and to its more limited resources (see
also discussion in section 7.1).

3.4 Structure of This Document
The next section discusses the basic concepts and terminology that are used in this document.
Its intention is to put the reader in a position to understand the material presented in the
remainder of the document and to avoid misunderstandings due to different terminological
conventions found in the domain engineering literature.

The methodology defined in this document has a rather narrow focus. It is specifically aimed
at the development of the CORDET Generic Architecture. It could also be used for the
development of generic architectures for systems with similar characteristics. In order to
clarify the range of systems to which the proposed methodology would be applicable, section 5
discusses and makes explicit the assumptions that lie behind the CORDET Methodology.

Sections 6 and 7 present, respectively, the first and second part of the CORDET Methodology.
The methodology is defined as a set of requirements. Where appropriate, discussions that
clarify and justify the requirements are interleaved with the requirements themselves.

Section 8 describes the tools that are proposed for use in the CORDET study to support the
application of the CORDET Methodology.

Finally, section 9 presents a summary in table format of the methodological and tool selections
made in this document.

3.5 Status of This Document
This document is complete and incorporates all comments agreed at the review held jointly
with the first CORDET Progress Meeting on July 6th 2007.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 12

4 BASIC CONCEPTS AND TERMINOLOGY
This section discusses the basic concepts and terminology that are used in this document. The
intention of this section is to put the reader in a position to understand the material presented in
the remainder of the document and to avoid misunderstandings due to different terminological
conventions found in the product engineering literature.

The CORDET study relies to a significant extent on the results of the ASSERT Project.
Several ASSERT deliverables are used by or are applicable to the CORDET study. In order to
facilitate the use of these inputs from the ASSERT project, wherever possible, the same
terminology is used as in ASSERT.

Note that a glossary with a brief definition of the technical terms and acronyms used in this
study is available in section 1 at the beginning of this document.

4.1 Application and Domain Engineering
Traditionally, software and system engineering have been application-oriented: processes,
methods, and tools were geared towards the development of a specific application in response
to requirements formulated by an end user. Reuse was always an option but it remained
incidental and tended to be limited to individual and disjoint components.

The introduction, in the mid-nineties, of the domain engineering paradigm shifted the focus
away from single applications and towards clusters of related applications. The key idea is to
direct the efforts of developers towards the development of reusable assets from which
applications can be built.

The key concept in domain engineering is that of product family [RD-4, 5, 15]. Indeed, the two
terms – domain engineering and product family – are often used interchangeably.

Repository of
Building Blocks

Application in
the Family

Fig. 4.1-1: Software Product Families

A product family is a set of applications that can be constructed from a pool of shared assets1.
The shared assets can be seen as generic building blocks from which applications in the family
can be built. Usually, a product family is aimed at facilitating the instantiation of applications
within a narrow domain. Figure 4.1-1 illustrates the concept of product family. On the left
hand-side, the building blocks offered by the product family are shown. These building blocks

1In this section, the term 'application' is used in a generic sense to designate the 'product' that is built with the
help of the product family.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 13

are used during the family instantiation process to construct a particular application within the
family domain.

Product families are characterized by two distinct development processes (see 4.1-2). In the
family creation process, the family’s reusable assets are designed and developed. In the family
instantiation process, the reusable assets offered by the family are used to construct a specific
application within the family domain.

The family creation process is in turn divided into three phases. In the domain analysis phase,
the set of applications that must be covered by the family is identified and characterized. The
output of this phase is a domain model. In the domain design phase, the reusable assets that are
to support the instantiation of applications within the family are designed. The output of this
phase is one or more models of the family assets. The models express various aspects of the
domain design (e.g. there may be functional models, timing models, etc). In the domain
implementation phase, the family assets are implemented as concrete building blocks that can
be used towards the construction of family applications.

Often, the implementation of the family assets is done automatically by processing the models
defined in the domain design phase.

Fig. 4.1-2: Development Process for Software Product Families

Three matching phases can be identified in the family instantiation process (bottom half of
figure 4.1-2). In the requirement definition phase, the family domain model is used to verify
whether the target application falls within the family domain. This decides whether the family
assets can be used to help build the application. If this is the case, a sizeable proportion of the
application requirements can be expressed in terms of the domain model, for instance by
identifying the features in the family domain that are needed by the target application. In the
adaptation phase, the software assets required for the target application are selected from
among those offered by the family. They are then adapted to match its needs. Depending on
how the family assets are organized and implemented, adaptation can be done either at the
level of the asset models, or at the level of the implementation. Finally, in the integration and
testing phase, the target application is constructed by assembling the adapted building blocks
offered by the framework. Usually, some integration with building blocks that are external to
the family is also required in this phase.

The effectiveness of the product family approach derives from the fact that the level of design
abstraction is raised from that of individual applications to that of domains of related
applications. This allows investment in the design and development of software assets to be
reused across applications. Current research attempts to further extend the effectiveness of
product families by automating their instantiation process. The objective is to arrive at a

Copyright 2007 P&P Software GmbH � All Rights Reserved

Domain
Analysis

Domain
Needs

Domain
Design

Domain Model

Domain
Implementation

Requir.
Definition

Application
Needs

Adaptation
of Family Assets

Integration
& Testing

Family Creation Process
Family Instantiation Process

Domain Model

Application

Family
Assets

Non-Family
Building Blocks

Asset Models

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 14

generative environment of the kind shown in figure 4.1-3. The environment automatically
translates a specification of an application in the family domain into a configuration of the
family assets that implements it.

An environment of the type shown in 4.1-3 would, in a sense, represent a synthesis of the
model-driven and reuse-driven approaches because it would allow the target application to be
constructed automatically from its specification while at the same time taking advantage of the
existence of predefined building blocks that implement part of the application functionality. It
is for this reason that the product family approach – although a reuse-based approach – should
not be seen as an alternative to, but as rather complementary to, the model-driven approach.

Generative Environment
 Family Model

 Family-Independent Infrastr.

 Family Software Assets

Application
Specification

Application
Implementation

Fig. 4.1-3 : Automated Instantiation Environment for Software Product Families

4.2 System Families and Software Frameworks
The product family concept is very general and does not imply any assumption about the
nature of the building blocks (are they components? Procedures? Code fragments? Design
models?), or about their mutual relationships (can they be used independently of each other?
Are they embedded within a higher-level structure?), or even about the type of products it is
aimed at (software applications? Hardware-based systems? Hybrid systems?).

This document is concerned with two specific kinds of product family for which the terms
“system family” and “software framework” are used.

More specifically, in this document, the term system family designates a product family where
the ‘product’ that is to be built using the reusable assets provided by the family is the
architectural infrastructure (the 'middleware') of a complex system. The term software
framework instead designates a product family where the target ‘products’ are the software
applications that run on top of the architectural infrastructure covered by the system family.
Section 5.1 further particularizes these terms to the case of the CORDET study.

Both software frameworks and system families are component-based in the sense that their
reusable building blocks consist of software components. The term component is used to
designate a software entity with the following characteristics:

 It can be deployed as a stand-alone unit (hence it owns a clear specification of its required
interface)

 It provides an implementation for one or more interfaces (hence it owns a clear
specification of its provided interface)

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 15

 It interacts with other components exclusively through these (required and provided)
interfaces

Both software frameworks and system families are architecture-centric in the sense that the
components they provided are not intended to be used in isolation form each other but are
instead intended to be embedded within an architecture that is optimized for their target
domain and that is defined by the software framework or system family itself.

Thus, software frameworks and system families are particular ways of organizing the shared
assets of a product family in the sense that they define the type of building blocks that can be
provided by the product family and they define an architecture within which these building
blocks are to be used.

Figure 4.2-1 illustrates the concept of an architecture-centric product family such as a software
framework. The figure should be contrasted with the previous figure 4.1-1 to highlight the fact
that the family reusable assets (the building blocks in the repository) are now organized as a
set of interacting entities embedded within an architecture that is itself reusable. The
framework approach, in other words, allows the reuse not only of the individual items but also
of their mutual interconnections (the latter being an important and often neglected added
value).

Reusable SW Assets
Embedded within an Architecture
Optimized for a Target Domain

Target Application
instantiated

from the Framework

Fig. 4.2-1: The Software Framework Concept

As already mentioned, both system families and software frameworks are component-based
but their architecture-centric character means that for both it is possible to recognize coarser
grained building blocks.

Like all product families, software frameworks and system families are concerned with
fostering reuse. One important question when considering them is what is the unit of reuse. At
its most basic, the unit of reuse of a component-based family is a component. This follows
from the fact that one of the distinctive features of a component is that it is deployable as a
stand-alone unit. The components provided by a software framework or a system family,
however, are embedded within an architecture (which is also defined by the framework or
system family). Hence, users of the framework or system family are likely to focus their
attention not on individual components but on groups of cooperating components that, taken
together, support the implementation of some functionality that is important within the
framework or system family domain. In fact, well-designed frameworks or system families

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 16

encourage this higher granularity of reuse by being organized as a bundle of functionalities
that users can choose to include in their applications. Inclusion of such a functionality implies
that a whole set of cooperating components and interfaces is imported into the application. The
right unit of reuse – and hence, according to this view, the right building block – is precisely
such a set of components and interfaces.

An example may help to clarify the above concept. Consider a software framework for satellite
on-board systems. One typical functionality that is often found in such systems is the storage
of key data on a mass-memory device. Accordingly, the software framework would implement
default mechanisms for managing such devices. This would probably be done through a set of
cooperating components and interfaces. Application developers who need the mass-memory
functionality for their target application and who decide to implement it with the help of the
assets provided by the framework will import the entire set of components and interfaces. Use
of components or interfaces individually is unlikely to make sense because the components
and interfaces are specifically designed to work together within a certain architecture. The
building block in this case is the set of components and interfaces that support the
implementation of the mass-memory functionality.

The building blocks provided by a product family are, by definition, intended to be reusable.
To reuse a software asset (a component, a fragment of code, a design model, etc) means to use
it in different operational contexts. In practice, varying operational contexts will always
impose differing requirements on the reusable assets. Hence, effective reuse requires that the
reusable assets be adaptable to different requirements. In this sense, adaptability is the key to
reusability and the availability of software adaptability techniques is the necessary pre-
condition for software reusability.

The product family representation shown in the previous section should therefore be modified
as in figure 4.2-2. The items that are selected from the repository are passed through an
adaptation stage before being integrated to build the target application. In the adaptation stage,
the characteristics of the reusable assets are modified to make them match the requirements of
the target application.

Software reuse is perhaps the oldest means to reduce software costs and has often been tried in
the past. Past attempts, however, had only mixed success primarily because they either ignored
the adaptation phase shown in figure 4.2-2, or because the state-of-the-practice adaptation
techniques available at the time were not sufficiently powerful to model the extent of
variability in the target domain.

Reusable SW Assets
Embedded within an Architecture
Optimized for a Target Domain

Target Application
instantiated

from the Framework

Adaptation &
Configuration

Process

Reusable SW Assets
are specialized for the

Target Application

 Fig. 4.2-2: Product Families and Adaptability

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 17

The quality of a product family largely depends on the ease with which the artifacts it offers –
its building blocks – can be adapted to the requirements of its users. In this respect, software
frameworks and system families differ from each other. Software frameworks tend to be
object-oriented in the sense that they use inheritance and object composition through abstract
coupling as their chief adaptation techniques. System families instead tend to be object-based
and to use simpler adaptation mechanisms such as type genericity or use of adjustable
configuration parameters.

The reason for this difference is that software frameworks are concerned with the application
layer of a system and therefore normally privilege adaptation with respect to functional
behaviour whereas system families are concerned with the middleware layer of a system and
therefore normally privilege adaptation with respect to non-functional behaviour. The range of
adaptation techniques currently available for functional behaviour is much wider than that
available for non-functional behaviour.

In summary, system families and software frameworks are special kinds of product families
that differ from each other in their target domains (middleware infrastructure vs software
applications) and in their adaptation mechanisms (object-orientation vs paramter
configuration) but resemble each other in being component-based and architecture-centric.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 18

5 BASIC ASSUMPTIONS
The CORDET study is about applying a product family approach to satellite on-board systems.
The product family concept has considerable intuitive appeal and nowadays few would dispute
that it is desirable to identify commonalities and variations among related systems in order to
build a pool of reusable assets from which individual systems can be constructed.

Translating these generalities into practice is, however, extraordinarily difficult. This is
because the product family concept, by itself, is very vague. This concept does not say
anything about what exactly the reusable assets should be (model-level entities? Source-level
components? Fragments of code? Mini-applications? Etc), and neither does it say what exactly
reusability means (use without changes? Use after configuration? Use after aspect-like
adaptation? Etc), or what exactly the commonalities and variations are (requirements? Code?
Features? Etc). In the case of complex domains, such as that of satellite on-board systems, it is
also unclear whether one should aim at one single product family or whether multiple product
families covering subsets of the target system should be built.

It is tempting to argue that these and other similar questions should be addressed and answered
in the domain analysis phase of the product family development life-cycle. This, however, is
naïve. The idea that, simply by looking at several systems in the target domain, one may,
somehow and almost magically, find answers to the questions raised above is entirely
misguided. This misconception probably accounts for the high failure rate of product family
development projects.

The intention here is not to deny that the analysis of existing systems is an important step in
the definition of a product family. The intention is rather to argue that such an analysis can
only be effective if it is done in a structured manner and with a clear understanding of what
kind of product family one is looking for. The domain analyst, in other words, should not
simply look at existing systems. He should also know what he is looking for.

This section defines the assumptions that underlie the CORDET Methodology. These
assumptions answer some of the general questions raised above. They define the conceptual
framework within which the CORDET study will be carried out. It is important to stress that
these assumptions are regarded as an input to the study whose adequacy is demonstrated by
past work done outside the CORDET study itself [RD-24 to 31].

This section is divided into three subsections. The first subsection defines the high-level
structure of the systems targeted in the study. The following two subsections operationalize the
twin concepts of family commonality and variability.

5.1 Structure of CORDET Target Systems
The first basic assumption for the CORDET study concerns whether one single product family
should be defined in the study covering the entire satellite on-board domain, or whether several
interlocking families covering various subsets of this domain are needed.

In this study, the second approach is selected. There are three reasons that justify this choice.
The first one is the sheer complexity of on-board systems that cover functions as diverse as
attitude control, payload management, provision of OS-like services, etc. This diversity would
make it hard to define one single all-encompassing product family.

The second reason is based on typical procurement policies adopted in the European space
industry where it may happen that different parts of the same system are sub-contracted to
different companies. This parcelization would become very difficult if the whole system were
instantiated from the same product family.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 19

The third reason is derived from the experience of AAS, P&P and UPD in their past projects
and in particular in the ASSERT project. This experience demonstrates that it is indeed
feasible to define multiple product families addressing different concerns of on-board systems.

A decision to develop multiple product families implies a need to define the high-level
structure of the systems targeted by the product families. This is necessary in order to identify
the boundaries of the various product families.

The high-level system structure assumed in this study is the same as used in the ETH
Demonstrator Framework proposed in the ASSERT project and used for the ASSERT HRI
demonstrator [RD28, 29, 30]. This high-level structure is sketched in 5.1-1 below. The figure
shows that a system is decomposed into two layers of which the top one is in turn divided into
two sub-layers.

The bottom layer is the middleware. This layer implements the non-functional requirements of
the system. These non-functional requirements consist of: timing-related requirements,
reliability-related requirements, and distribution-related requirements. The middleware layer
thus defines the system-level architecture of an on-board system.

The top layer implements the functional part of an on-board system. It implements the
functional requirements of the system. This layer can be split into vertical blocks
corresponding to the various subsystems of an on-board system (AOCS, DH, thermal, payload,
etc).

Middleware Layer
(Shared by all Systems in the System Family)

Framework Layer
(Domain-Specific)

Application-Specific
Layer

Functional
Domain 1

System-Level Properties
(mainly non-functional)

Mapped to MW
(transparent to

Application Layer)

Properties offered by the
FW to Application Developers
(mainly functional properties)

Framework Layer
(Domain-Specific)

Application-Specific
Layer

Functional
Domain n

. . .

Fig. 5.1-1: High Level Structure of Target Systems

Each subsystem identifies a functional domain. Within each functional domain, commonalities
are present. It therefore makes sense to decompose the top layer into two sub-layers: one
gathers the components implementing the functionalities that are invariant within each
functional domain whereas the other implements functionalities that are entirely application-
specific.

As suggested by the system structure shown in figure 5.1-1, two types of product families must
be defined: a system family to cover the middleware layer and a set of software frameworks to
cover the functional domains in the application layer.

As explained in section 4.2, a system family is a kind of product family. In this study, this term
will be used to designate the product family that covers the middleware layer of figure 5.1-1.
This term is chosen for consistency with the terminology used in ASSERT and because, in the
approach proposed in this study, the middleware is responsible for providing the mechanisms
to enforce system-level concerns (i.e. concerns which cannot be allocated to any specific
functional subsystem). Such concerns are typically non-functional in character and are
therefore naturally implemented in the middleware layer.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 20

As explained again in section 4.2, a software framework is another kind of product family that
is aimed at the development of software applications and whose reusable building blocks
consist of software components. In the CORDET approach, software frameworks must be
defined for each on-board functional subsystem. The software frameworks implement the
functionalities that are common to all instances of each subsystem. Its components will be
designed to be adapted and extended to match the requirements of a specific subsystem
application.

Thus, the generic architecture to be designed in the CORDET study will consist of a system
family and a set of software frameworks.

The approach outlined above is premised on two key assumptions. The first one is that one
single system family (namely, one single middleware) can cover the entire, or at least a large
segment of, the on-board system domain. This assumption had initially been rejected by the
ASSERT project which started with the objective of defining several system families adapted
to various types of missions. This attempt, however, failed and the evidence from the ASSERT
project is that one single family can be sufficient to cover a wide range of very different
systems.

Further evidence in support of the single-family approach also comes from AAS experience in
developing generic architectures for on-board systems [RD26]. The results of these internal
activities again indicate that one single architecture can be sufficiently flexible to cover a large
number of commonly used satellite architectures.

The second assumption behind the approach proposed for this study is the feasibility of
separating functional from non-functional aspects in the design of a system: the layered
architecture of figure 5.1-1 assumes that non-functional requirements are entirely implemented
at the level of the middleware whereas functional requirements are entirely implemented at
application level. This split greatly simplifies the task of defining a generic architecture
because it means that non-functional concerns can be covered in the system family whereas
functional concerns can be covered in the software frameworks.

This assumption has been verified in the work done in ASSERT by ETH and UPD. Indeed, the
feasibility of separating functional from non-functional aspects is arguably the single most
important theoretical result to have emerged from the ASSERT project. The technique
proposed to achieve this separation has been published in a number of ASSERT technical
reports [RD27, 30] and in a peer-reviewed paper [RD31] and it has been demonstrated in the
ASSERT demonstrator built with the HRI pilot project [RD28, 29, 30].

The assumptions proposed and justified in this section are summarized in table 5.1-1. These
assumptions, together with the assumptions presented in the next two sub-sections, underlie
the CORDET Methodology defined in the remainder of this document.

Table 5.1-1: Assumptions About the Structure of the CORDET Target Systems
ID Assumption

A5.1-1 The systems to be covered by the CORDET Generic Architecture are assumed to
have a layered structure as shown in figure 5.1-1.

A5.1-2 It is assumed that, in the systems targeted by the CORDET Generic Architecture,
it is possible to separate the design and implementation of functional and non-
functional aspects.

A5.1-3 The CORDET Generic Architecture shall consist of one single System Family to
cover middleware-level non-functional aspects of satellite on-board systems and
a set of Software Frameworks to cover their functional aspects.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 21

5.2 The Commonalities of CORDET Product Families
The concept of commonality plays a central role in product family engineering. The search for
commonalities is the key activity of the domain analysis phase and the implementation of the
commonalities in the reusable assets is the key activity in the domain design phase. An
essential pre-requisite for these activities is an understanding of what kind of commonalities
are sought.

In line with the assumptions made in the previous subsection, the CORDET study assumes that
systems are endowed with functional and non-functional properties. Functional properties are
defined at the level of software applications and consist of logical relationships among the
variables that define the state of the application. Non-functional properties are defined at
system level and are implemented at the level of the middleware. Typical examples of non-
functional properties are reliability and schedulability.

In the CORDET study, the search for commonalities among related systems is understood as a
search for shared properties. The objective of the domain analysis phase then becomes the
identification of the functional and non-functional properties that are shared by all systems in a
certain domain. Similarly, the objective of the domain design phase becomes the definition of
components and architectures that guarantee that shared properties are satisfied.

The previous section postulated a split between functional and non-functional issues with a
generic architecture made up of a system family that covers non-functional concerns and a set
of software frameworks covering functional subsystems.

The system family then becomes responsible for enforcing the non-functional properties of a
set of systems. More specifically, the domain of the system family consists of a set of systems
that share the same non-functional properties and the system family itself consists of a
middleware that guarantees that all systems built on top of it will be endowed with those non-
functional properties.

Similarly, the software frameworks become responsible for enforcing the functional properties
of a set of applications. More specifically, the domain of a software framework consists of a
set of software applications that share the same functional properties and the software
framework itself consists of a set of components that guarantee that all applications built using
those components will be endowed with those functional properties.

The background to and justification for the property-based approach proposed for this study
comes from the ASSERT project. ASSERT has taken a property-based approach from the
beginning and this has proved to be a successful choice. For this reason, this same approach is
retained in this study. More details can be found in the ASSERT deliverables [RD-27 to 30].

The assumptions proposed and justified in this section are summarized in table 5.2-1. These
assumptions, together with the assumptions presented in the previous and the next sub-section,
underlie the CORDET Methodology defined in the remainder of this document.

Table 5.2-1: Assumptions About the Commonalities of CORDET Product Families
ID Assumption

A5.2-1 The systems targeted by the CORDET Generic Architecture shall be assumed to
be endowed with functional and non-functional properties.

A5.2-2 The search for commonalities among related systems shall be operationalized as
a search for shared functional and non-functional properties.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 22

5.3 The Variability within CORDET Product Families
The concept of variation or variability is the twin concept of commonality in product family
engineering. In this case, too, an operationalization of this concept is essential for a successful
execution of the domain analysis and domain engineering phases.

In this study, the concept of variation is regarded as related to the concept of reusability. The
assets provided by a product family are intended to be reusable. To reuse a software-based
artefact means to use the same artefact in different operational contexts. However, experience
teaches that different operational contexts always impose different requirements. Hence, a
software artefact can be reused only if it can be adapted to match these different requirements.

Thus, in this study, the statement that certain artefacts must be reusable will be treated as
equivalent to the statement that those artefacts must be adaptable. In the specific context of
product family engineering, however, adaptability must be constrained. This is because the
reusable (and hence adaptable) assets provided by a product family must support certain fixed
properties which are invariant within the family domain (see discussion in the previous
section).

The objective of the domain analysis phase thus becomes the identification of factors and
ranges of variations within the shared properties that characterize the systems in the target
domain. Similarly, the objective of the domain design phase becomes the definition of
mechanisms that allow the assets provided by the product family to be adapted without
violating the properties that define them.

The functional and non-functional properties, in other words, are the defining characteristics of
a family. They are invariant within the family. Adaptability is necessary in order to have
reusability but it must be constrained not to violate the invariant properties.

The background to and justification for the adaptability and variability concepts proposed for
this study comes from the work done in ASSERT where property-preserving adaptability
mechanisms have been successfully defined for component-based, object-oriented software
frameworks (see in particular the ASSERT deliverable [RD27]).

The assumptions proposed and justified in this section are summarized in table 5.3-1. These
assumptions, together with the assumptions presented in the previous and the next sub-section,
underlie the CORDET Methodology defined in the remainder of this document.

Table 5.3-1: Assumptions About the Variability within the CORDET Product Families
ID Assumption

A5.3-1 The reusable assets provided by the CORDET product families shall be endowed
with property-preserving adaptability mechanisms.

A5.3-2 The search for variability within the CORDET product families shall be
operationalized as a search for the parameters with respect to which adaptability
must be provided together with the their range of variation.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 23

6 THE CORDET METHODOLOGY – PART I
The CORDET Methodology is the methodology that is used to build the CORDET Generic
Architecture. This section defines the CORDET Methodology in terms of its activities and
subactivities, their objectives, and their outputs. For clarity, figure 6-1 sketches the overall
process that is behind the CORDET Methodology. Note that this is the classical domain
engineering process as it is defined in, for instance, the ISO/IEC 12207 standard.

Note that the CORDET Methodology only covers the creation of the generic architecture. The
instantiation of the generic architecture is not covered by the methodology in its present form.

The CORDET Methodology is defined through a set of requirements. Requirements are
formulated at the point in the document where the discussion justifying them is presented.
They are stated in boxes with the following format:

Ref. Requirement
MRx-y <Formulation of the requirement>

The first column contains an identifier of the requirement. The identifier is formed by the
letters 'MR' followed by the number 'x' of the section where the requirement is formulated, and
by a sequential number 'y' that identifies the requirement within a certain section. Thus, for
instance, requirement MR4.2-3 is the third requirement formulated in section 4.2. The second
column in the table gives a concise statement of the requirement.

Fig. 6-1: Family Development Process

6.1 General
This section defines the overall objectives of the CORDET Methodology and it defines how it
splits the family development process into three activities. The three activities are the classical
ones of product family engineering: domain analysis, domain design, and domain
implementation.

At this general level, the main peculiarity of the CORDET Methodology is the fact that several
parallel development flows are proposed: one aimed at covering the functional part of the
target systems and the others aimed at covering their non-functional parts. This approach
reflects the drive behind the CORDET Project to separate the handling of non-functional
aspects (which are located in the system family) from functional aspects (which are located in
the software frameworks).

MR6.1-1 The objective of the CORDET Methodology shall be the creation of a generic
architecture for systems within a certain domain (the target domain of the
architecture).

Copyright 2007 P&P Software GmbH � All Rights Reserved

Domain
Models

Domain
Implementation

Domain
Design

Domain
Analysis

Design
Models

Code
Generators
Reusable
AssetsSystem Family

Software Frameworks

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 24

MR6.1-2 The generic architecture shall provide reusable and adaptable software assets
to support the instantiation of systems within its target domain.

MR6.1-3 The generic architecture shall consist of a system family and one or more
software frameworks.

MR6.1-4 The system family shall provide reusable and adaptable software assets to
support the instantiation of the middleware layer of the systems in the
architecture domain.

MR6.1-5 A software framework shall provide reusable and adaptable software assets to
support the instantiation of one of the functional applications of the systems in
the architecture domain.

MR6.1-6 The CORDET Methodology shall be implemented as three sequential activities:
the domain analysis activity, the domain design activity, and the domain
implementation activity.

MR6.1-7 Each of the activities identified in the previous requirement shall be performed
separately for the system family and for each software framework.

Requirement MR6.1-6 asks for the three activities – domain analysis, domain design, and
domain implementation – to be implemented sequentially. This simply implies that an activity
should only be started when the outputs of the previous activity are available but it does not
preclude the possibility of an iterative life-cycle where the sequence of three activities is
performed more than once.

6.2 The Domain Analysis Activity
The domain analysis activity is the first of three activities in which the CORDET Methodology
is divided. This section defines its objectives and its outputs.

MR6.2-1 The objective of the domain analysis activity shall be the definition of a domain
model for the system family or the software framework.

MR6.2-2 The domain model shall describe the commonalities and the factors of variation
within the target domain of the system family or software framework.

MR6.2-3 The commonalities of the domain model for the system family shall consist of
the non-functional properties that are shared by all systems in the family's
domain and that must be enforced by the reusable assets provided by the
family.

MR6.2-4 The commonalities of the domain model for a software frameworks shall consist
of the functional properties that are shared by all systems in the framework's
domain and that must be enforced by the reusable assets provided by the
framework.

MR6.2-5 The factors of variation of the domain model shall be those with respect to
which the (adaptable) assets provided by the system family or software
framework must provide adaptation.

It is recalled that the domain analysis activity must be performed separately for the system
family and for the software frameworks that make up the CORDET Generic Architecture.
Thus, the output of the domain analysis phase for the generic architecture as a whole will be a
set of domain models, one for the system family and one for each software framework.

The last three requirements essentially state that the domain model is the specification of the
system family or software framework.

A system family or software framework provides software assets that are intended to help
developers build systems or applications within a certain domain. The reusable assets fulfill

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 25

this purpose by implementing the invariant features (the "common properties") of the systems
or applications in the target domain and by providing adaptation mechanisms that model the
variability across systems or applications in the domain. Thus, the identification of the
common features and of the dimensions of variability to be covered by the family or
framework assets constitutes a specification for these assets.

Note that the objective of the domain analysis activity is not to identify all commonalities or
all dimensions of variability within the family or framework domain. The objective is instead
to identify those that are relevant to the family or framework development process, namely
those that will be supported by the family or framework assets (see requirements MR6.2-4 to
6.2-6).

The requirements stated above assume that the domain of the family or framework – namely
the set of systems or applications whose instantiation must be supported by the family or
framework assets – is known. It might be argued that the definition of this domain ought to be
one of the outputs of the domain analysis activity. In practice, however, the definition of the
domain is a futile activity since it is simply not possibly to exactly demarcate the set of
systems or applications that can be built using a a set of reusable assets. It will always be a
question of engineering judgement whether a certain system or application can be efficiently
and economically built using certain existing assets.

It is for this reason that the CORDET Methodology opts for an identification of common
properties and their factors of variation rather than for an identification of target systems. The
target systems are identified implicitly by the definition of the common properties and their
factors of variations.

6.3 The Domain Design Activity
The domain design activity is the second of three activities in which the CORDET
Methodology is divided. This section defines its objectives and its outputs.

MR6.3-1 The objective of the domain design activity shall be the definition of a design
model for the system family or the software framework.

MR6.3-2 The design model shall define at design level the reusable assets provided by
the system family or software framework.

MR6.3-3 The design model shall implement the shared properties identified in the
domain model of the system family or software framework.

MR6.3-4 The design model shall identify the properties whose implementation by the
model must be verified through some formal means.

MR6.3-5 The design model shall define the adaptation mechanisms that allow the factors
of variability identified in the domain model of the system family or software
framework to be implemented.

MR6.3-6 The design model shall identify the conditions under which the application of
the adaptation mechanisms preserves the shared properties associated to the
design model itself.

It is recalled that the domain design activity must be performed separately for the system
family and for the software frameworks that make up the CORDET Generic Architecture.
Thus, the output of the domain analysis phase for the generic architecture as a whole will be a
set of design models, one for the system family and one for each software framework.

In general, the purpose of the design models is to show how the shared properties and
adaptation mechanisms identified in the domain analysis phase can be implemented.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 26

It would of course be desirable that the design provably implements the shared properties of
the product family. This will often be possible but it seems unreasonable to ask that this be the
case for all shared properties. As a compromise, requirement MR6.3-4 requires that the design
models identifies which properties are formally verifiable at design level. Note that the
carrying out of the formal verification is not part of the CORDET Methodology. This is
regarded as a future extension of the process.

Similarly, it would be desirable to ensure that the adaptation mechanisms proposed by the
design model be fully property preserving. The reusable assets provided by the CORDET
product families will both be endowed with certain properties and will be adaptable. The
obvious question that arises in this connection is: do the properties only hold on the reusable
assets before they are adapted or are they also guaranteed to hold after the adaptation process?

The adaptation process is property preserving if the properties are guarantee to hold even after
the adaptation process. This is obviously desirable but may be impossible to realize in all
practical cases. As a compromise, requirement MR6.3-6 requires that the conditions under
which property preservation can be guaranteed be identified.

There is a second and subtler implication to requirements MR6.3-4 and MR6.3-5. The
CORDET Methodology allocates formal verification activities to the design phase, and not to
the domain analysis phase (there are no analogue of requirements MR6.3-4 and MR6.3-5 for
the domain analysis activity).

In principle, it would have been possible to mandate that formal models be built at
requirements level (namely at domain analysis level) and that some formal verification be
performed already at this level. The CORDET Methodology instead took a different approach
where properties defined during the domain analysis phase may be formulated using natural
language. The level of abstraction and formalization of the domain analysis phase, in other
words, is that which is usual for the user requirement phase in single application development
processes. There is of course no preclusion to using some kind of formalism to express the
shared properties but there is no requirement from the CORDET Methodology that such a
formalism be compatible with formal verification techniques.

Formal verifiability in the CORDET Methodology is required only at domain design level. The
rationale for this choice is that, in practice, the construction of a formal model requires in any
case the preliminary definition of an informal model. Hence, if the domain model (the output
of the domain analysis phase) were required to be formally verifiable, then it would be
necessary to introduce a new phase before the domain analysis phase to define an informal
description of the target product family.

6.3.1 Typology of Design Models
The term “design model” in the previous section (and in most of this document) is used in a
very broad sense to designate a repository of design-level information about the reusable assets
of a product family. In practice, the structure of this repository may be very complex because
the family encompasses a potentially large set of individual systems or applications.

This multiplicity of representation is achieved by building into the family assets adaptation
mechanisms that allow the same software asset to match the potential needs of a large number
of individual systems or applications. Hence, the structure of the design model depends
crucially on the expressive power and flexibility of the adaptation mechanisms.

During the family instantiation process, the family-level adaptation mechanisms are applied to
the family-level design model to transform it into the design model of the target system or
application. Nowadays, the latter will invariably take the form of one single UML2 model.

It is therefore natural to assume that the family-level model, too, must somehow be based on
one or more UML2 models. The family-level model, however, cannot always be reduced to a

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 27

single UML2 model. This is due to the fact that, although UML2 formalism is well-suited to
capturing invariant properties, it may not be sufficiently expressive to capture variability.
Hence, although a family-level design model may have a UML2 core, it will in general consist
of more than just a plain UML2 model.

The basic ways in which the family-level design model can be structured around its UML2
core are:

• Single-Model Case: the family-level design model consists of one single UML2
model. This is possible when the adaptation mechanisms can be modeled within the
UML2 model itself. During the family instantiation process, the adaptation
mechanisms are used to transform the family-level UML2 model into the UML2
model of the target system or target application.

Object-oriented software frameworks offer a typical example of this case because they
use object-orientation as their chief adaptation mechanism and because object-oriented
adaptation mechanisms can be represented within a UML2 model.

• Multiple-Model Case: the family-level design model consists of several UML2 models
where each represents one variant of target application or target system. In an extreme
case, the family-level design model might simply be implemented as the collection of
the UML2 models of all the systems or applications in the family domain.

In this case, the adaptation process consists in selecting one out of all the available
UML2 models.

• Generative-Model Case: the family-level design model consists of a model generator
that can automatically generate the UML2 model of a target system or target
application. The input to the generator would typically be an instance of the domain
model. Thus, the adaptation of the assets to the requirements of a particular target
system or target application is performed on the domain model by selecting the
features that are of interest for a particular instance of the family.

• Transformative-Model Case: the family-level design model consists of a single UML2
model together with a transformation program (a model-level aspect weaver) that can
automatically transform it into another UML2 model. The transformation program
implements the adaptation mechanisms and the output of the transformation is the
UML2 model of the target system or target application.

• Meta-Model Case: the family-level design model consists of a single UML2 meta-
model. The instances of this meta-model (namely the UML2 models that conform to
the meta-model) are the models of the systems and applications in the family domain.
The meta-model thus captures the design constraints to which the models of the family
instances must obey.

The cases listed above are “pure” cases but, obviously, in practice mixed solutions with
elements of several of the above cases are possible.

The selection of the applicable case for a particular product family depends on the range of
diversity of the systems or applications in the family domain and on the expressive power of
the available adaptation mechanisms.

For the case of the CORDET Generic Architecture, the single-model case will be used for the
software frameworks and the meta-model case will be used for the system family. A more
detailed discussion of this choice and the applicable requirements can be found in sections
7.3.3 and 7.3.4.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 28

6.4 The Domain Implementation Activity
The domain implementation activity is the second of three activities in which the CORDET
Methodology is divided. This section defines its objectives and its outputs.

MR6.4-1 The objective of the domain implementation activity shall be the development of
a code generator for the system family or the software framework.

MR6.4-2 The code generator shall be capable of transforming the design model of the
reusable assets of the system family or software framework into their source
code implementation.

MR6.4-3 It shall be possible for the same code generator to process design models from
more than one product families (system family or software framework) and to
generate a joint set of reusable assets.

MR6.4-4 It shall be possible to apply the adaptation mechanisms defined in the design
model to the source-level reusable assets generated by the code generator
without manually changing their source code.

According to requirement MR6.4-1, the primary output of the domain implementation activity
is a code generator. One important implication of this requirement is that the code generator is
seen as being domain-specific. Many software development environments available on the
market at present offer code generating facilities but their code generators are normally
intended to be “generic”. Some customization options are offered but the assumption is that the
same code generator can be used for all kinds of applications.

This approach is regarded as inadequate for embedded applications for two reasons. Firstly,
embedded applications normally must undergo certification processes that, among other
things, may impose certain coding standards and coding rules. Secondly, minimization of
memory and execution overheads will often require that the code be tailored to the
peculiarities of the underlying operating system or even of the underlying processor.

For these reasons, the CORDET Methodology assumes that different domains will have
different coding needs and it therefore makes the code generator an output of the product
family development process.

Requirement MR6.4-2 states that the code generator must be capable of processing the family
design models in their entirety and that it must be capable of generating their complete source
code. The situation is, in other words, excluded where, in addition to the code generation
process, some manual coding must be performed.

In general, it is not realistic to assume that a complete embedded application can be entirely
generated from its models. No modelling language is sufficiently expressive to capture all
aspects of a complex embedded application. However, the assumption behind requirement
MR6.4-2 is that, at least at family level, it is possible to capture all relevant aspects of the
reusable family assets in their models. This is expected to be possible because the family assets
will normally only capture the more abstract aspects of the target systems and applications and
these are precisely those aspects that can be expressed well using available modelling
languages.

The final output of the domain implementation activity are the reusable assets of the product
families. According to MR6.4-2, they must be available as source code. It would in theory be
possible to have them only as binary code but, given the critical nature of the target
applications, a source-level implementation is mandated since it is expected that some kind of
code inspection will be part of the certification process both for the product family as a whole
and for the systems instantiated from it.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 29

The CORDET Methodology foresees several parallel flows of activities: one for the system
family and one for each software framework. These activity flows are completely separate at
domain analysis and domain design level but requirement MR6.4-3 allows a partial merging to
be done at domain implementation level. The requirement foresees the possibility that the
same code generator may be defined to process design models across product family
boundaries. This option is introduced to allow optimization of generated code.

The generated code must implement the adaptation mechanisms defined in the design models.
Requirement MR6.4-4 asks that adaptation take place without manual changes to the source
code of the family reusable assets. The generation of the application-specific building blocks
from the family-level building blocks, in other words, must take place without the need to
perform any manual changes to the source code of the latter.

This requirement is important because it allows some form of certification to be performed at
family level and to be reused at application level. If the family-level reusable assets had to be
manually modified during the family instantiation process, then their code would have to be re-
certified since manual modifications would undermine the certification results performed at
family level.

Note, finally, that requirement MR6.4-4 only bans manual modifications. Automatic
modifications – for instance through some kind of aspect weaving – are allowed since
certification of the code transformation tool would still allow certification results obtained at
family level to be re-used at application level.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 30

7 THE CORDET METHODOLOGY – PART II
This section defines the methodological requirements for the second part of the CORDET
Methodology. These requirements are intended to support the execution of the activities
defined in section 6.

The next section defines the constraints that informed the definition of the CORDET
methodological requirements specified in this section. Sections 7.2 to 7.4 present the
methodological requirements for each of the three activities of the CORDET Methodology
(domain analysis activity, domain design activity, and domain implementation activity).

7.1 Methodological Constraints
The requirements presented in the section 6 defined the activities to be performed to develop
the CORDET Generic Architecture. The requirements specified in the present section instead
define the methodological means to be used to implement these activities. In principle, other
methodological choices would have been possible. The specific choices that are made in this
section are driven by the particular needs of the CORDET Project and by the industrial and
technological heritage of the CORDET project team.

More specifically, the following constraints have driven the selection of the methodological
rules presented in this section:

1. The CORDET activities must be performed within comparatively modest temporal
and financial resources (target project duration of one year and total budget of 250
kEUR).

2. The results of the CORDET Project must be applicable (at least in principle) to the
satellite missions studied in the State Of The Art Survey task2.

3. The focus of functional design activities must be on the AOCS and DH subsystems.
4. There must be continuity with the results of the ASSERT Project.

The first constraint imposes an emphasis on simplicity and the use of well-proven techniques
since these are the best means to minimize budget and schedule risks.

The second constraint arises from a desire to ensure that the CORDET Generic Architecture be
relevant to concrete missions as they are done at present.

The third constraint derives from a choice made at the beginning of the CORDET Project. It
was clear that it would not be possible to cover all functional subsystems of on-board satellites
and hence a decision was taken to limit the project to the AOCS and DH domains which are
the most complex and the most representative of satellite on- board functionalities.

The fourth constraint stems from the fact that virtually all CORDET key personnel have been
active members of the ASSERT Project and they quite naturally see the CORDET Project as a
means to verify the industrial viability of some of the concepts and ideas that were proposed in
ASSERT.

Note that the last constraint is related to the first one since use of ideas and concepts first
explored in ASSERT is a means to reduce budget and schedule risks.

7.2 Methodological Requirements – Domain Analysis
This section presents the methodological requirements for the domain analysis activity. The
methodological approach proposed for the domain analysis phase is inspired by the well-
known FODA Methodology as is recommended in RD-34.

2The State of The Art Survey task is one of the tasks of the CORDET Projects. The results of this survey are
documented in a dedicated CORDET deliverable.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 31

7.2.1 Identification of Functional Domains
According to assumption A5.1-3, the CORDET Generic Architecture consists of a system
family and one or more software frameworks covering the functional domains of the target
systems. It follows from this assumption that one of the basic inputs to the architecture
development process must be the identification of the functional domains for which software
frameworks must be developed.

MR7.2.1-1 One of the inputs to the domain analysis of the CORDET Generic Architecture
shall be the identification of the functional domains for which software
frameworks must be provided by the Generic Architecture.

It is important to stress that the identification of the functional domains is an input to the
domain analysis phase. This was already implied by the first part of the CORDET
Methodology.

One could of course imagine a different process and a different methodology where domain
analysis is performed at two levels: at the top level, the identification of the functional domains
is performed and, at a lower level, each selected functional domain is characterized.

The choice of one single level of domain analysis in CORDET is dictated by three factors.
Firstly, there is broad agreement within the European space community about what are the
main functional domains and there is therefore not much point in debating this issue. Secondly,
the limited resources available to the project (constraint 1 in section 7.1) advise against a two-
level domain analysis. Thirdly, the focus on the AOCS and DH subsystems (constraint 3 in
section 7.1) effectively preempts the decision about the target functional domains for the
CORDET Generic Architecture.

7.2.2 Bottom-Up vs Top-Down Approach
In general, there are two basic ways to perform the domain analysis for a product family. The
first one takes a top-down approach. In this case, the family designer defines a set of
requirements for the family in a manner that is independent of existing systems and building
blocks and that is aimed at optimizing the family architecture with respect to certain
predefined design parameters.

The second way to performing domain analysis has a bottom-up flavour. In this case, the
family designer considers a set of existing systems in the domain of interest and tries to
identify their commonalities and variabilities. The objective of this second approach is to
arrive at an architecture that maximizes the reuse of existing design concepts and building
blocks.

The first approach is more ambitious in that it holds the promise of arriving at an architecture
that is truly optimal with respect to the selected design criteria. This approach, however, is also
riskier because, in its strive for optimality, it is more likely to deviate sharply from existing
solutions. The second approach is more conservative and less risky because it simply aims to
identify the “best practice” within the domain and to capture it in the Generic Architecture.

In view of constraints 1 and 2 in section 7.1, the bottom-up approach is selected for the
CORDET Generic Architecture. The set of systems that will serve as an input for the domain
analysis will be those studied in the State-of-the-Art Survey task of the CORDET Project.

MR7.2.2-1 The primary input for the domain analysis phase of the CORDET Generic
Architecture shall be the results of the CORDET State-of-the-Art Survey.

MR7.2.2-2 The shared properties to be supported by the CORDET Generic Architecture
shall be derived from an analysis of the functional and non-functional

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 32

properties shared by the satellite missions considered in the CORDET State-
Of-The-Art Survey.

MR7.2.2-3 The factors of variations to be supported by the CORDET Generic
Architecture shall be derived from an analysis of the variability found in the
satellite missions studied in the CORDET State-Of-The-Art Survey.

Note that, as implied by the methodological requirements MR7.2.2-2 and MR7.2.2-3, the
intention is not to create a Generic Architecture that supports the instantiation of all the
systems studied in the State-of-the-Art Survey. Rather, the intention is to use the missions
studied in the State-Of-The-Art Survey to identify the most significant properties in the on-
board domain together with their ranges of variations with the objective of supporting the
instantiation of “typical” systems.

No specific methodological requirements are given on how the significant properties may be
identified among all the properties exhibited by the missions analyzed in the State-Of-The-Art
Survey. Such a choice can only be based on engineering judgment.

Note also that, as a consequence of requirements MR7.2.2-1 to MR7.2.2-3, the selection of the
missions to be analyzed in the State-Of-The-Art Survey is outside of and prior to the domain
analysis phase. This selection is driven by engineering considerations (what kind of missions
are amenable to standardization?) and by business considerations (what kind of missions is it
desirable to standardize?).

The fundamental reason why the State-Of-The-Art Survey is kept outside the formal CORDET
Methodology is that its value lies precisely in its being informal. There are some obvious
activities that may need to be performed in a state-of-the-art survey (interviews with domain
experts, interviews with project engineers, analysis of project documents, etc) but there is no
point in trying to prescribe the order in which these activities should be performed or in trying
to break them up into lower-level steps. This would simply create administrative overheads
without adding anything to the value of the survey.

In general, an activity that is part of a formal process must always be preceded by some
informal work where inputs are prepared and where a first iteration of the target activity is
performed without being subject to the constraints of a formal process or methodology. Hence,
the attempt to pull the State-Of-The-Art Survey into the CORDET Methodology would simply
result in a new activity having to be (more or less implicitly) defined that is prior to the survey
itself and that is outside the CORDET Methodology.

The value of such an activity is dubious at best and its execution is in any case not compatible
with the tight resources available to the CORDET Project (constraint 1 in section 7.1).

7.2.3 Domain Model – Shared Properties
According to the process requirements defined in section 6.2, the domain model must describe
the commonalities (shared properties) of the CORDET target systems and applications and
their factors of variations. The process requirements, however, do not say anything about the
exact form of the domain model and about how the commonalities and their factors of
variations should be expressed.

In general, in the CORDET Methodology, formal modeling is only expected at the domain
design phase (see discussion of process requirements MR7.2.3-4 and MR7.2.3-5 in section
6.3). A formal model must be expressed using a formal language. In order to be
understandable and usable, such a model must be accompanied by a description in natural
language. In fact, prior to building a formal model for some design artefacts, it is normally
necessary to describe them informally in natural language. The CORDET Methodology

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 33

allocates the formal modelling activities to the design phase and it accordingly proposes that
the models to be developed in the domain analysis phase be expressed in natural language.

The shared properties will thus be expressed in natural language. As discussed in section 7.3.1,
they will be formalized in the domain design phase. Unique identifiers will be attached to them
to allow traceability to the formal properties defined at design level.

Although no formal language is proposed to express the shared properties, it is still helpful to
define a set of terms that can be used to formulate the shared properties. For this purpose, the
CORDET Methodology mandates the construction of a domain dictionary.

The domain dictionary gathers together the terms that are necessary to express the shared
family properties. In general, the terms in the domain dictionary can designate either
abstractions that exist in many applications or systems in the domain but take a different form
in each, or they can designate domain-invariant functionalities that share the same
implementation in all applications or systems in the domain.

The use of a domain dictionary is proposed by several methodologies for domain analysis. The
domain dictionary is usually complemented by a logical model or concept model that should
describe how the items defined in the domain dictionary relate to each other. The idea is that
the domain dictionary defines the key abstractions and concepts of the target domain whereas
the logical model describes their mutual relationships.

In the CORDET Methodology, no such logical model is required since this is already implied
by the set of shared properties. The shared properties, in other words, are intended to capture
the relationships among the items defined in the domain dictionary.

Figure 7.3.1-1 in section 7.3.1 gives an overview of how shared properties are handled at
various levels by the CORDET Methodology.

MR7.2.3-1 The shared properties of the CORDET Product Families shall be expressed in
natural language.

MR7.2.3-2 A unique identifier shall be attached to each shared property defined in the
domain analysis phase.

MR7.2.3-3 A domain dictionary shall be built to define the key abstractions and invariant
functionalities in the target domain.

MR7.2.3-4 The shared properties shall be expressed in terms of the entries of the
domain dictionary.

7.2.4 Domain Model – Factors of Variation
The definition of the factors of variations for the shared properties is the second element of the
domain model.

The definition of the factors of variation must encompass, at a minimum, the following
elements:

1. It must identify the shared property or other feature to which the variation applies.

2. It must identify the range of the variation (the set of legal values for the factor of
variation).

3. It must identify any default values for the factor of variation.

4. Interactions among the various factors of variation must be described. These
interactions will typically take the form of constraints on the legal combinations of the
values of the factors of variations.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 34

Each factor of variation must be clearly identified. This is important to allow traceability to the
domain design level where it must be demonstrated how the variability behind the factor of
variation is captured and implemented in the reusable and adaptable asset offered by a product
family.

Like the shared properties and for the same reasons, the factors of variation will be defined in
natural language.

MR7.2.4-1 The factors of variation identified in the domain analysis phase shall be
described in natural language.

MR7.2.4-2 For each factor of variation identified in the domain analysis phase, the
shared property or other feature to which the variation applies shall be
identified.

MR7.2.4-3 For each factor of variation identified in the domain analysis phase, its range
of variation shall be defined.

MR7.2.4-4 For each factor of variation identified in the domain analysis phase, applicable
default values shall be identified.

MR7.2.4-5 Interactions and mutual dependencies among the factors of variation shall be
defined.

MR7.2.4-6 A unique identifier shall be attached to each factor of variation defined in the
domain analysis phase.

MR7.2.4-7 A feature model shall be built to describe the variability in the domain model.

7.2.5 Feature Models
In principle, the domain dictionary, the shared properties, and the factors of variations are
sufficient to describe the domain model. However, in addition to these three elements
expressed in natural language, it is useful to provide a feature model to capture at least a part
of the domain model in a single formal model.

The purpose of the feature model is to present a concise overview of the domain model. Since
feature models are especially adept at describing variability, they can in particular be used to
model the relationships among the factors of variation and the constraints on their legal
combination.

In addition to serving as an economical way to describe variability within families, feature
models may be useful as a way of either building or customizing a design model. This point is
especially important and its importance straddles the domain analysis and the domain design
phase. It is discussed in section 7.3.2 below.

Consistent use of feature models in the context of the CORDET Methodology requires that the
key concepts of the methodology – domain dictionary entries, shared properties, and factors of
variation – be mapped to features in a feature model.

Both the entries in the domain dictionary and the shared properties can be seen as “features”
since both describe characteristics of a system that are relevant to its end users (and this is the
standard definition of “feature”). Similarly, the factors of variations can be seen as a
description of a feature that can take different values within the family.

Given that the emphasis of the feature model is on the description of variability, the latter kind
of features must be included in the feature model. There is instead no need to map all domain
dictionary entries and shared properties to features in a feature model. This only needs to be
done for those entities and properties that are affected by variability and that enter in the
definition of the factors of variation.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 35

It must finally be stressed again that, in a difference with other feature-based approaches to
domain modelling, the feature model as proposed by the CORDET Methodology should not be
seen as equivalent to the domain model. The feature model is part of the domain model: it is an
auxiliary tool to present an overview of the domain model with a special emphasis on the
representation of variability within the domain.

MR7.2.5-1 A feature model shall be built to describe the variability in the domain model.

7.2.6 Content of Domain Model
By way of summary of the previous three sections, a domain model according to the CORDET
Terminology will consist of the following items:

• A domain dictionary to define (in natural language) the terms required to express the
shared properties

• A set of shared properties to define (in natural language) the invariants within the
target domain

• A set of factors of variations to define (in natural language) the variability within the
target domain

• A feature model to present an overview of the domain model and in particular of its
variability

Figure 7.2.6-1 below illustrates the structure of the domain model proposed by the CORDET
Methodology.

Shared
Properties

Domain
Dictionary Captures invariants in natural

language in terms of entries
in domain dictionary

Factors of
Variation

Domain Model

Captures variability
within the domain

Defines terms required to
express shared properties

Feature
Model

Gives an overview of the domain
model with special emphasis on variability

Fig. 7.2.6-1: Structure of Domain ModelIterative Definition of Domain Model

7.2.7 Iterative Definition of Domain Models
As already mentioned in section 6.1, iteration is possible in the execution of the CORDET
methodology and its activities.

Some iteration in the definition of the domain model is obviously desirable. In view of the
limited time available for the project, only two iteration cycles are foreseen for the CORDET
Domain Model. The end of the first iteration cycle should be marked by a review where the
project stakeholders can submit their concerns and their suggestions for improvements.

MR7.2.7-1 The definition of the domain model shall be done in two iterations.
MR7.2.7-2 At the end of the first iteration, a review shall be performed where selected

CORDET stakeholders shall be asked to provide comments.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 36

7.3 Methodological Requirements – Domain Design
This section presents the methodological requirements for the domain design activity.

The objective of the domain design phase is the definition of a design model. The design
model must represent at design level the shared properties and the factors of variation
identified at domain analysis level.

The CORDET Methodology specifies that distinct design models are to be generated for the
CORDET System Family and for the CORDET Software Frameworks. The former captures
non-functional system-level aspects of the CORDET Generic Architecture, the latter captures
functional software-level aspects of the CORDET Generic Architecture. The CORDET
Methodology proposes two distinct methodologies for these two levels of design. They are
discussed in sub-sections 7.3.3 and 7.3.4.

In section 6.3.1, five basic types of family-level design models were identified. The CORDET
Methodology chooses the single model type for the software frameworks and the meta-model
type for the system family. This choice is dictated by the different kinds of variability that is
behind the software frameworks (functional variability) and system families (non-functional
variability). This issue is discussed in greater detail in section 7.3.2.

Thus, the design model of a CORDET Software Framework will consist of a single UML2
model that will describe both the shared properties and the factors of variation associated to the
framework. Use of a single UML2 model is possible because the CORDET Software
Frameworks are object-oriented and object-oriented adaptation mechanisms are both
sufficiently powerful to capture the functional variability behind the framework, and amenable
to representation with UML2 formalism.

The design model of the CORDET System Family will instead consist of a UML2 meta-
model. The meta-model can be seen as a generative device that captures and enforces the
domain-wide design constraints to which the CORDET system architecture must obey. These
constraints are defined to ensure that the system-level properties defined in the domain
analysis phase are guaranteed to be satisfied.

As discussed in section 7.2.1, two software frameworks will be developed for the CORDET
Generic Architecture targeting, respectively, the AOCS and the DH subsystems of satellites. In
general, a generic architecture for on-board systems should provide several software
frameworks, one for each on-board subsystem. The software frameworks should obviously be
independent of each other since they are intended to be used to develop separate applications.

The contours of on-board subsystems, however, vary from mission to mission. It is therefore
important that the software frameworks be inter-operable in the sense that it should be possible
to instantiate them within the same application. This will allow their use in missions where
some or all on-board subsystems are merged in the same application.

MR7.3-1 The design model of a CORDET Software Framework shall consist of a single
UML2 design model.

MR7.3-2 The design model of the CORDET System Family shall consist of a single
UML2 design meta-model.

MR7.3-2 The CORDET Software Frameworks shall be designed to be inter-operable.

7.3.1 Mapping Shared Properties to the Design Level
One important function of the design model is to show how the design of the reusable family
assets implements the shared properties identified at domain analysis level.

The methodological requirements to be followed when implementing the shared properties are
presented separately for the case of functional and non-functional properties in sections 7.3.3

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 37

and 7.3.4. In general, the important point is that each property identified at domain analysis
level should be translated into one or more design-level properties. The objective is to
demonstrate that the proposed design covers all the properties defined at domain analysis level.

Process requirement MR6.3-4 prescribes that, for each design-level property, it must be stated
whether or not the property should be verified formally. From a methodological point of view,
the only sensible translation of this requirement is to ask that, for each property, an indication
be given of how that property could potentially be verified formally. The verification itself,
however, remains outside the scope of the CORDET Methodology.

Thus, shared properties in the CORDET Methodology exist at two levels. At domain analysis
level, they encapsulate the developer's knowledge of the family domain and are expressed in
natural language. At this level, the shared properties can be seen as (part of) the specification
of the reusable assets to be offered by the product family.

At domain design level, the shared properties are expressed more formally and they reflect
potentially provable characteristics of the proposed design. At this level, the shared properties
can be seen as a description of what the family reusable assets will offer to the product
developers.

A link must be established between the two levels at which the shared properties are defined to
show how the domain level properties are mapped to the design level properties. The objective
is to show how the specification of the family (the domain level properties) are implemented in
the design of the family of reusable assets.

As discussed in section 7.2.3, the shared properties are expressed in terms of the entries in the
domain dictionary. The mapping from shared properties at domain analysis level to their
implementation in the design model must therefore cover both the entries in the domain
dictionary and the properties themselves.

The precise nature of the design elements to which the shared properties and the dictionary
entries are mapped is different for the system family and for the software framework and is
therefore defined separately for each in sections 7.3.3 and 7.3.4.

It is finally possible to conceive of a third level at which the shared properties exist. If it is
desired to formally verify that the shared properties hold, then it may be necessary to set up
one or more verification models that represent the relevant parts of the design model expressed
in a suitable verification language. In this case, the properties will have to be re-stated within
this verification-oriented formalism.

As already indicated in section 6.3, however, formal verification activities are currently not
included in the CORDET Methodology. This potential third representation of the shared
properties of a family will therefore not be considered further.

The next figure illustrates the three levels at which shared properties may exist and their
mutual links.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 38

Shared
Properties

Domain
Dictionary

Shared properties are expressed in
natural language in terms of entries
in the domain dictionary

Design
Entities

Shared properties and domain dictionary
entries are mapped to design entities in
the domain design

Shared properties are expressed in
terms of a verification language
(out of scope of CORDET)

Domain Design

Domain
Models

Design
Models

Domain Analysis

Logical
Formulas

Verification
Models

Fig. 7.3.1-1: Shared Properties at Domain Analysis and Domain Design Level

MR7.3.1-1 The shared properties and the domain dictionary entries defined at domain
analysis level shall be transposed to the design level and shall be re-
formulated in terms of the abstractions defined by the design model.

7.3.2 Mapping Domain-Level Variability to Design-Level Adaptability
The description of the variability within the family domain is one of the two key elements of
the domain model built in the domain analysis phase. As discussed in section 6.3, during the
domain design activity, this variability must be mapped to adaptation mechanisms in the
design model (see requirement MR6.3-5).

When UML2 models are used as the basic element of a design model, then there are two ways
in which this domain-level variability can be mapped to design-level adaptability: Within-the-
Model Adaptability (or WtM Adaptability) and Outside-the-Model Adaptability (or OtM for
short).
In the WtM Adaptability case, the design model consists of one single UML2 model and the
variability represented by a certain factor of variation is modelled within this model using a
design-level adaptation mechanism such as object-orientation, templates, or configuration
parameters. In this case, the product designer who instantiates the product family only needs to
use the one single UML2 model that contains all the information about the family shared
properties and their variability.

The OtM case instead arises when the adaptation mechanisms available at design level are not
sufficiently powerful to cover the variability expressed by a certain factor of variation. In this
case, the presence of the factor of variation must be modelled outside the UML2 model. In
practice, this can be done either by providing several UML2 models (one for each potential
value of the factor of variation), or by providing a way to customize the UML2 model, or by
providing a way to generate the UML2 model. The latter could for instance be done by
generating the UML2 model from a description of the factor of variation.

In the OtM case, the design model may consist of a set of UML2 model (one for each variation
option), or of a model generator (to generate the UML2 model from a description of the factors
of variation), or of a UML2 model and a program that can automatically modify it (to
customize it to take account of the factors of variation).

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 39

Note that both the WtM and OtM forms of adaptability may be used in the same product
family (but for different factors of variation). In general, WtM Adaptability is preferable
because it is simpler. OtM Adaptability should only be used for factors of variation expressing
variability that cannot be handled within the UML2 model.

In order to clarify the distinction between WtM and OtM Adaptability, an example may be
useful. Consider a domain model where a factor of variation V is present that, within the target
family, can take two possible values: V1 and V2.. This means that a product (either a system or
an application) instantiated from the family will be characterized either by the value V1 or by
the value V2.. When the design model for the target family is built, it is accordingly necessary
to define an adaptation mechanism that allows the reusable assets provided by the family to be
adapted to implemented either the V1 option or the V2. option for the factor of variation.

The WtM case arises when it is possible to build a UML2 model where the possibility of
selecting either the V1 option or the V2. option is described within the model itself. For
instance, the designer might have an abstract method in one of the classes in the UML2 model
and he might say that option V1 corresponds to one particular way of overriding this abstract
method whereas option V2 corresponds to a second way of overriding this same abstract
method.

Or the designer might include a boolean parameter in his UML2 model and might specify that
option V1 corresponds to a situation where the boolean parameter is initialized with the value
TRUE whereas initialization with value FALSE corresponds to option V2.

In both previous cases, the variability implied by the selection between the two options V1 and
V1 is modelled within the same UML2 model and this UML2 model is the design model that
must be generated in the domain design phase.

Consider instead a second case where the switch from the V1 to the V2 option requires some
major reshuffling of the classes in the UML2 model and of their mutual relationships. This
would represent a typical case of OtM Adaptability. In such a case, the only reasonable option
would be to have two UML2 models corresponding to the two values of the factor of variation.

In a less extreme case of OtM Adaptability, the switch from the V1 to the V2 option may require
a systematic change to be made to the UML2 model (for instance, adding a particular method
to a certain category of classes, or changing the number of parameters in certain methods, etc).
In such a case, one possible solution would be to build a model generator that reads a
description of the factor of variation and generates the UML2 model accordingly. An
alternative solution is to treat the factor of variation as an aspect (in the technical sense of the
Aspect Oriented Programming paradigm) that must be woven onto the design model.

The important point to stress is that in all the previous cases the application of the adaptation
mechanism will involve either the creation of a new UML2 model or the customization of a
UML2 model. The design model then may include a model generator or a model aspect
weaver since the model generator or the model weaver are the repository of the information
about how adaptability to the factors of variations identified at domain level is implemented.

In the OtM case, the feature model built in the domain analysis phase is the obvious candidate
for serving as an input to the model generator or the model weaver. More precisely, the model
generator or the model weaver should be driven by an instance of the feature model.

Section 6.3.1 discussed the structure of the family-level design model and identified five basic
structures for it. The main discriminant among these five structural types is the way in which
domain variability is represented in the design model. It therefore becomes possible to
establish a correlation between the type of design model and the type of adaptation technique.
This correlation is presented in table 7.3.2-1.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 40

As already noted, there is a general preference for WtM Adaptability but this preference
cannot be always accommodated. In particular, most of the adaptation mechanisms offered by
mainstream software technology are aimed at functional adaptation. Hence, in the case of the
CORDET Generic Architecture, it is anticipated that adaptability with respect to functional
variation can be implemented as WtM Adaptability. Methodological requirement MR7.3-1
accordingly specified that the design model of the CORDET Software Framework must be of
the single-model type. As indicated in table 7.3.2-1, this type of design model relies
exclusively on WtM Adaptability.

By contrast, adaptability with respect to non-functional variation must be implemented as OtM
Adaptability. Table 7.3.2-1 shows that there are several kinds of design models that are
primarily based on OtM Adaptability. Requirement MR7.3-2 selects the meta-model type for
the CORDET System Family because of the heritage from the ASSERT project where non-
functional architectural constraints were captured through a meta-model.

Table 7.3.2-1: Correlation Between Design Model Type and Adaptability Mechanism Type
Design Model Type Type of Adaptability Mechanism

Single-Model Case WtM Adaptability (by definition of WtM Adaptability) .

Multiple-Model Case OtM Adaptability to select among models. WtM Adaptability
possible within each model.

Generative-Model Case OtM Adaptability to define the generator. WtM Adaptability
possible within the generated model.

Transformative-Model Case OtM Adaptability to define the transformation program. WtM
Adaptability possible within the transformed model.

Meta-Model Case OtM Adaptability.

MR7.3.2-1 When mapping domain-level variability to design-level adaptability, preference
shall be given to the use of WtM Adaptability mechanisms.

MR7.3.2-2 Factors of functional variation (factors of variations applicable to the CORDET
Software Frameworks) shall be mapped using WtM Adaptability Mechanisms.

7.3.3 Design Methodology – Software Frameworks
The FW Methodology [RD27] is a design methodology that was specifically developed to
guide the design of software frameworks3. The FW Methodology uses the term “software
framework” in the same sense as the CORDET Methodology. The CORDET Methodology
therefore takes over the FW Methodology as it stands and it mandates its applicability to the
design of the software framework part of the CORDET Generic Architecture.

The FW Methodology only covers the development of a design model of a software
framework. The CORDET Methodology also requires that a link be established between the
domain analysis phase and the domain design phase. In particular, the shared properties
defined in the domain model must be transposed to the design level (see requirement
MR7.3.1-1) and the domain-level variability must be mapped to design-level adaptability (see
requirement MR6.3-5). These mappings from the domain model to the design model are
intended to ensure that the specifications of the framework are correctly implemented in its
design.

The mapping rules specified by the CORDET Methodology for the shared properties of
software frameworks are as follows:

3 A web site has been set up giving access to all the documentation and software related to the FW
Methodology. The current address is: http://control.ee.ethz.ch/~ceg/assert/ch.ethz.fwprofile/

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 41

• Each entry in the domain dictionary of a software framework must be mapped to an
element in the UML2 design model of the framework (a class, a method, an attribute,
etc). The UML2 element implements at design level the abstraction described by the
domain dictionary entry.

• Each shared property formulated in the domain model of a software framework must
be mapped to an assume-guarantee contract defined on a functional component or
cluster of functional components in the design model of the software framework. The
assume-guarantee contract represents the translation of the property expressed in
natural language at domain analysis level into a more formal property defined on the
UML2 design model.

The term “assume-guarantee contract” is used in the following sense. The “assume part” of the
contract specifies the way in which the component or group of components to which the
property is associated is intended to be used. The “guarantee part” specifies the behaviour that
the component or group of components must guarantee. A concrete example of how this kind
of assume-guarantee contracts is used in framework design can be found in [RD-35].

Figure 7.3.1-1 describing the levels of representation of shared properties can thus be recast as
in figure 7.3.3-1 for the specific case of software frameworks.

Shared
Properties

Domain
Dictionary

Shared properties are expressed in
natural language in terms of entries
in the domain dictionary

A. - G.
Contracts

UML2 Model
Elements

Shared properties are mapped to
assume-guarantee contracts
defined on the UML2 design models

Logical
Formulas

Verification
Models

Shared properties are expressed in
terms of a verification language
(out of scope of CORDET)

Domain Design

Domain
Models

Design
Models

Domain Analysis

Fig. 7.3.3-1: Mapping of Shared Properties for Software Frameworks

The factors of variations, like the shared properties, must be mapped from the domain model to
the design level. The FW Methodology that is mandated for the CORDET Software
Frameworks (see section 7.3.3) mandates the explicit identification of points of adaptation in
the framework design. These are the natural target for the factors of variation identified in the
domain model.

The framework points of adaptation implement an object-oriented form of adaptation.
Although this is the primary form of adaptation baselined for the CORDET Frameworks, other
forms of adaptation are also acceptable. For this reason, it is not possible to state that every
domain-level factor of variation must be mapped to a design-level point of adaptation.

MR7.3.3-1 The CORDET Software Framework shall be designed in accordance with the
FW Methodology.

MR7.3.3-2 Each domain dictionary entry of a software framework domain model shall be

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 42

mapped to the element in the UML2 design model of the framework that
implements it at design level.

MR7.3.3-3 Each shared property of a software framework domain model shall be
translated into an assume-guarantee contract on one or a set of functional
components defined in the UML2 design model of the framework.

7.3.4 Design Methodology – System Family
The basic methodology for the design of the non-functional part of the CORDET Generic
Architecture is the RCM Methodology [RD31, RD36 and RD37]. The UML2 meta-model that
must be the output of the design process for the CORDET System Family (see requirement
MR7.3-2) will therefore be defined as a modification of the existing RCM meta-model.

The RCM Methodology was defined with a purpose more general than the design of the
reusable software assets of a product family. It can in particular be applied to the design of
single applications as well as to the design of reusable building blocks. One implication of this
greater generality of applicability of the RCM Methodology is that some of its aspects are not
relevant to the design of the CORDET System Family.

The modifications to the RCM meta-model to be undertaken in the CORDET Project will
therefore be aimed at adapting the meta-model to the specific needs of the CORDET Project.
The exact kind of modifications will be decided during the design phase, however, it is may be
worth mentioning that there are three potential simplifications to the current RCM
Methodology that may be considered for CORDET4.

The first simplification concerns the effective elimination of the transformation from AP- to
VM-Level containers5. This is a model-to-model transformation that transforms a
representation of the target system expressed in terms of AP-Level containers into a
semantically equivalent representation expressed in terms of VM-Level containers. The
objective of this transformation is to identify non-terminal entities among the AP-Level
Containers and to break them up into their composing terminal VM-Level Container entities.

The decomposition from non-terminal to terminal entities makes sense when performing
single-application design. In that case, the initial expression of the design in terms of high-
level AP-Level Containers is helpful as a means to master complexity. A reuse-based
approach, however, necessarily takes a bottom-up approach where a system is built by
combining pre-defined building blocks. These pre-defined building blocks are monolithic and
cannot be further decomposed.

It should also be stressed that the RCM composition principles are based on relationships of
containment between components. The design approach taken in the CORDET Project is
instead object-oriented (this is a consequence of the use of the FW Methodology) where the
basic relationship among design entities are based on inheritance hierarchies. Complexity in
this approach is mastered by introducing high-level abstract interfaces rather than by defining
high-level containers. It follows that the use of high-level AP-Level Containers as a way of
mastering complexity is no longer needed (and, in fact, becomes an obstacle to the definition
of inheritance hierarchies).

Such a bottom-up object-oriented approach is of course compatible with the RCM
Methodology only if the pre-defined building blocks are VM-Level containers. In this case, no

4 The discussion in the remainder of this section assumes the reader to be familiar with the RCM
Methodology.
5 More precisely, the transformation is still applied (since it is an essential part of the RCM Methodology) but
it becomes trivial since the AP-Level Containers are identical to VM-Level Containers (recall that a VM-
Level Container is also an AP-Level Container).

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 43

transformation from AP-Level to VM-Level containers is required since the design is already
expressed in terms of terminal VM-Level Containers.

In this respect, it is noteworthy that the design entities built using the FW Methodology can
indeed be wrapped in VM-Level Containers.

From the a methodological point of view, the requirement that ensues from the previous
discussion is that the design of the generic architecture should be expressed in terms of VM-
Level Containers.

Note that this requirement only applies to design activities performed at family level. It is clear
that, when instantiating the generic architecture to build a specific system, there is no
preclusion to using a top-down design approach where decomposition from AP-Level to VM-
Level containers plays a crucial role. The problem of how the (terminal) building blocks
provided by the family can be mixed with the (non-terminal) building blocks defined at
application level concerns the family instantiation process and goes beyond the scope of the
CORDET Project.

The second simplification proposed for the RCM Methodology is a consequence of the first
one. In the RCM Methodology, operations must be characterized by the state which they may
access. This information is used when partitioning a non-terminal component into lower-level
terminal components.

As discussed above, this type of decomposition is unnecessary in the case of the components
defined in the CORDET design model. Hence, there is no need to characterize operations with
state information.

In the RCM Methodology, an AP-Level Container is characterized by the interfaces it requires
as well as by those it implements. In the case of an object-oriented application (and the use of
the FW Methodology implies an object-oriented design for the CORDET Generic
Architecture), the information about the required interfaces is already implied in the
description of the interfaces that the component implements. A required interface must be an
interface that is passed to a component as an argument of one of its operations (typically a
setter operation). Thus, one can derive the set of required interfaces of a component simply by
inspecting its provided interfaces.

Hence, in the third and last simplification proposed for the application of the RCM
Methodology to the CORDET Project, the explicit definition of the required interfaces for the
framework components is dropped.

The key element of the RCM Methodology is the RCM Meta-Model. This meta-model
captures and enforces the design constraints specified by the RCM Methodology. In the
CORDET Project, a modified version of this meta-model will be defined that captures and
enforces a modified RCM Methodology. Conceptually, this modified version of the RCM
meta-model will constitute the design model of the CORDET System Family (see also
requirement MR7.3-2). In practice, the simplified meta-model may also be implemented as a
UML2 profile or as a restriction on the existing RCM meta-model.

MR7.3.4-1 The CORDET System Family shall be designed in accordance with a
modified version of the RCM Methodology.

MR7.3.4-2 The UML2 meta-model that will constitute the output of the design activity for
the CORDET System Family shall be obtained as a modification of the
existing RCM Meta-Model.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 44

7.3.5 Merging the Functional and Non-Functional Designs
The CORDET Methodology is based on a split between the handling of non-functional
concerns (design of the system family) and the handling of functional concerns (design of the
software frameworks). However, it is clear that the two halves of the design of the CORDET
Generic Architecture must eventually be merged when the architecture is instantiated. This is
done during the application development process which is outside the scope of the CORDET
Project.

Although the merging of the functional and non-functional halves of the generic architecture is
not done at family level, the family level activities must be constrained to ensure that this
merge is possible when the generic architecture is instantiated.

In this respect, it should be noted that the FW and RCM Methodologies are designed to be
independent but compatible. This means that they can be used independently of each other
when designing the functional and non-functional parts of the generic architecture while at the
same guaranteeing that the design items that result from their application are compatible with
each other. More information on the compatibility of the two methodologies can be found in
[RD27].

In practice, the merge of the functional and non-functional design is done by embedding the
functional components obtained by instantiating the software frameworks into the RCM
containers. Thus, the requirements that the two halves – functional and non-functional – of the
CORDET Generic Architecture can be translated into a requirement that embedding rules be
stated that define how the functional components may be embedded within the non-functional
containers during the architecture instantiation process.

The term functional component is used to designate a component obtained as an instantiation
of a framework class, or as an instantiation of a class derived from a framework class, or as an
instantiation of a class built to implement one or more framework interfaces.

The embedding rules must specify, for each functional component:

1. Either the kind of VM-Level Containers (sporadic, cyclic, protected, or passive)
within which the component can be embedded, or

2. How a VM-Level Container can be built that can host the functional component.

Case (1) arises when the structure of the functional component is such that it can be directly
embedded in a VM-Level Container. Note that, in view of requirement MR7.3.4-2, only
embedding within VM-Level Containers is considered and not within the more general AP-
Level Containers.

For software frameworks designed in accordance with the FW Methodology, case (1) applies
to all components instantiated from framework classes that do not define any nominal
operations or that only implement framework classes that do not define any nominal
operations. In general, such components can be embedded without changes within either
protected or passive RCM containers.

Case (2) may instead arise for functional components that must be embedded within cyclic or
sporadic containers. The constraints that apply to the kind of operations that such containers
may define will often make it impossible for them to host a functional component. As
discussed in the previous section, decomposition of the component into lower-level
components is not an option since the functional components are reusable entities that cannot
be further split.

Compatibility with the RCM containers must instead be achieved by defining additional
components that mediate the interaction between the RCM container and the functional

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 45

component. The embedding rules should specify how these additional components can be
built.

Additional
Component

Functional
Component

CASE 1: Functional component
can be embedded “as is” in

RCM container

Additional component that interfaces
the functional component with the

RCM container

RCM Container

Functional
Component

Functional
Component

CASE 2: Functional component
must be combined with an

additional component

Functional
Component

RCM Container

Fig. 7.3.5-1: Embedding Rules for Functional Containers

MR7.3.5-1 A CORDET Software Framework shall define the embedding rules for each
functional component that may be instantiated from the framework.

7.3.6 Iterative Definition of Design Model
As already mentioned in section 6.1, iteration is possible in the execution of the CORDET
Methodology and its activities.

Some iteration in the definition of the design model is obviously desirable. In view of the
limited time available for the project, only two iteration cycles are foreseen for the CORDET
Domain Model. The end of the first iteration cycle should be marked by a review where the
project stakeholders can submit their concerns and their suggestions for improvements.

MR7.3.6-1 The definition of the design model shall be done in two iterations.
MR7.3.6-2 At the end of the first iteration, a review shall be performed where selected

CORDET stakeholders shall be asked to provide comments.

7.4 Methodological Requirements – Domain Implementation
This section presents the methodological requirements for the domain implementation activity.

The only methodological issue for the domain implementation phase is whether the separation
between functional and non-functional aspects should be maintained down to code level (as is
currently done in the ASSERT demonstrator), or whether instead the two aspects should be
merged at code level. The latter approach would allow a higher optimization of execution and
memory footprint performance but it is not really compatible with the use of the Ada language.

The first approach is selected for CORDET both because of the SSERT heritage and to keep
the door open to the use of the Ada language.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 46

MR7.4-1 In the domain implementation phase, two generators will be developed to
process, respectively, the functional and non-functional models of the Generic
Architecture.

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 47

8 THE CORDET TOOL CHAIN
This section defines the tools that are baselined for use in the CORDET Methodology. Section
8.1 discusses the main tool selection criteria. The following three sections define the tools for
each of the three activities of the CORDET Methodology. The last section defines the tools
baselined for other tasks not specifically related to any of the three CORDET activities.

8.1 Tool Selection Criteria
Two main criteria have informed the choice of tools for the CORDET Project.

The first selection criteria is the strong preference for tools that are publicly available under
free and open software licences. This restriction is intended to avoid high licence costs and
dependence on tool vendors, and to allow freedom to modify the tools to make them better
suited to the needs of the CORDET Methodology.

The second selection criteria is a restriction to tools that are usable at the time the selection is
made (namely at the time this document is written). In other words, the situation must be
avoided where a tool is chosen based not on what it can offer and do at the time the selection is
made but based on expectations of what it will be able to do and offer at the time it will be
needed. This restriction is intended to minimize the risk of selecting a tool that will not be
ready when it is not needed.

8.2 Tool Selection – Domain Analysis Phase
The domain model is entirely built using natural language with exception of the feature model.
Thus, the only tool required for the domain analysis phase is a feature modelling tool. The
selected tool is XFeature6. This tool has the following advantages:

• It is available under a free and open software licence,

• It has been successfully used in ASSERT and has proven itself adequate to its task,

• It was partly developed by P&P Software GmbH (under ESA contract
18499/04/NL/LvH) and it is therefore well known to one of the CORDET partners.
This will ease maintenance.

The XFeature is a meta-modelling tool. In order to be used to construct a feature model, it
must first be configured with a feature meta-model, an application meta-model generator, a
family display model, and an application display model generator. In th CORDET Project, it is
proposed to use XFeature in the so-called “FD Configuration”. This configuration was defined
in the ASSERT project to domain analysis tasks and it is regarded as adequate for the needs of
CORDET. This configuration is documented in [RD33].

8.3 Tool Selection – Domain Design Phase
Two basic tools are required for the domain design phase to support, respectively, the FW
Methodology (for the functional design model, see section 7.3.3) and the simplified RCM
methodology (for the non-functional design model, see section 7.3.4).

The definition of the functional design model in accordance to the FW Methodology will be
done using the TOPCASED Tool7. This is a generic UML2 design tool. In order to support the
FW Profile (which in turns enforces the FW Methodology), the tool will be customized with
the FW Profile Eclipse Plug-In developed at ETH in the ASSERT Project (see [RD27]).

6 The XFeature tool can be downloaded from: http://www.pnp-software.com/XFeature/
7 The TOPCASED tool suite can be downloaded from: http://www.topcased.org/

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 48

The definition of the non-functional design model in accordance to the RCM Methodology
will also be done using the TOPCASED Tool but the tool will be customized with the RCM-
specific meta-model defined in the system family domain design phase.

8.4 Tool Selection – Domain Implementation Phase
Since the design models will be implemented as UML2 models, the simplest choice for the
code generators is to use MOF Scripts8. This approach has already been successfully applied in
the ASSERT Project.

8.5 Other Tools
The following tools will also be used to support the CORDET Methodology as a whole:

• The Mantis Bug Tracking Tool9 will be used to collect and keep track of comments to
the generic architecture design and implementation.

• The SVN Repository Tool10 repository will be used to build and maintain a repository
for the design artefacts of the CORDET Generic Architecture.

All the above tools are well-known, well-proven, and available under free and open software
licences.

8 MOFScript is an Eclipse project and its home page is at: http://www.eclipse.org/gmt/mofscript/
9 The Mantis tool can be downloaded from: http://www.mantisbt.org/
10 The SVN Eclipse plug-in can be downloaded from: http://subversion.tigris.org/

Copyright 2007 P&P Software GmbH � All Rights Reserved

software
&PP www.pnp-software.com

Title: The CORDET Methodology
Ref:: PP-MR-COR-0001
Date: 12 September 2008
Project: CORDET
Issue: 1.3
Page: 49

9 SUMMARY TABLE
The table below summarizes the modelling approach and the support tools that have been
proposed in this technical note and that constitute the CORDET Methodology

Phase Modelling Approach Support Tool
Domain Analysis Domain Model broadly follows FODA and

consists of:
(a) Domain Dictionary in natural language
(b) Shared Properties in natural language
(c) Factors of Variation in natural language
(d) Feature Model to describe variability

No special tools
required for (a), (b),
and (c).

XFeature with “FD
Configuration” for (d)

Domain Design Design Model for functional part
(application layer) consists of UML2
models compliant with FW Profile

Design Model for non-functional part
(middleware layer) consists of UML2 meta-
model derived from RCM Meta-Model.

Topcased with FW
Prodile plug-in for
functional part.

Topcased with modified
RCM meta-model for
non-functional part.

Domain Implementation Code Generator to transform design
models into source code.

MOF Scripts

Copyright 2007 P&P Software GmbH � All Rights Reserved

	1GLOSSARY AND ACRONYMS
	2REFERENCES
	3INTRODUCTION
	3.1Objectives of the CORDET Study
	3.2Objectives of This Document
	3.3Methodology Survey
	3.4Structure of This Document
	3.5Status of This Document

	4BASIC CONCEPTS AND TERMINOLOGY
	4.1Application and Domain Engineering
	4.2System Families and Software Frameworks

	5BASIC ASSUMPTIONS
	5.1Structure of CORDET Target Systems
	5.2The Commonalities of CORDET Product Families
	5.3The Variability within CORDET Product Families

	6THE CORDET METHODOLOGY – PART I
	6.1General
	6.2The Domain Analysis Activity
	6.3The Domain Design Activity
	6.3.1Typology of Design Models

	6.4The Domain Implementation Activity

	7THE CORDET METHODOLOGY – PART II
	7.1Methodological Constraints
	7.2Methodological Requirements – Domain Analysis
	7.2.1Identification of Functional Domains
	7.2.2Bottom-Up vs Top-Down Approach
	7.2.3Domain Model – Shared Properties
	7.2.4Domain Model – Factors of Variation
	7.2.5Feature Models
	7.2.6Content of Domain Model
	7.2.7Iterative Definition of Domain Models

	7.3Methodological Requirements – Domain Design
	7.3.1Mapping Shared Properties to the Design Level
	7.3.2Mapping Domain-Level Variability to Design-Level Adaptability
	7.3.3Design Methodology – Software Frameworks
	7.3.4Design Methodology – System Family
	7.3.5Merging the Functional and Non-Functional Designs
	7.3.6Iterative Definition of Design Model

	7.4Methodological Requirements – Domain Implementation

	8THE CORDET TOOL CHAIN
	8.1Tool Selection Criteria
	8.2Tool Selection – Domain Analysis Phase
	8.3Tool Selection – Domain Design Phase
	8.4Tool Selection – Domain Implementation Phase
	8.5Other Tools

	9SUMMARY TABLE

