EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 1 of 112

EODIiSP Project

Software Requirements Document

Prepared by P&P Software GmbH with ETH-Zurich
for ESA-Estec under Contract 18833/05/NL/AR

Written By: L. Birrer (P&P Software GmbH)
M. Egli (ETH-Zurich)
A. Pasetti (P&P Software GmbH)

Date: 4 November 2005
Issue 1.1
Reference: PP-SRD-EOP-0001

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 2 of 112

Table of Contents

1 GloSSAry ANd ACIONYIMS...ccicccerissrrcssaressssrosssssssssessassossssassossossnsssssasssssssessnssossasssssasssssasssssasss 5
2 References . . el
3 Introduction ceeessneennennennenns 8
3.1 General APPIOACH......cciiciiiiieie ettt ettt sttt seaennees 8
3.2 Traceability to User REQUITEMENLS.cccccvirerieriieiieiieciesiieree et 10

4 Major Deviations from User Requirements . . . 12
4.1 Definition of a Simulation Configuration............c.cceeveereveerieecriercreesieecreesreesreeeneens 13
4.2 Triggering of Simulation ModelS.........c.cecverieriiriieriieieie et 16
4.3 ExperimentlnitConfig and SimulationsConfig Configuration Files.............c.c.ccuveeene. 17
4.4 ModelsConfig and SomSecuritySetting Configuration Files..........c.ccceevvvrcrieriennnenns 17
4.5 Data Passing Between Simulation Models.........ccccoeveiiiiiiiiriienieiecieciccee e 17
4.6 SIMulation ENd.........coooiiiiii e 18

5 USE CASES.uuurireisrnisnncsnicssessanisssncssecssessssisssiessessssssssssssessssssssssssessssssssssssassssssssesssassssssssassssnssss 20
5.1 Overview 0f Use Case CONCEPL.......evcvrrveerierriereeiiestieseesressreeseeseesseessaesseesssesssennns 21
5.1.1 Traceability t0 COde.....cccuiiiiiiiiiieiie ettt ere e eseveeeenae s 24

5.2 Simulation Manager Application USE Cases........cccevveeireerreereerieeseesivesveesseesseesenenens 24
5.2.1 Use Case — Simulation Manager Application Summary.........c.ccccceeevveeeerreennnnn. 24

5.2.2 Use Case — Set-up Simulation Manager Application..........cccccceevevrerveeecereenennnnn 25

5.2.3 Use Case — Configure Simulation Experiment.............cccoceeeiiriieriieinieeniennnne, 27

5.2.4 Use Case — Run EXPeriment..........cccccccvereuiieriieiiiiesie e ceeesreeeree e evee s 30

5.2.5 Use Case — Load/Save Configuration............cceceeveueeriesiieenieenieesee e 32

5.2.6 Use Case — EXperiment ADOIt........cceeecuiiiriiiiiiiee i ciieesieeeeiee e e eveeeseneeeenae s 33

5.2.7 Use Case — Configure Simulation Manager Application Log..........ccccceeeueeneee. 33

5.3 Model Manager Application Use Cases.........ceveerierieerieeniienieeieeiee st 34
5.3.1 Use Case — Model Manager Application SUMMATY.......c..ccccevereereneeneneeneenne 34

5.3.2 Use Case — Set-up Model Manager Application............cecceeruerieeiieneenieeeneenne, 35

5.3.3 Use Case — Manage Federates in the Model Manager Application.................... 36

5.3.4 Use Case — Configure Model Manager Application Log..........ccccoereenienennenne. 39

5.4 Support Application USE CaseS........c.eeveereerieerieriierieeieesiieseesreeseesseessesseesseesseennns 40
5.4.1 Use Case — Generate Wrapper Code for an Excel Workbook.........c..cc.cccceuennee. 40

5.4.2 Use Case — Generate Wrapper Code for an SMP2 simulation..............c...c....... 41

5.4.3 Use Case — Generate Wrapper Code for Matlab-Generated Code...................... 43

5.4.4 Use Case — Create Wrapper Code for a Matlab Simulation.............c.cceeveveennee. 44

5.4.5 Use Case — Create Wrapper for Source Code........c.ceoevveviercieniennieenieenreeneenens 44

5.4.6 Use Case — Create Wrapper for a Standalone Executable...............ccoeeevvrenennnen. 45

5.4.7 Use Case — Create Wrapper for a Data Processing Package.............ccccoeevvennnnne. 46

5.4.8 Use Case — Creating a New SOM File........ccccoeviiviiviiiciiiieiecieceeee e 47

6 GUI Configuration Files........cceiiiivrinnseicnsserinssnicssseiossssnssssicssssissssssssnsssssnssssssssssossessasseses 48
6.1 XML Schema Documentation...........ccecueeeerieeieieniieieseese e eeceee et see e e e seeeneens 48
6.2 Simulation Manager Application Configuration Files..............ccceevvevirriinneenresnnenn, 49
6.2.1 SimulationManagerProject Configuration File..........c.ccccccoeveiiiiniiiniieeeiieene. 49

0.2.2 FOMuniiiee ettt ettt ettt nt et n e neeeneeees 53

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 3 of 112

6.2.3 APPLICAtION SEINES.....ccvteeviererieieeiierierteereeseesereesreesseessreesseesssessseesseesseessessnns 53

6.3 Model Manager Application Configuration Files...........ccccoevvieviivienciiinieeieeniecieenn, 54
6.3.1 ModelManagerProject Configuration File..........ccccocvevviienieiiiiiieniinieiecienn, 54

0.3.2 SO ...ttt ettt ettt ettt nt e neenteeneeaas 58

6.3.3 APPLICAtION SEUNES.....ccvieerereriirieriesreireereeseesrreereesseesereesseesssessseesseesseesseessns 58

6.4 General format of Application SEtHNGS........cccvvreriieriiieiieerrie et 59

T HLLA COTCuuuuriuueireisseiisuecsarissnnsssecssncssecsssssssecssesssssssassssesssasssassssssssssssassssssssssssessssssssssssasssssssss 60
7.1 State MAaCKINES.eoiuiiiieiieiie ettt ettt ettt st et 60
7.2 State Machines in the EODISP........c.occoiiiiiiiiee e 62
7.3 State Machine DeSCIiPtiOnS.cccviieciieriieiitieeriie et e eiteerteeesereeeeeeesreesseeessaeeseseeennes 63
7.3.1 State Machine Federation Lifetime...........coccovvroeriiienieieeceeeeeee e, 63

7.3.2 State Machine Federate Lifetime...........ccecueeieiriiiiniiiiieieet e 64

8 The JXTA Infrastructure..........ceecssecssencseccseecsnen ceereesssneesssntesssanessanessssassssnaneses 66
8.1 Configuration PrOPerties.cceeoiiiiieiiiiiieiieeieet ettt 66
8.2 Dedicated ConfigUurations..........ccceeccuiercieeeiieeiiiesiieeseeesreeesseeessaeessseeeseeesssesssssessssees 67

9 General Wrapper Structure tesssstesesssnntessssnnstesssssanssesssntnssssssstssssssssassess 69
9.1 Wrapping APPIOACH.c.eiiiiieiiiieieiieeteeertee e e ettt e et eesetreesaaeesssaeessseeeseseeessseeessses 69
9.2 HLA Federate Interface Implementation Generator............ccceeeevierieneeneeneeneeenene 70
9.3 Predefined Data CONVEISIONS.cocceeitierieiiieetieeie et stee ettt be et e st e seee e 71
0.4 Java/COM BIiAEE......cccuieiiieiieiieciieeiteee ettt ettt ettt st e e eaes 72

10 Wrapper Generators. . seseeossasesssanessrnsessrasessnas 73
10.1 Microsoft Excel Workbook Wrapper.........cccccvieieninieniniiniieeicceciceeseeeesie e 74
10.1.1 Mapping File — ExcelMapping.XSd........cccceerieriirnieiiieneeeeeree e 75

10.2 SMP2 Simulation WIaPPET......cc.eeuteiiriiriinieienie ettt ettt ettt b 80
10.2.1 Mapping File - SMP2Mapping.XSd........ccceeueeriieiienieeiieieesie et 81

10.3 Matlab-Generated Code WIapPeT.......c.cccverieeriierieesiieieeieereere e ereeeessesneesnseeneeenns 85

11 Sample Wrappers . ceeeeessntssnteesntnesnanesantessasasssstesasesssnseessnns 86
11.1 Matlab Simulation Sample WIappeT........ccceecieecieerieerieeiieieeereeiee e see e e 86
11.2 Fortran Source Code Sample WIapper.........c.eevieiieriiiiiiiieeieeieee et 87
11.3 C++ Source Code Sample WIaPPeT.........cocvverieeriieiieeiieniiesieeesieesreeseesereeseeesnseenens 88
11.4 Standalone Executable Sample Wrapper.........ccocvereevieiiinieniniiiiieciciceceieeie e 89
11.5 Data Processing Package Sample Wrapper.........ccoeevverveerienieerienieenierieereeiee e 91

12 General Requirements 92
12.1 Target Operating SYSLEIM......ccververierivrrreeireesieestesreesseessreseesseesseesseesssessseesseessesssns 92
12.2 Licensing REQUITEMENLS.cccvireiiereeriierieeieeiieseeeseeieesieessseensaesssesnseesseesnseesseesnns 92
12.3 Installation REQUITEMENTS.cccveriiriiiiiieie ettt eee e eieesraesbeesveessaeseee e 93
12.4 Predefined HLA FEederates...........ccceriiieiiereniieiieiiereeeesie ettt 93
Appendix A: Traceability MAatriXcocececccrcsssericssnnecssnsiosssressssssssssscssssssssssssssssssssnsssssnss 94
Appendix B: State Machines.......coiiiieiiiinnniinsinnnensennnensicnensseeseessessseessessssesssssssssessaes 98
B.1 FederationLifetiime.c.ceieieriiieieierieeieei ettt s 98
B.2 FederateLifetime.ccceiuerieeiiie ittt sttt 100
Appendix C: XML SCREMAS......ccovveiirrnicssarcsserissssnsssnsrssssssssssssssnssssssssssssssssosssssasses 107
C.1 SimulationManagerProjectFile.Xsd........cccovviirriiriiiiierie e 107

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 4 of 112
C.2 ModelManagerProjectFile.XSd........ccovveveiiiiieiiiiie e 108
C.3 EXCEIMAaPPING.XSU....ccviiiieiieiiiiiieeieesteeteestteeereeteesereestaessreesseessseasseesssessseasssenssenns 109
C.4 SMP2MapPing.XSG......cccvieruierieeriiesieerieseesiseesieesreesseessseesseessseasseesssessseessssssesssseens 110

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

& Www.pnp-software.com

software

EODISP Project

Software Requirements Document
Ref: PP-SRD-EOP-0001

Issue 1.1

Page 5 of 112

1 Glossary and Acronyms

The table defines the most important technical terms and abbreviations used in the proposal.

Term
Abstract Interface

Alternative Flow

AOCS
API

Application Instantiation

Chsm
Component

Component-Based
Framework
Computational Node
CORBA

Design Pattern

DSL

DTD

EO
EODiSP

EODISP Framework

EODISP Middleware
Federate

Federation

Federation Execution

Federation Object Model
(FOM)

Framework Domain
Framework Instantiation

Generative Programming
HLA

ISP

JNI

JVYM
JXTA

Short Definition
A definition of the signature and semantics of a set of related operations without
any implementation details.
Textual description of what can happen in addition to the steps in the main success
scenario. This can be an execution branch or exception occurring during execution
of the main steps.
The Attitude and Orbit Control Subsystem of satellites.
Application Programming Interface. A set of definitions of the ways one piece of
computer software communicates with another.
The process whereby a component-based application is constructed by configuring
and linking individual components.
Concurrent Hierarchical State Machine
A unit of binary reuse that exposes one or more interfaces and that is seen by its
clients only in terms of these interfaces.
A software framework that has components as its building blocks.

A computational resource that has memory and processing capabilities.

A widely used middleware infrastructure.

A description of an abstract design solution for a common

Domain Specific Language (a language that is created to describe applications or
components in a very narrow domain).

Document Type Definition. It defines the legal building blocks of an XML docu-
ment. It defines the document structure with a list of legal elements. Its purpose is
similar to the one of an XML Schema, although it is not as feature rich and the syn-
tax is different.

Earth Observation

Earth Observation Distributed Simulation Environment (the environment to be de-
veloped in this study).

The software framework provided by the EODiSP.

The middleware selected for the EODiSP.

An application that may be or is currently coupled with other software applications
under a Federation Object Model Document Data (FDD) and a runtime infrastruc-
ture (RTI).

A named set of federate applications and a common Federation Object Model
(FOM) that are used as a whole to achieve some specific objective.

The actual operation, over time, of a set of joined federates that are interconnected
by a runtime infrastructure (RTI).

A specification defining the information exchanged at runtime to achieve a given
set of federation objectives. This includes object classes, object class attributes, in-
teraction classes, interaction parameters, and other relevant information.

The set of functionalities whose implementation is supported by the framework.
The process whereby a framework is adapted to the needs of a specific application
within its domain.

A software engineering paradigm that promotes the automatic generation of an im-
plementation from a set of specifications.

High Level Architecture. A standard to provide a common architecture for distrib-
uted modeling and simulation. Available as IEEE standard 1516.

Internet Service Provider.

Java Native Interface, a mechanism for interfacing Java code with non-Java code.
Java Virtual Machine.

A network infrastructure aimed at peer to peer (P2P) networks. The core is a set of
specifications for which a Java and a C implementation is available.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project
Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 6 of 112

Main Success Scenario

Model Owner

Object Oriented Frame-
work

OBS

Primary Actor

Runtime Infrastructure
(RTI)

Simulation Manager Ap-
plication

Simulation Model Applica-
tion

Simulation Object Model
(SOM)

Simulation Experiment

Simulation Owner

Simulation Package
Simulation Run

Software Framework

SMP2
Use Case
UUID

XML
XML Schema
XRTI

XSD

XSL

Textual description of interactions between the primary actor and the system. The
main success scenario only describes one flow of execution, without branches or
exceptions. This flow is the execution in most cases for most actors.

The model owner is a person in charge of one or more simulation models. The
model owner decides when to make his simulation models available to a simulation
and when to terminate their availability. The model owner interacts with the EOD-
iSP through a Model Manager Application.

A framework that uses inheritance and object composition as its chief adaptation
mechanisms.

The On-Board Software.

A primary actor is one having a goal requiring the assistance of the system. A use
case describes how the primary actor can achieve this goal.

The software that provides common interface services during a High Level Archi-
tecture (HLA) federation execution for synchronizing and data exchange.

A GUI-based environment. Through this environment, a simulation owner can per-
form the tasks to overall control a simulation. This includes the control of the con-
figuration and tasks like start, stop or hold a simulation experiment.

A GUI-based environment. Through this environment, a model owner can perform
the tasks to overall control the models he is in charge of.

A specification of the types of information that an individual federate could provide
to High Level Architecture (HLA) federations as well as the information that an in-
dividual federate can receive from other federates in HLA federations.

A set of one or more simulation run executed in sequence with different configura-
tions.

This is the person who is in overall control of a complete simulation. The simula-
tion owner decides how the simulation models should be configured and when a
simulation should start and terminate. The simulation owner interacts with the
EODISP through the Simulation Manager Application.

A piece of software that implements part of the functionalities required for a simu-
lation run and that is delivered as a single unit.

A single end-to-end simulation for one particular configuration of a set of simula-
tion packages.

A reusable artifact that captures the commonalities of a set of applications in a spe-
cific domain and provides reusable software building blocks to facilitate the instan-
tiation of applications in that domain.

Simulation Model Portability, a set of interfaces to support the development of sim-
ulation applications.

Textual description of how an actor can achieve a desired goal by interacting with
the system and how the system reacts to these interactions.

Universally Unique Identifier. An identifier standard to uniquely identify a res-
source or an information. It it 128 Bit long and is usually generated automatically.
Extensible Markup Language. XML documents consist (mainly) of text and tags,
and the tags imply a tree structure upon the document. An XML document is said
to be valid if it conforms to an XML Schema or a DTD.

The XML Schema language is also refered to as XML Schema Definition (XSD).
They provide a means for defining the structure, contents and semantics of XML
documents. XML Schemas are written in XML.

An implementation of the HLA runtime infrastructure (RTI).

An XML-based language for defining the structure of an XML document. XML
Schemas are normally written in the XSD language.

An XML-based programming language for defining transformations of XML docu-
ments. XSL programs can also be used as code generators.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project
Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001

software Issue 1.1

Page 7 of 112

2 References

[Chsm]
[Coc]

[Coc00]
[EaC04]

[Har87]
[HIa00]
[Jfc]
[Lar02]
[Omt00]
[SmpcO05]

[Swt]
[Urd]

Paul. J. Lucas, Concurrent Hierarchical State Machine

Alistair Cockburn, Use Cases online resources,
http://alistair.cockburn.us/usecases/usecases.html

Alistair Cockburn, Writing Effective Use Cases, 2000

D. P. Donovan et. al., The EarhCARE Simulatior, User Guide and Final Report,
ESA Contract No. 15346/01/NL/MM, 12 December 2004

D. Harel, Statecharts: A Visual Formalism for Complex Systems, 1987

IEEE Standard For Modeling and Simulation (M&S) High Level Architecture
(HLA) - Federate Interface Specification, 2000, ISBN 0-7381-2621-7, E-ISBN
0-7381-2622-5

JFreeChart, a free Java class library for generating charts,
http://www jfree.org/jfreechart/index.php

Craig Larman, Applying UML and Patterns, 2002

IEEE Standard For Modeling and Simulation (M&S) High Level Architecture
(HLA) - Object Model Template Specification, 2000, ISBN 0-7381-2623-3, E-
ISBN 0-7381-2624-1

Peter Fritzen, Peter Ellsiepen, Anthony Walsh, SMP 2.0 Component Model, Is-
sue 1 Revision 1, EGOS-SIM-GEN-TN-0101, 2005

The Standard Widget Toolkit, http://www.eclipse.org/swt/

M. Egli, A. Pasetti, I. Birrer, Concept Definition Phase and User Requirements,
PP-TN-EOP-0001, 2005

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 8 of 112

3 Introduction

This document reports the results of the activities performed in WP 310 of the Earth Obser-
vation Distributed Simulation Platform (EODIiSP) project.

The objective of the EODiSP project is to develop a generic platform to support the develop-
ment of distributed simulation environments that integrate reusable simulation packages.
Within the EODiSP project, the objective of WP 310 is to define the software requirements
of the EODiSP.

This document defines and justifies the software requirements for the EODiSP. The EODiSP
software requirements are mostly derived from the EODiSP concept and from the EODiSP
user requirements specified in reference [Urd]. Major deviations from the requirements of
reference [Urd] are discussed in section 4. A complete traceability matrix to the EODiSP user
requirements is given in appendix A.

In many cases, software requirements are defined using formalisms such as XML Schemas or
the chsm language to describe state machines. In those cases, the body of this document only
gives an informal and easier to read version of the requirements. The full definition of the re-
quirements using the selected formalism is presented in appendices B and C.

3.1 General Approach

The software requirements translate the user requirements to create a new description of the
target application. This new description is intended to drive the software design process.
Consequently, it should be expressed in terms of an unambiguous logical model. The logical
model is a description of the target system in a formal language. Ideally, the logical model
should be executable (to allow the requirements to be simulated), verifiable (to allow proper-
ties to be proven at the requirements level), and compilable (to allow automatic translation to
an implementation).

In practice, it is normally impossible to create a logical model for all parts of a complex ap-
plication. Parts that are not covered by the logical model must then be expressed using re-
quirements expressed in natural language. In this case, use of a structured approach is the
best option to improve the quality of the requirements.

When no structured approach is possible to formulate the software requirements, then con-
ventional UR-like requirements must be used. In this case, the software requirements become
a refinement of the user requirements. If the user requirements were already well-defined or
if their refinement is either impossible or undesirable, the software requirements may actually
coincide with the user requirements.

In summary, during the software requirement definition process, the user requirements can be
mapped as follows:

- to alogical model, or

+ to requirements in structured natural language, or

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 9 of 112

- to requirements in unstructured natural language (possibly identical to the user require-
ments from which they are derived)

In the EODIiSP project, all three types of mappings are used. In order to give an overview of
the mapping approach, it is useful to divide the EODiSP into four parts:

* The Graphical User Interface (GUI) that controls the interaction between the user and
the EODISP,

* The HLA Core that implements the subset of the HLA selected for the EODiSP,

* The JXTA Infrastructure that implements the distribution services for the EODiSP us-
ing the JXTA distribution infrastructure, and

* The Wrapper Generators that control the generation of the wrappers for selected kinds
of simulation packages to be integrated in the EODiSP.

For the GUI part, use cases are used to define the interaction between the users and the EOD-
iSP and XML Schemas are used to define the structure of the configuration information to be
provided by the user for an EODiSP run. The use case approach is semi-formal in the sense
that the specification of the use cases follows a structured method but does not use a formal
language. The XML Schema approach is more formal because XML Schemas are expressed
in the XSD language and can be directly used in the EODiSP implementation to check user
inputs or to automatically generate editors for entering user inputs.

The HLA Core part of the EODiSP is defined by a set of state machines. The state machines
are specified through a formal language [Chsm]. The state machine definition expressed in
chsm can be automatically translated into Java source code that implements the state ma-
chines. The chsm state machine description could in principle be made executable and verifi-
able but this is not in the EODiSP project owing to lack of tool support.

The JXTA part of the EODiSP is specified in natural language. Note that the JXTA infra-
structure is essentially “as is” and therefore its associated requirements are not problematic
and the need and benefits of a formal approach are correspondingly less felt.

The wrapper part of the EODISP is specified by using XML Schemas to define the input to
the wrapper generator tools. For those simulation packages for which no wrapper code can be
generated automatically only an example of the wrapper code is given. In such cases, the
structure of the wrappers is specified in natural language.

The EODISP approach is also illustrated in figure 1. The figures illustrates how the EODiSP
user requirements are mapped to three different types of software requirements.

Table 3.1.1 presents the same information in tabular form. It shows the approach that is taken
in deriving software requirements for each of the four parts of the EODiSP. The last column
in the table points to the sections in this document where the requirements are presented in
detail.

Software requirements expressed in unstructured natural language are stated in boxes with
the following format:

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001

software Issue 1.1
Page 10 of 112

Ref. Requirement
Sx-y <Formulation of the requirement>
The first column contains an identifier of the requirement. The identifier is formed by the let-

ter 'R’ followed by the number 'x' of the section where the requirement is formulated, and by
a sequential number 'y' that identifies the requirement within a certain section.

Logical Model

Chsm
y State Machines

HLA Core

. | XML Schemas

GUI Configuration

EODiSP GUI
URD > Use Cases

Structured Natural Language

Natural Language

Refinement of
User Requirements

All Other
Requirements

Identical to
User Requirements

Figure 1: Mapping User Requirements to Software Requirements

Table 3.1.1: Specification Approaches

EODIiSP Part Approach Section
GUI Use Cases (structured) + XML Schemas (logical model) 56
HLA Core State Machine in chsm language (compilable logical model) 7.1
JXTA Infrastructure Natural Language 8
Wrappers XML Schemas (logical model) + Natural Language 9 10,11
Residual Req.s Natural Language 12

3.2 Traceability to User Requirements

All user requirements must be traceable to one or more software requirements. For traceabil -
ity purposes, software requirements should be identified. This is normally done by assigning

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1

Page 11 of 112

a numerical identifier to each software requirements. Here, and in view of the approach out-
lined in the previous subsection, four categories of software requirements are recognized with
four separate identification policies:

* Use Case Requirements are identified by the use case identifier (i.e. one use case is re-
garded as one single software requirement).

» State Machine Requirements are identified by the name of the state machine (i.e. one
state machine is regarded as one single software requirement).

* XML Schema Requirements are identified by the name of the XML Schema (i.e. one
XML Schema is regarded as one single software requirement).

* Conventional Requirements are identified by a numerical identifier of the form Sx-y
where 'X' is the section in the present document where the requirement is defined and 'y'
is a sequential number that allows the specific requirement within the section to be
identified.

As discussed in the previous section, in some cases, user requirements are taken over un-
changed and are also used as software requirements. In these cases, and in order to ensure
consistency between the URD and the SRD, the text of the requirement is not repeated here.
A traceability matrix is given in appendix A. The traceability matrix makes it clear whether a
user requirement is mapped to some software requirements or whether it is taken over un-
changed and should therefore be considered an integral part of the SRD.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 12 of 112

4 Major Deviations from User Requirements

The analyses that led to the definition of the software requirements presented in this docu-
ment uncovered some inconsistencies in the EODiSP user requirements that make full com-
pliance with the reference [Urd] impossible.

The SRD-level analyses also identified some areas where streamlining and optimization of
the requirements of reference [Urd] would be advisable. In these cases, compliance with the
EODiSP URD would have been possible but was regarded as unwise.

This section discusses all important cases where the EODiSP software requirements as stated
in this document deviate from the user requirements as stated in reference [Urd]. Note that a
full traceability matrix from the URD to the SRD can be found in appendix A.

The table below lists in summary form the major deviations from the URD together with a
brief statement of their justification and a reference to the subsection in this section where
the deviation is discussed in greater detail:

Deviation Justification Section
SOMConfig and FOMConfig files are The function of these two files is in- 41
dropped from the list of simulation man- | compatible with the use of an HLA-
ager configuration files. based simulation core.
Simulation packages cannot ask to be This functionality cannot be implemen- 4.2
triggered according to a pre-defined ted with the set of HLA services
schedule. baselined for implementation in the

EODiSP.

ExperimentlnitConfig and Simulation- Optimization of user requirements. 4.3

Config configuration files are merged.

ModelsConfig and SomSecurityConfig Optimization of user requirements. 4.4
configuration files are merged.

Simulation models cannot exchange data This functionality is incompatible with 4.5
directly without passing through the sim- the use of an HLA-based simulation
ulation environment. core.

A description of how the simulation man- A new section with this description has =~ 4.6
ager application detects the termination been added.
of a simulation experiment is missing.

The first, third and fourth deviations do not affect the intrinsic functionality of the EODiSP.
They only affect the way the EODiSP is used. The second and fifth deviations instead have
an impact on the EODiSP functionality. The last entry is not exactly a deviation in the sense
of the other entries in the table, because it is completely new in the SRD. It does not limit or
extend the EODiSP functionality, nor does it change its usage.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 13 of 112

Finally, it should be stressed that this section has a temporary role only. Eventually, after dis-
cussions with ESA, the inconsistencies in the user requirements will have to be removed by
updating reference [Urd].

4.1 Definition of a Simulation Configuration

A simulation configuration is defined by defining which simulation models are used in a par-
ticular simulation and how they are interconnected.

In the EODiSP user requirements, the definition of a simulation configuration is done
through three configuration files — the SimulationConfig, the FOMConfig and SOMConfig
configuration files (see section 9 of the URD).

An HLA simulation is constructed as a set of interacting federates. The SimulationsConfig
file describes which federates take part in an HLA simulation. Each federate is described by
its object classes and attributes. The SOMConfig file is intended to describe how many in-
stances of an object class or an attribute shall be included in a particular simulation execu-
tion. The FOMConfig file describes how attribute instances of one object class instance are
connected to other attribute instances of another object class instance.

For purposes of illustration, it is useful to consider an example. Consider the case of a user
who has a simulation package that models the trajectory of a ballistic rocket. The simulation
package is implemented as an executable program that interacts with its environment through
input and output files. The input file defines the initial position and velocity of the rocket.
The output file (which is refreshed at every simulations step) gives the last computed position
of the rocket.

The user wishes to create a simulation where two rockets are launched and their trajectory is
recorded by a standard data display package. The data display package must be linked to one
or more data sources and simply plots all the data sources on a screen.

With the approach implied by the current EODiSP user requirements, such a simulation
would be set up as follows (see Figure 2 for a graphical representation):

* The following two object classes are defined in a FOM: Rocket and DataSource.

* The rocket simulation package is wrapped as an HLA federate.

* This HLA federate is deployed twice, once for each rocket that is desired to simulate.
Each of these federates creates an instance of the object class Rocket(r/ and 2 in
Figure 2).

* The data display package is wrapped as an HLA federate.

* This federate is deployed once. The DataSource class is instantiated twice (ds/ and
ds2 in Figure 2) in this federate, once fore each data source that should be plotted.

* The instantiation policy for the federates is described in the SOMConfig file.The de-
ployment of federates is described in the SimulationsConfig file.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 14 of 112

* The four object class instances (two rocket (#/ and r2) and two data source instances
(dsI and ds2) are linked together such that the outputs of the two rocket instances are
linked to the inputs of the data source instances.

* The connections among the object instances are described in the FOMConfig file.

The above approach is inspired by the example of Matlab-like simulation environments
where users have a palette of pre-defined simulation modules which they can deploy and con-
nect as they wish for each individual simulation.

This approach however is not in line with the HLA spirit. This is because the HLA does not
really support the concept of reusable and independently deployable simulation models. An
HLA federate is built for a specific simulation and is designed to be embedded within a spe-
cific simulation setting (federation). It is normally not possible to change the connections of
an HLA federate without changing its implementation.

In the case of the example above, the connection between the rocket federate and the display
federate is hardwired in the two federates. It is generally not possible to take the rocket feder-
ate, unplug it from the display federate, and plug it into some other federate representing a
different simulation model. Note that this swap is not possible even when there is compatibil-
ity of number and types of input and output signals.

HLA federates, in other words, are units of encapsulation but they are not units of reuse.

Rocket DataSource FOM

int x int xPos
inty int yPos

Rocket Federate 1 Data Source Federate

P
N Rocket Instance A IL DataSource Instance
exe) —» »
Jul ds1
e — | y yPos \
Rocket Simulation Package /

Rocket Federate 2

4
N Rocket Instance A &DataSource Instance / /_
exe) —»
2 ds2
y yPos

Rocket Simulation Package Display Simulation Package

Figure 2: Approach implied by the current EODISP user requirements

In the EODiSP context, there is an obvious need to have reuse of simulation packages. This
need is not incompatible with the choice of an HLA-based infrastructure because, in the
EODiSP, the simulation packages are transformed into HLA federates through the wrapping
process. It therefore becomes possible to have reuse at the level of the simulation packages
but not at the level of the HLA federates.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project
Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001

software Issue 1.1

Page 15 of 112

If the same simulation package is to be reused in two different contexts, then it should be
wrapped as two different HLA federates, each adapted to its context. Note that, with this ap-
proach, reusability comes to depend on the ease with which simulation packages can be
wrapped. This makes the automation of the wrapping process — already foreseen in the EOD-
iSP concept — even more important.

With this second approach, the example simulation with the two rockets would be set up as
follows (see Figure 3 for a graphical representation):

The following object classes are defined in a FOM: Rocket 1 and Rocket 2

The rocket simulation package is wrapped a first time to generate an HLA federate that
exposes object class Rocket 1

This federate is deployed and the generated wrapper automatically creates one instance
of the Rocket 1 object class.

The rocket simulation package is wrapped a second time to generate a second HLA fed-
erate that exposes object class Rocket 2

This federate is deployed and the generated wrapper automatically creates one instance
of the Rocket 2 object class.

The data display package is wrapped as an HLA federate that is able to receive values
from federates that expose either object class Rocket 1 or Rocket 2. The federate
itself does not create any instances of object classes.

This federate is deployed and automatically connects to the object classes Rocket 1
and Rocket 2.

The key difference with respect to the first approach is that federates are only deployed once.
Where two instances of the same simulation package are required, two separate federates are
generated by two dedicated wrappings of the simulation package, each federate exposing an-
other object class.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project
Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001

software Issue 1.1
Page 16 of 112

Rocket_1 Rocket_2 FOM
int x int x
inty inty
Rocket Federate 1 Data Source Federate
X -
exe —» Rocket_1 Instance \‘
- A
y
Rocket Simulation Package
]
Q.
&
Rocket Federate 2 ';-
X > 4
N / /—-
exe)—w Rocket_2 Instance
y -
Rocket Simulation Package Display Simulation Package

Figure 3: Second Approach without FOMConfig and SOMConfig

A consequence is that there is no need for the SOMConfig and FOMConfig configuration
file. The simulation instantiation configuration is now hardcoded in the wrappers of the simu-
lation package. The wrapped simulation package (the HLA federate) is therefore no longer
reusable because it is targeted at a specific simulation configuration but the simulation pack-
age itself is reusable (but the ease with which it can be reused depends on the ease with
which it can be wrapped anew).

In the remainder of this document, the assumption is made that the second approach is adop-
ted.

4.2 Triggering of Simulation Models

In section 4.2 of reference [Urd], a model for the interaction of simulation packages is spe-
cified. This model includes the possibility for simulation packages to be triggered according
to a pre-defined schedule.

This type of interaction implies that a global simulation time is maintained. This would in
turn require the implementation of the HLA Time Management service. This service,
however, is currently not supported by the EODISP (see section 6.7 of [Urd]). There are two
basic reasons that led to the decision not to support timing services:

* timing services are especially useful where simulation models can run in parallel but
this is not required in the EODiSP, and

* the order of execution of simulation packages in the EODIiSP is sequential and pack-
ages are triggered not by time but by the arrival of their input values.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 17 of 112

In the remainder of this document, the assumption is made that timing services are not imple-
mented by the EODiSP and that therefore the triggering interaction for simulation packages
cannot be supported.

The lack of support for a simulation time also means that user requirement R6.4.2-3 cannot
be implemented in full. This requirement asks for users to have the ability to predefine the
times — either as simulation time or as clock time — when switches from step-by-step to con-
tinuous simulation mode and from continuous to step-by-step simulation model should take
place. Clearly, the scheduling of the switches based on simulation time is not possible if the
HLA timing service is not maintained.

4.3 ExperimentlnitConfig and SimulationsConfig Configuration Files

In section 9.5 of reference [Urd], the configuration files for the simulation manager applica-
tion are specified. Two of these files — the ExperimentlnitConfig and SimulationsConfig
files — are concerned with the definition of a simulation experiment. They were kept separate
because they had two different definition modes (indirect for the SimulationsConfig file, and
explicit for the ExperimentlnitConfig file).

In order to streamline the configuration process, it has been decided to merge these two files
and to have for both the indirect definition mode. The name of the merged file is Simulation-
ManagerProject configuration file.

4.4 ModelsConfig and SomSecuritySetting Configuration Files

In section 9.6 of reference [Urd], the configuration files for the model manager application
are specified. Two of these files — the ModelsConfig and SomSecurityConfig files — are con-
cerned with the definition of the simulation models managed by the model manager applica-
tion.

In order to streamline the configuration process, it has been decided to merge these two files.
The name of the merged file is ModelManagerProject configuration file.

4.5 Data Passing Between Simulation Models

Requirement R6.3-1 in reference [Urd] asks for the EODIiSP to allow simulation models to
exchange data among themselves directly without necessarily passing through the simulation
environment.

This requirement is incompatible with the selection of an HLA infrastructure that implements
the simulation environment as the RTI and the simulation models as federates. The HLA
standard stipulates that all data exchanged between federates must always pass through the
RTI. This makes compliance with requirement R6.3-1 impossible.

This introduces a network overhead in the case where two or more models reside on the same
node while the RTI is on a remote node. There are three solutions to overcome this problem.

The first offered solution is to run the RTI on the same node as the federates. This is only
feasible if the overall network performance is enhanced by this change, which greatly de-
pends on the network topology of the simulation experiment in question. In addition, the per-

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 18 of 112

son owning the federates has to be the simulation owner as well. If practical, this solution
does not violate the HLA standard in any way, but its application is limited.

The second solution is to implement the data transfer between federates as a means of ex-
changing files. This means that the first federate (the producer) creates a file that includes its
calculated values. The second federates (the consumer) reads this values and proceeds the
further. Instead of sending the whole file (which can grow large in certain cases) through the
RTI, only the information that the value has been updated would be sent to the RTI. This in-
formation can also include the path where the file can be read on the file system. The RTI
would then only send this information to interested federates. This solution conforms to the
HLA standard and is the preferred solution if the former is not applicable. The only restric-
tion of this solution is that it is not applicable when several distributed federates are inter-
ested in those values (i.e. in the content of the file). Then, the actual values needs to be sent
through the RTI in order to distribute them.

The third solution is not advisable and furthermore more difficult to implement. Therefore it
should be considered as a last resort for special cases. The solution would be to wrap all in-
volved simulation packages as a single federate. Firstly, this is a violation to the HLA ap-
proach because management data is not sent through the RTI, thus making it impossible to
track or log any of the actions that take place between those federates. Furthermore, the data
transfer itself has to be implemented by the programmer itself, since wrappers provided by
the EODiSP cannot provide this code in any case. As a last point, the wrapping of more than
one simulation package as one federate has also be done manually, because a wrapper is al-
ways considers only one simulation package.

4.6 Simulation End

A description of one part of a simulation experiment is missing in the URD. This relates to
how the simulation manager application is able to detect that a federation execution is com-
pleted. The HLA can be used to handle this through two different scenarios.

The first solution is that the /ast federate in a federation execution chain sends an interaction
informing all other federates that it has completed its task. This solution has several practical
disadvantages. Firstly, the programmer of a federate needs to know in advance that his feder-
ate will eventually be the last federate in the execution chain of a certain federation execu-
tion. This is often not known at the time when a federate is created. Secondly, it cannot be
guaranteed that there is always only one last federate in the chain. Since the EODISP is a
purely data-driven simulation environment, it is possible that two (or more) federates are sub-
scribed to a value from the second-last federate, thus executing in parallel. In such a situ-
ation, the decision of which federate shall be responsible of indicating the end of a federation
execution can only be guessed. These shortcomings make this solution inapplicable for the
EODiSP environment.

The second solution to detect the end of a federation execution is through the use of syn-
chronization points. One federate (or possibly the simulation manager itself for the EODiSP
environment) registers a synchronization point within the RTI. Those federates having no
opinion about their ending condition achieve the synchronization point immediately. This, for
instance, would be the case for some simple federates such as the data transformation feder-

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 19 of 112

ates, because they would not know how often they are being used throughout a federation ex-
ecution. Other federates instead know exactly what the ending conditions are. These feder-
ates shall only achieve the synchronization point when their ending conditions are fulfilled.
The RTI will know that the federation execution is completed when all participating feder-
ates have achieved the synchronization point. It will inform all federates to resign from the
federation execution in order to destroy it. This approach solves the problems outlined in the
first solution above and is therefore preferred.

Using this mechanism also implies that the HLA services concerning synchronization point
must be implemented and available. In the URD, the corresponding services are declared as
priority 3 (not to be implemented). This needs to be changed for the services listed in table
4.6.1. The first columns lists the section from the HLA standard where the service is defined,
and the second column gives the name of the service. These columns are duplicates from the
URD. The third column indicates the priority which was assigned to the service by the URD
and the last column shows the new priority.

Table 4.6.1: HLA service used to detect federation execution end.

Section Service Old Prio. A New Prio.
4.6 Register Federation Synchronization Point 3 1
4.7 Confirm Synchronization Point Registration 3 1
4.8 Announce Synchronization Point 3 1
4.9 Synchronization Point Achieved 3 1
4.10 Federation Synchronized 3 1

The offered solution does not mention the end of a simulation experiment. In fact, only the
end of a federation experiment can be detected. This is not a problem, since a simulation ex-
periment consists of one ore more (possibly unrelated) federation executions, whose endings
can be determined by the RTI. If all federation executions included in a simulation experi-
ment are completed, the simulation manager knows that the whole experiment is completed.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 20 of 112

5 Use Cases

Use cases are one of the techniques that are used to define the EODiSP software require-
ments. They are in particular used to define the requirements applicable to the GUI part of
the EODISP (see discussion in section 3.1).

This section presents all the use cases defined for the EODiSP GUI. The EODiSP GUI is im-
plemented over three separate applications: the simulation manager application, the model
manager application, and the support application. The associated use cases are specified in
subsections 5.2, 5.3 and 5.4, respectively.

For readers who are not familiar with the use case concept, subsection 5.1 provides an over-
view of how they are defined and the purpose they serve.

For convenience, table 5.1 lists all the use cases specified in this document. The first column
in the table gives the use case identifier, the second column gives its name, and the last
column points to the section where the use case is described.

Table 5.1: List of EODISP Use Cases.

Use Case ID Use Case Name Section
UC 100 Simulation Manager Application Summary 5.2.1
UC 102 Set-up Simulation Manager Application 522
UcC 104 Configure Simulation Experiment 523
UC 106 Run Experiment 524
UC 108 Load or Save Configuration 5.2.5
UC 110 Experiment Abort 5.2.6
UC 112 Configure Simulation Manager Application Log 5.2.7
UC 200 Model Manager Application Summary 5.3.1
uC 202 Set-up Model Manager Application 532
UC 204 Manage Federates in the Model Manager Application. 533
UC 208 Configure Model Manager Application Log 534
UC 302 Generate Wrapper Code for an Excel Workbook 54.1
UC 304 Generate Wrapper Code for an SMP2 simulation 542
UC 306 Generate Wrapper Code for Matlab-Generated Code 543
UC 308 Generate Wrapper Code for a Matlab Simulation 544
UC 310 Generate Wrapper Code for Source Code 54.5
UC 312 Generate Wrapper Code for a Standalone Executable 5.4.6
UC 314 Generate Wrapper Code a Data Processing Package 5.4.7

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 21 of 112

Use Case ID Use Case Name Section
UC 316 Creating a New SOM File 5.4.8

The following requirement acts as an umbrella requirement for all the EODiSP use cases.
Note that traceability from URD is mostly done in terms of the specific use cases in order to
have a better granularity. See also the discussion in section 5.1.1.

S5-1 The EODISP GUI shall support all the use cases listed in table 5.1.

5.1 Overview of Use Case Concept

Use cases are a good method to describe the interaction between an actor and the system.
These entities can be described as follows:

* An actor essentially is the user of the system. This can be a person or another system
interacting with the system to achieve a desired goal.

* The system is an entity which reacts to interactions performed by an actor. It is able to
achieve a desired goal. The goal which is to be achieved is specified in each use case.
In the EODIiSP, the system is a piece of runnable software.

A use case describes what happens when the actor interacts with the system. The interactions
are performed in a sequential order. Therefore, a use case always starts with an actor interac-
tion, followed by other interactions from the actor or reactions from the system. The use
cases used throughout this section are goal-driven, meaning that a use case describes the ac-
tions to take (by the actor and the system) to fulfil a desired goal of the actor.

In the EODiSP context, there are three kinds of actors:

+ The simulation owner (the person who wishes to use the EODiSP to perform a simula-
tion).

« The model owner (the person who wishes to use the EODiSP to make one or more of
his models available to a simulation manager)

+ The person who wishes to wrap a simulation package to transform it into an EODiSP-
compatible simulation model (this will often be the same as the model owner).

Note that a use case does not describe the 'look and feel' of the graphical user interface. This
is an implementation issue and shall be independent of what the system should provide. A
use case describes interactions on the level of services. This makes them independent from
the implementation. It also makes use cases reusable because they shall apply to every imple-
mentation of the system, regardless of how the graphical user interface looks like.

The format of the uses cases in this document is the one which is proposed by Craig Larman
[Lar02]. It is closely related to the format proposed by Alistair Cockburn [Coc00], who also

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 22 of 112

provides good online resources (including an excerpt of his book) about writing use cases
[Coc].

Since it is much easier to read short use cases which have clearly defined boundaries than to
read one big use case describing every aspect of an application, the dedicated use cases for
each application have been split into smaller, more readable use cases. The sum of all use
cases belonging to one application makes up the description of interactions between an actor
and the system.

Every use case description throughout this document has 3 subsections. The first one is the
Definitions section. It includes a table defining the attributes of the use case, such as name,
level, description, etc. This information is connected with the use case and shall make its in-
tention clear. A detailed description of every attribute can be found in table 5.1.1.

The second subsection of a use case is the Main Success Scenario. It describes the interac-
tions between the primary actor and the system to achieve the specified goal. The Main Suc-
cess Scenario includes neither system failures, nor exceptions, nor alternative interactions
which may be supported by the system. Therefore, it describes the interactions performed by
most actors in most cases. If the main success scenario is finished, the primary actor's inten-
ded goal has been achieved. The description is given in text format. The sequence of interac-
tions is taken into account by using a numbered list. This sequence must be obeyed in most
cases in order to achieve the goal.

The third section is the Alternative Flows. It describes what can happen in addition to the
main success scenario. This can be any system exception or alternative steps the primary act-
or can choose from. A step in the alternative flow can either occur at any time or at a certain
step in the main success scenario. To highlight this, steps in an alternative flow are either
marked with a "*' (asterisk) or a number. Steps which can occur at any time are marked with
an asterisk. Steps which have a corresponding step in the main success scenario are marked
with the same number as the one in the main success scenario plus a letter indicating differ-
ent alternatives.

Some of the use cases might be very similar or even equal for different applications. This is
mostly the case for use cases with level 'Subfunction'. Instead of having these use cases in
one place, they are repeated for every application. This approach can be rather verbose but is
considered more convenient for the reader.

Table 5.1.1: Description of attributes used in the use cases.

Attribute Description

Number A number uniquely identifying the use case with the format UC_<Ap-
plication><Nr>.

UC _is static for every use case. It is used in text to identify a reference
as being a use case.

The <Application> part is a two digit number identifying the type of ap-
plication for which the use case is written. This can be one of the follow-
ing:

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project
Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001

software

Issue 1.1
Page 23 of 112

Attribute

Name
Primary Actor

Level

Description

Pre-Condition

Post-Condition

Description

* [: Identifying the type of application as simulation manager applic-
ation

» 2: Identifying the type of application as model manager application

* 3: Identifying the type of application as support application.

The <Nr> part of the number is a two digit number. This number takes
the sequence of the use case into account by advancing it to a higher
number. It can leave spaces between numbers to provide a 'slot' for future
use cases.

Every use case shall have a name which is given here. The name should
be descriptive and, if possible, unique.

The primary actor is one having a goal requiring the assistance of the sys-
tem. The use case describes how the primary actor can achieve this goal.

Every use case is assigned a level. This level describes the intention of
the use case. 3 levels are defined.

e Summary:
Use cases with this level represent collections of user goal level use
cases. They describe how several use cases can be assembled to-
gether and in which order they can be executed.

e User Goal:

Use cases with this level are of greatest interest. They describe a
goal which the actor can achieve by interacting with the system.

* Subfunction:
Use cases with this level are steps in a user goal use case. This use
cases are described as such because they are used in different user
goal use cases or because they are too complex to be directly integ-
rated in them.

A high level description of the goal which shall be achieved by the use
case. It is a summary of what can be found in more detail in the text of
the use case.

Describes the states in which the system has to be prior to the start of the
use case.

Describes the state in which the system is after main success scenario of
the use case has been run.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 24 of 112

5.1.1 Traceability to Code

Use cases can be seen as requirements telling the system what services it shall provide to an
actor. In order to keep track of these requirements formulated by use cases, the unique num-
ber of each use case is used in the EODiSP code to make a reference to them. If all use cases
are referenced from within the code, it is ensured that all use case requirements are imple-
mented.

Another effect is, that if a use case needs to be modified, the impact on the code is easy to as-
sess.

A reference from use cases to the corresponding implementation code is not given because
this would be hard to maintain. Furthermore, use cases should be independent of an actual
implementation. Referencing code in a use case would break this important feature.

S5.1.1-1 The EODISP GUI code shall contain references to the use cases that is im-
plemented by the code.
5.2 Simulation Manager Application Use Cases

This section presents the use cases that define the simulation manager application. The simu-
lation manager application is one of the applications that implement the EODiSP GUI. Each
use case is defined in a dedicated subsection.

5.2.1 Use Case - Simulation Manager Application Summary

Definitions
Number UC_100
Name Simulation Manager Application Summary

Primary Actor Simulation owner

Level Summary

Description Describes how use cases belonging to the simulation manager application
are linked together and the sequence in which they shall be used. The de-
scription is from the point of view of the actor.

Pre-Condition None.

Post-Condition | None.

Main Success Scenario

1. Actor sets up the simulation manager application (see use case UC 102).
2. Actor configures a simulation experiment (see use case UC _104).

3. Actor runs a simulation experiment (see use case UC 106).

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project
Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001

software Issue 1.1

Page 25 of 112

Alternative Flows

None.

5.2.2 Use Case — Set-up Simulation Manager Application
Definitions

Number UC_102

Name Set-up Simulation Manager Application

Primary Actor Simulation owner

Level

User goal

Description Describes the steps required to get a running, fully functional simulation

manager application. After this, simulation experiments can be con-
figured and run.

Pre-Condition * The simulation manager application must be installed on the system.

Post-Condition + The simulation manager application runs.

¢ The EODiSP network infrastructure is initialised.

* The simulation manager application is ready to be configured.

Main Success Scenario

1.

® N W

Actor starts the simulation manager application. Depending on the platform, this can
be achieved by using a command on a console or by selecting the appropriate entry in
the start menu.

. Actor chooses the application setting and the network setting to use from a list of

already existing application settings and network settings respectively.

. System loads the 'ApplicationSettings' configuration file for the simulation manager

application from a predefined path in the file system.

System initialises the simulation manager application with the parameters given in the
'ApplicationSettings' configuration file.

System shows the GUI of the simulation manager application to the actor.
Actor chooses to initialise the EODiSP network.
System initialises the network infrastructure.

System displays to the actor whether the simulation manager application has already
been registered in the global simulation manager repository.

Actor chooses to register, deregister, or update the simulation manager application in
the global simulation manager repository.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001

software Issue 1.1
Page 26 of 112

Alternative Flows

a*. At any time, system detects an internal, unrecoverable error.
1. System signals error.
2. System exits.
3. Actor restarts the simulation manager application.
5-7a. Actor adjusts the general settings.
1. Actor chooses to save the settings.
2. System stores the settings in the 'ApplicationSettings' configuration file.
2a. System detects that it cannot save the file.
1. System signals error.
2. Actor tries to save again or ignores the operation.
3. System displays updated settings.
5-7a Actor adjust the network settings.
1. Actor chooses to save the settings.
2. System stores the settings in the configuration files.
2a. System detects that it cannot save the file.
1. System signals error.
2. Actor tries to save again or ignores the operation.
5-7b. Actor adjusts simulation log settings. See use case UC [12.
7*. At any time during this step, system detects a network error during initialisation.
1. System signals error.
2. Actor tries to resolve the network error.
3. Actor chooses to initialise the network again.
7a. The system runs in remote mode (i.e. Internet connection is available):
1. System connects to the global simulation manager repository .
7b. The system runs in local mode (i.e. no Internet connection is available):
1. System does not attempt to connect to a remote host.
2. Use case ends.

9a. Actor chooses not to register the simulation manager application in the global simula-
tion manager repository.

1. System is running and fully functional.
9b. No network connection to the repository available.
1. System displays error and aborts operation.
9c. Register simulation manager application:
1. System connects to the EODiSP simulation manager repository.
la. Simulation manager application is already registered in the global repository.
1. System displays information.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 27 of 112

2. System aborts operation.
2. System transfers information about the simulation manager application to the repos-
itory to uniquely identify it.
9d. Deregister simulation manager application:
1. System connects to the EODiSP simulation manager repository.
la. Simulation manager application is not registered in the global repository.
1. System displays information.
2. System aborts operation.
2. System instructs global repository to deregister the simulation manager application.
9e. Update simulation manager application.
1. System connects to the EODiSP simulation manager repository.
la. Simulation manager application is not registered in the global repository.

1. System instructs global repository to register the simulation manager applica-
tion.

1b. System instructs global repository to update registration for the simulation man-
ager application.

5.2.3 Use Case — Configure Simulation Experiment

Definitions
Number UC 104
Name Configure Simulation Experiment

Primary Actor Simulation owner

Level User goal

Description Describes the configuration which has to be made prior to starting a sim-
ulation experiment.

Pre-Condition * Use case UC 102 (Set-up simulation manager application) has been
successfully completed.

Post-Condition » A simulation experiment is configured and ready to be run.

Main Success Scenario

1. Actor chooses to find available federates.

2. System presents all federates which are currently available in the EODiSP network. It
only shows those federates which have been made available for this simulation man-
ager application.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 28 of 112

3. Actor integrates as many federates as he wishes (i.e. as needed for a specific federation
execution) from the list of available simulation models into an already existing federa-
tion execution.

4. System retrieves information about federates which are to be integrated, including ini-
tialisation data template files or a specification of its format, if available.

5. System displays an updated list of federates included in the federation.

6. Actor integrates as many federations as he wishes from the list of available federations
into a simulation experiment. These federations are now called federation executions.

7. System locally copies information about a federate into the simulation experiment, in-
cluding initialisation data template files, if such data is available.

8. System displays an updated list of federation executions included in a simulation ex-
periment.

9. System highlights federates which expect input data.

10.Actor enters initialisation data for all federates expecting input data.

Alternative Flows

a*. At any time, system detects an internal, unrecoverable error.
1. System tries to save unsaved data.
2. System signals error
3. Actor restarts the simulation manager application.
4. System enters a clean state.
b*. At any time, actor chooses to update the list of available federates.
1. System presents an updated list of available federates.

c*. At any time, actor chooses save the current configuration to the file system (see
UcC 108).

la. Actor chooses to load an already existing 'SimulationManagerProject' file (see
UucC_108).

1. Go to step 8.
1b. Actor chooses to include a federate manually.
1. System presents a file dialogue.
2. Actor chooses an appropriate file from the file system.

2a. The chosen file does not represent a federate or the system encountered errors in
the file.

1. System displays error.
3. System adds this federate to the list of available federates.
3a. The federation execution to which the actor wants to add a federate does not yet exist.

1. Actor adds a new federation execution to the list of federation executions and gives
it a dedicated name.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 29 of 112

2. System displays updated list of federation executions.
4a. The newly integrated federate expects input data.
1. System marks the federate as special federate which expects input data.

6a. The simulation experiment to which the actor wants to add a federation execution does
not yet exist.

1. Actor adds a new simulation experiment to the list of simulation experiments and
gives it a unique name.

2. System displays updated list of simulation experiments.

10b. No participating federate can be found in the federation execution which is able to
publish the attributes needed by a federate which has been integrated.

1. System marks the federate as not fully integrated.

2. System displays an indication that the simulation experiment might not work prop-
erly.

1. Actor adds a federate to the federation which is able to publish the needed attrib-
utes.

2. System updates the federation execution in the appropriate simulation experi-
ments.

2a. Newly integrated federate is able to publish the needed attributes.

1. System marks the federate as fully integrated (removes visual indication of
not fully integrated).

2. System removes indication about the simulation experiment not working
properly.
2b. Newly integrated federate is not able to publish the needed attributes.

5.2.4 Use Case — Run Experiment

Definitions
Number UC_ 106
Name Run Experiment
Primary Actor Simulation owner
Level User goal
Description Starts a simulation experiment which has been configured. The configur-

Pre-Condition

ation of a simulation experiment is explained in use case UC 104.
* Use case UC 104 (configure simulation experiment) has been success-
fully completed for the simulation experiment which is selected to run.

* No other experiment has been started from the simulation manager
application.

* All participating models in the simulation experiment are available in

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project
Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001

software Issue 1.1
Page 30 of 112
the EODiSP network.
* Ifno network connection is configured, all federates must be available
locally.

Post-Condition * The simulation experiment has been completed successfully.

Main Success Scenario

Actor selects the simulation experiments which he wants to run.

Actor chooses to check the availability of the participating federates.
Actor chooses to start the simulation experiment.

System initialises simulation experiment.

System runs simulation experiment.

System detects that the simulation experiments has finished executing.

A R o

System signals end of simulation experiment to the actor.

Alternative Flows

2a. Not all participating federates are currently available in the EODiSP network.

1. Actor checks the availability of federates periodically until all federates are avail-
able in the EODiSP network.

4-5a. System detects an internal error during execution of a simulation experiment.
1. System signals error.
2. System tries to recover the error.
2a. System cannot recover error.
1. Actor aborts the executing simulation experiment (see use case UC 110).
2. Actor starts the simulation experiment again.
3. System continues to execute the simulation experiment.

4-5b. Actor chooses to abort the currently running simulation experiment (see use case
UcC 110).

4-5c. At any time in continuous operation mode, actor switches to step-by-step operation
mode.

1. System waits until the currently running federate has finished its execution.

2. System holds the execution of the simulation experiment before the next step in the
federation execution starts.

3. Actor steps forward for one step.
4. System starts the execution of the next federate.

4-5d. At any time in step-by-step operation mode, actor switches to continuous operation
mode.

la. System is currently not on hold.
1b. System is currently on hold waiting for the actor to step forward.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001

software Issue 1.1

Page 31 of 112

1. System switches mode to continuous operation mode.

2. System automatically advances the simulation experiment without user interac-
tion.

4-5e. System detects a network error.

la. Network error occurred in the simulation manager application.

la. The simulation manager can reconnect to the EODiSP network during a certain
amount of time.

1b. The simulation manager cannot reconnect to the EODiSP network during a cer-
tain time.

1. System signals error.
2. Actor acknowledges error.
3. System stops the simulation experiment and enters a clean state.

4. System is ready to execute another simulation experiment, whenever the net-
work problem has been fixed.

1b. Network error occurred in one of the participating simulation models.

1. System signals error.

2. System informs all model manager applications involved in the simulation exper-
iment about the network error.

3. System tells the model manager applications to reinitialise all federates which
participate in the simulation experiment.

4. System stops the simulation experiment and enters a clean state.
5. System is ready to execute another simulation experiment.

5.2.5 Use Case - Load/Save Configuration
Definitions

Number UC_108

Name Load or Save Configuration

Primary Actor Simulation owner

Level

Subfunction

Description Loads an existing 'SimulationManagerProject' configuration file into the

simulation manager application. This can be used to load a configuration
which has been done in another simulation manager application. When
loading such a configuration, there is no guarantee that the simulation
models are available for the simulation manager application in which the
configuration is loaded.

Pre-Condition * The simulation manager application is running.

Post-Condition * The configuration file has been loaded into the simulation manager ap-

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 32 of 112

plication.
* The configuration file has been saved to a specific location.

* No simulation experiment is currently active.

Main Success Scenario

Actor opens a configuration file through an 'open file dialogue'.
System processes the new configuration file.

System clears the currently active project configuration in the application.

bl S

System adds all federations and simulation experiments which are configured in the
document to the current simulation manager application.

Actor chooses to save the configuration file.
System asks for a location in which the file should be stored.

Actor chooses a location and a name for the file.

o =N W

System saves the files to the given location and the given name.

Alternative Flows

2a.The configuration file does not conform to the XML Schema.
1. System signals error.
2. Actor chooses another configuration file to load.
8a. System detects that it cannot save the file.
1. System signals error.
2. Actor tries to save again or ignores operation.

5.2.6 Use Case — Experiment Abort

Definitions
Number uUcC 110
Name Experiment Abort
Primary Actor Simulation owner
Level Subfunction
Description Aborts a running simulation experiment before it is finished. There is no

recovery, once a simulation experiment has been aborted. All simulation
data which are not stored are lost.

Pre-Condition * A simulation experiment which is controlled by this simulation man-
ager application is currently running.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project
Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001

software Issue 1.1

Page 33 of 112

Post-Condition * Simulation manager is in a clean state and ready to start a simulation

experiment.

Main Success Scenario

1.
2.

3.
4,

Actor chooses to abort the running simulation experiment.

System sends a message to all participating model manager applications asking them to
deregister all federates from the simulation experiment and to enter a clean state.

System waits until all federates have resigned from the federation.
System reinitialises itself and enters a clean state.

Alternative Flows

3a.

Not all federates have resigned from the federation after waiting a configurable

amount of time.

1. System signals error to actor.
2. Actor acknowledges the error.
3. System reinitializes itself and enters a clean state.

5.2.7 Use Case — Configure Simulation Manager Application Log

Definitions
Number ucC_112
Name Configure Simulation Manager Application Log

Primary Actor Simulation owner

Level

Subfunction

Description The actor defines which messages shall be logged in the application.

Pre-Condition * Use case UC 102 (Set-up simulation manager application) has been

successfully completed.

Post-Condition + Log settings are adjusted.

Main Success Scenario

A S e

Actor chooses to adjust log settings.

System displays options to adjust log settings.

System displays a list of options which can be enabled or disabled.
Actor chooses which log options he wants to enable or disable.

System updates the 'ApplicationSettings' configuration file of the simulation manager
application..

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 34 of 112

Alternative Flows

None.

5.3 Model Manager Application Use Cases

This section presents the use cases that define the model manager application. The model
manager application is one of the application that implement the EODiSP GUI. It is normally
operated by a model owner. Each use case is defined in a dedicated subsection.

5.3.1 Use Case — Model Manager Application Summary

Definitions
Number UC 200
Name Model Manager Application Summary
Primary Actor Model owner
Level Summary
Description Describes how the use cases belonging to the model manager application

are linked together and in which order they can be used. The description
is from the point of view of the actor.

Pre-Condition None.

Post-Condition | None.

Main Success Scenario

1. Actor sets up the model manager application (see use case UC 202)

2. Actor adds federates to the model manager application and configures them (see use
case UC 204).

Alternative Flows

None.

5.3.2 Use Case — Set-up Model Manager Application

Definitions
Number ucC_202
Name Set-up Model Manager Application
Primary Actor Model owner
Level User goal
Description Describes the steps in order to get a running, fully functional model man-

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 35 of 112

ager application.

Pre-Condition * The model manager application must be installed on the system.

Post-Condition » The model manager application runs.
* The EODIiSP network infrastructure is initialised.

* Federates can be added to the model manager application.

Main Success Scenario

1. Actor starts the model manager application. Depending on the platform, this can be
achieved by using a command in a console or by selecting the appropriate entry in the
start menu.

2. Actor chooses the application setting and the network setting to use from a list of
already existing application settings and network settings respectively.

3. System loads the 'ApplicationSettings' configuration file for the model manager applic-
ation from a predefined path in the file system.

4. System initialises the model manager application with the parameters given in the con-
figuration file.

. System shows the GUI of the model manager application to the actor.

5
6. Actor chooses to initialise the EODiSP network.
7. System initialises the network infrastructure.

8

. System makes already configured federates available to the EODiSP network.

Alternative Flows

a*. At any time, system detects an internal, unrecoverable error.
1. System signals error.
2. System exits.
3. Actor restarts the model manager application.
5-7a. Actor adjusts the general settings.
1. Actor chooses to save the settings.
2. System stores the settings in the 'ModelManagerProject' configuration file.
2a. System detects that it cannot save the file.
1. System signals error.
2. Actor tries to save again or ignores the operation.
3. System displays updated settings.
5-7a Actor adjust the network settings.
1. Actor chooses to save the settings.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 36 of 112

2. System stores the settings in the configuration files.
2a. System detects that it cannot save the file.
1. System signals error.
2. Actor tries to save again or ignores the operation.
5-7b. Actor adjusts simulation log settings. See use case UC 208.
7-8a. System detects a network error during initialisation.
1. System signals error.
2. Actor tries to resolve the network error.
3. Actor chooses to initialise the network again.

5.3.3 Use Case — Manage Federates in the Model Manager Application

Definitions
Number UC 204
Name Manage Federates in the Model Manager Application
Primary Actor Model owner
Level User goal
Description When a model manager application runs it is ready to integrate additional

federates and to make them available to certain simulation manager ap-
plications. This use case describes the interactions for this configuration.

Pre-Condition * Use case UC 202 (set-up model manager application) has been suc-
cessfully completed.

Post-Condition + Some (or all) federates included in the model manager application are
ready to be integrated into a simulation experiment.

Main Success Scenario

1. Actor chooses to add a federate.

2. System displays a dialogue which lets the actor choose the federate he wants to integ-
rate.

3. Actor chooses a 'SOM' configuration file which belongs to the federate he wants to in-
tegrate.

4. System processes the SOM configuration file.

5. System adds the selected federate to the list of managed federates in the model man-
ager application.

6. Actor selects the newly added federate from the list of managed federates.
7. Actor chooses to configure the security settings for the selected federate.
8. System displays options to specify security settings.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 37 of 112

9. Actor selects from a list of registered simulation manager applications to which the
federate shall be made available.

10.System automatically updates the 'SOMSecuritySettings' configuration file.
11.Actor chooses to make the federate available to the EODiSP network.

12.System internally adds the federate to the list of available federates for the configured
simulation manager application(s) in order to respond to requests coming from them.

13.System displays whether the federate has already been registered in the global federate
repository.

14.Actor chooses to register, deregister, or update a federate in the repository holding a
list of available federates.

Alternative Flow

3a. Additional configuration files are needed for this type of federate.
1. Actor chooses the additional configuration files to be integrated.
2. System processes additional configuration files.
4a. The configuration file does not conform to the XML Schema.
1. System signals error.
2. Actor chooses another configuration file to load.
6a. Actor selects an already existing federate from the list of managed federates.
9a. No simulation manager application is registered in the EODiSP network.

1. The actor waits until at least one simulation manager application has been registered
in the EODIiSP network.

9b. No network connection is available to fetch the list of registered simulation manager
applications.

1. System displays error.
2. Actor tries to resolve the network error or ignores operation.

9c. Actor chooses to make the federate available to all simulation manager applications in
the EODiSP network.

9d. Actor chooses to manually specify a simulation manager application.
1. System presents an open file dialogue.

2. Actor chooses the file which uniquely identifies a simulation manager application.
This file can be created by the simulation manager application itself.

2a. System cannot processes the file.
1. System displays error.
2. Actor tries to load the file again or ignores the operation.
12a. System detects a network error.
la. Network error occurred in the model manager itself.

la. The model manager can reconnect to the EODiSP network during a certain
amount of time.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document
& Www.pnp-software.com Ref: PP-SRD-EOP-0001

software Issue 1.1
Page 38 of 112

1b. The model manager cannot reconnect to the EODiSP network during a certain
time.

1. System signals error.
2. Actor acknowledges error.
3. System reinitialises the federate.
4. Federate is in a clean state to be used by another simulation experiment.
1b. Network error occurred in one of the other participating simulation models.
1. System reports error in the log file.

2a. System does not receive a message from the simulation manager application in-
forming it to shut down.

2b. System receives a message from the simulation manager application informing
it to shut down.

1. System signals error.

2. Actor acknowledges error.

3. System reinitialises the federate.

4. Federate is in a clean state to be used by another simulation experiment.
lc. Network error occurred in the simulation manager application.

la. The model manager can reconnect to the simulation manager application during
a certain amount of time.

1b. The model manager cannot reconnect to simulation manager application during
a certain time.

1. System signals error.

2. Actor acknowledges error.

3. System reinitialises the federate.

4. Federate is in a clean state to be used by another simulation experiment.
14a. Actor chooses not to register the federate in the global federate repository.
14b. No network connection to the repository available.

1. System displays error and aborts operation.
14c. Register federate:
1. System connects to the EODiSP federate repository.
la. Federate is already registered in the global repository.
1. System displays information.
2. System aborts operation.

2. System transfers information about the federate to the repository to uniquely identify
it.

14d. Deregister federate:
1. System connects to the EODiSP federate repository.
la. Federate is not registered in the global repository.

Copyright 2005 P&P Software GmbH — All Rights Reserved

http://www.pnp-software.com/

EODISP Project

Software Requirements Document

& Www.pnp-software.com Ref: PP-SRD-EOP-0001
software Issue 1.1
Page 39 of 112

1. System displays information.
2. System aborts operation.
2. System instructs global repository to deregister federate.
14e. Update federate:
1. System connects to the EODiSP federate repository.
la. System is not registered in the global repository.
1. System instructs global repository to register federate.
1b. System instructs global repository to update the registration of the federate.

5.3.4 Use Case — Configure Model Manager Application Log

Definitions
Number UC 208
Name Configure Model Manager Application Log
Primary Actor Model owner
Level Subfunction
Description The actor can configure which messages shall be logged in the applica-
tion.

Pre-Condition * Use case UC 202 (set-up model manager application) has been suc-
cessfully completed.

Post-Condition * Log settings are adjusted.

Main Success Scenario

Actor chooses to adjust log settings.
System displays options to adj