
www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 1 of 112

EODiSP Project

Software Requirements Document

Prepared by P&P Software GmbH with ETH-Zürich
for ESA-Estec under Contract 18833/05/NL/AR

Written By: I. Birrer (P&P Software GmbH)

M. Egli (ETH-Zurich)

A. Pasetti (P&P Software GmbH)

Date: 4 November 2005

Issue 1.1

Reference: PP-SRD-EOP-0001

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 2 of 112

Table of Contents
1 Glossary and Acronyms..5

2 References...7

3 Introduction..8
3.1 General Approach..8
3.2 Traceability to User Requirements..10

4 Major Deviations from User Requirements..12
4.1 Definition of a Simulation Configuration...13
4.2 Triggering of Simulation Models..16
4.3 ExperimentInitConfig and SimulationsConfig Configuration Files...........................17
4.4 ModelsConfig and SomSecuritySetting Configuration Files......................................17
4.5 Data Passing Between Simulation Models..17
4.6 Simulation End..18

5 Use Cases..20
5.1 Overview of Use Case Concept...21

5.1.1 Traceability to Code..24
5.2 Simulation Manager Application Use Cases...24

5.2.1 Use Case – Simulation Manager Application Summary.....................................24
5.2.2 Use Case – Set-up Simulation Manager Application..25
5.2.3 Use Case – Configure Simulation Experiment...27
5.2.4 Use Case – Run Experiment..30
5.2.5 Use Case – Load/Save Configuration...32
5.2.6 Use Case – Experiment Abort...33
5.2.7 Use Case – Configure Simulation Manager Application Log............................33

5.3 Model Manager Application Use Cases..34
5.3.1 Use Case – Model Manager Application Summary..34
5.3.2 Use Case – Set-up Model Manager Application...35
5.3.3 Use Case – Manage Federates in the Model Manager Application....................36
5.3.4 Use Case – Configure Model Manager Application Log....................................39

5.4 Support Application Use Cases...40
5.4.1 Use Case – Generate Wrapper Code for an Excel Workbook............................40
5.4.2 Use Case – Generate Wrapper Code for an SMP2 simulation...........................41
5.4.3 Use Case – Generate Wrapper Code for Matlab-Generated Code......................43
5.4.4 Use Case – Create Wrapper Code for a Matlab Simulation...............................44
5.4.5 Use Case – Create Wrapper for Source Code...44
5.4.6 Use Case – Create Wrapper for a Standalone Executable..................................45
5.4.7 Use Case – Create Wrapper for a Data Processing Package...............................46
5.4.8 Use Case – Creating a New SOM File..47

6 GUI Configuration Files...48
6.1 XML Schema Documentation...48
6.2 Simulation Manager Application Configuration Files..49

6.2.1 SimulationManagerProject Configuration File...49
6.2.2 FOM...53

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 3 of 112

6.2.3 Application Settings..53
6.3 Model Manager Application Configuration Files...54

6.3.1 ModelManagerProject Configuration File..54
6.3.2 SOM..58
6.3.3 Application Settings..58

6.4 General format of Application Settings...59

7 HLA Core...60
7.1 State Machines...60
7.2 State Machines in the EODiSP..62
7.3 State Machine Descriptions...63

7.3.1 State Machine Federation Lifetime...63
7.3.2 State Machine Federate Lifetime..64

8 The JXTA Infrastructure...66
8.1 Configuration Properties...66
8.2 Dedicated Configurations..67

9 General Wrapper Structure...69
9.1 Wrapping Approach..69
9.2 HLA Federate Interface Implementation Generator..70
9.3 Predefined Data Conversions..71
9.4 Java/COM Bridge..72

10 Wrapper Generators...73
10.1 Microsoft Excel Workbook Wrapper..74

10.1.1 Mapping File – ExcelMapping.xsd...75
10.2 SMP2 Simulation Wrapper..80

10.2.1 Mapping File - SMP2Mapping.xsd...81
10.3 Matlab-Generated Code Wrapper..85

11 Sample Wrappers..86
11.1 Matlab Simulation Sample Wrapper...86
11.2 Fortran Source Code Sample Wrapper..87
11.3 C++ Source Code Sample Wrapper..88
11.4 Standalone Executable Sample Wrapper..89
11.5 Data Processing Package Sample Wrapper...91

12 General Requirements...92
12.1 Target Operating System...92
12.2 Licensing Requirements..92
12.3 Installation Requirements..93
12.4 Predefined HLA Federates..93

Appendix A: Traceability Matrix ..94

Appendix B: State Machines...98
B.1 FederationLifetime..98
B.2 FederateLifetime...100

Appendix C: XML Schemas..107
C.1 SimulationManagerProjectFile.xsd..107

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 4 of 112

C.2 ModelManagerProjectFile.xsd...108
C.3 ExcelMapping.xsd..109
C.4 SMP2Mapping.xsd...110

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 5 of 112

1 Glossary and Acronyms
The table defines the most important technical terms and abbreviations used in the proposal.

Term Short Definition
Abstract Interface A definition of the signature and semantics of a set of related operations without

any implementation details.
Alternative Flow Textual description of what can happen in addition to the steps in the main success

scenario. This can be an execution branch or exception occurring during execution
of the main steps.

AOCS The Attitude and Orbit Control Subsystem of satellites.
API Application Programming Interface. A set of definitions of the ways one piece of

computer software communicates with another.
Application Instantiation The process whereby a component-based application is constructed by configuring

and linking individual components.
Chsm Concurrent Hierarchical State Machine
Component A unit of binary reuse that exposes one or more interfaces and that is seen by its

clients only in terms of these interfaces.
Component-Based
Framework

A software framework that has components as its building blocks.

Computational Node A computational resource that has memory and processing capabilities.
CORBA A widely used middleware infrastructure.
Design Pattern A description of an abstract design solution for a common
DSL Domain Specific Language (a language that is created to describe applications or

components in a very narrow domain).
DTD Document Type Definition. It defines the legal building blocks of an XML docu-

ment. It defines the document structure with a list of legal elements. Its purpose is
similar to the one of an XML Schema, although it is not as feature rich and the syn-
tax is different.

EO Earth Observation
EODiSP Earth Observation Distributed Simulation Environment (the environment to be de-

veloped in this study).
EODiSP Framework The software framework provided by the EODiSP.
EODiSP Middleware The middleware selected for the EODiSP.
Federate An application that may be or is currently coupled with other software applications

under a Federation Object Model Document Data (FDD) and a runtime infrastruc-
ture (RTI).

Federation A named set of federate applications and a common Federation Object Model
(FOM) that are used as a whole to achieve some specific objective.

Federation Execution The actual operation, over time, of a set of joined federates that are interconnected
by a runtime infrastructure (RTI).

Federation Object Model
(FOM)

A specification defining the information exchanged at runtime to achieve a given
set of federation objectives. This includes object classes, object class attributes, in-
teraction classes, interaction parameters, and other relevant information.

Framework Domain The set of functionalities whose implementation is supported by the framework.
Framework Instantiation The process whereby a framework is adapted to the needs of a specific application

within its domain.
Generative Programming A software engineering paradigm that promotes the automatic generation of an im-

plementation from a set of specifications.
HLA High Level Architecture. A standard to provide a common architecture for distrib-

uted modeling and simulation. Available as IEEE standard 1516.
ISP Internet Service Provider.
JNI Java Native Interface, a mechanism for interfacing Java code with non-Java code.
JVM Java Virtual Machine.
JXTA A network infrastructure aimed at peer to peer (P2P) networks. The core is a set of

specifications for which a Java and a C implementation is available.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 6 of 112

Main Success Scenario Textual description of interactions between the primary actor and the system. The
main success scenario only describes one flow of execution, without branches or
exceptions. This flow is the execution in most cases for most actors.

Model Owner The model owner is a person in charge of one or more simulation models. The
model owner decides when to make his simulation models available to a simulation
and when to terminate their availability. The model owner interacts with the EOD-
iSP through a Model Manager Application.

Object Oriented Frame-
work

A framework that uses inheritance and object composition as its chief adaptation
mechanisms.

OBS The On-Board Software.
Primary Actor A primary actor is one having a goal requiring the assistance of the system. A use

case describes how the primary actor can achieve this goal.
Runtime Infrastructure
(RTI)

The software that provides common interface services during a High Level Archi-
tecture (HLA) federation execution for synchronizing and data exchange.

Simulation Manager Ap-
plication

A GUI-based environment. Through this environment, a simulation owner can per-
form the tasks to overall control a simulation. This includes the control of the con-
figuration and tasks like start, stop or hold a simulation experiment.

Simulation Model Applica-
tion

A GUI-based environment. Through this environment, a model owner can perform
the tasks to overall control the models he is in charge of.

Simulation Object Model
(SOM)

A specification of the types of information that an individual federate could provide
to High Level Architecture (HLA) federations as well as the information that an in-
dividual federate can receive from other federates in HLA federations.

Simulation Experiment A set of one or more simulation run executed in sequence with different configura-
tions.

Simulation Owner This is the person who is in overall control of a complete simulation. The simula-
tion owner decides how the simulation models should be configured and when a
simulation should start and terminate. The simulation owner interacts with the
EODiSP through the Simulation Manager Application.

Simulation Package A piece of software that implements part of the functionalities required for a simu-
lation run and that is delivered as a single unit.

Simulation Run A single end-to-end simulation for one particular configuration of a set of simula-
tion packages.

Software Framework A reusable artifact that captures the commonalities of a set of applications in a spe-
cific domain and provides reusable software building blocks to facilitate the instan-
tiation of applications in that domain.

SMP2 Simulation Model Portability, a set of interfaces to support the development of sim-
ulation applications.

Use Case Textual description of how an actor can achieve a desired goal by interacting with
the system and how the system reacts to these interactions.

UUID Universally Unique Identifier. An identifier standard to uniquely identify a res-
source or an information. It it 128 Bit long and is usually generated automatically.

XML Extensible Markup Language. XML documents consist (mainly) of text and tags,
and the tags imply a tree structure upon the document. An XML document is said
to be valid if it conforms to an XML Schema or a DTD.

XML Schema The XML Schema language is also refered to as XML Schema Definition (XSD).
They provide a means for defining the structure, contents and semantics of XML
documents. XML Schemas are written in XML.

XRTI An implementation of the HLA runtime infrastructure (RTI).
XSD An XML-based language for defining the structure of an XML document. XML

Schemas are normally written in the XSD language.
XSL An XML-based programming language for defining transformations of XML docu-

ments. XSL programs can also be used as code generators.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 7 of 112

2 References
[Chsm] Paul. J. Lucas, Concurrent Hierarchical State Machine

[Coc] Alistair Cockburn, Use Cases online resources,
http://alistair.cockburn.us/usecases/usecases.html

[Coc00] Alistair Cockburn, Writing Effective Use Cases, 2000

[EaC04] D. P. Donovan et. al., The EarhCARE Simulatior, User Guide and Final Report,
ESA Contract No. 15346/01/NL/MM, 12 December 2004

[Har87] D. Harel, Statecharts: A Visual Formalism for Complex Systems, 1987

[Hla00] IEEE Standard For Modeling and Simulation (M&S) High Level Architecture
(HLA) - Federate Interface Specification, 2000, ISBN 0-7381-2621-7, E-ISBN
0-7381-2622-5

[Jfc] JFreeChart, a free Java class library for generating charts,
http://www.jfree.org/jfreechart/index.php

[Lar02] Craig Larman, Applying UML and Patterns, 2002

[Omt00] IEEE Standard For Modeling and Simulation (M&S) High Level Architecture
(HLA) - Object Model Template Specification, 2000, ISBN 0-7381-2623-3, E-
ISBN 0-7381-2624-1

[Smpc05] Peter Fritzen, Peter Ellsiepen, Anthony Walsh, SMP 2.0 Component Model, Is-
sue 1 Revision 1, EGOS-SIM-GEN-TN-0101, 2005

[Swt] The Standard Widget Toolkit, http://www.eclipse.org/swt/

[Urd] M. Egli, A. Pasetti, I. Birrer, Concept Definition Phase and User Requirements,
PP-TN-EOP-0001, 2005

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 8 of 112

3 Introduction
This document reports the results of the activities performed in WP 310 of the Earth Obser-
vation Distributed Simulation Platform (EODiSP) project.

The objective of the EODiSP project is to develop a generic platform to support the develop-
ment of distributed simulation environments that integrate reusable simulation packages.
Within the EODiSP project, the objective of WP 310 is to define the software requirements
of the EODiSP.

This document defines and justifies the software requirements for the EODiSP. The EODiSP
software requirements are mostly derived from the EODiSP concept and from the EODiSP
user requirements specified in reference [Urd]. Major deviations from the requirements of
reference [Urd] are discussed in section 4. A complete traceability matrix to the EODiSP user
requirements is given in appendix A.

In many cases, software requirements are defined using formalisms such as XML Schemas or
the chsm language to describe state machines. In those cases, the body of this document only
gives an informal and easier to read version of the requirements. The full definition of the re-
quirements using the selected formalism is presented in appendices B and C.

3.1 General Approach

The software requirements translate the user requirements to create a new description of the
target application. This new description is intended to drive the software design process.
Consequently, it should be expressed in terms of an unambiguous logical model. The logical
model is a description of the target system in a formal language. Ideally, the logical model
should be executable (to allow the requirements to be simulated), verifiable (to allow proper-
ties to be proven at the requirements level), and compilable (to allow automatic translation to
an implementation).

In practice, it is normally impossible to create a logical model for all parts of a complex ap-
plication. Parts that are not covered by the logical model must then be expressed using re-
quirements expressed in natural language. In this case, use of a structured approach is the
best option to improve the quality of the requirements.

When no structured approach is possible to formulate the software requirements, then con-
ventional UR-like requirements must be used. In this case, the software requirements become
a refinement of the user requirements. If the user requirements were already well-defined or
if their refinement is either impossible or undesirable, the software requirements may actually
coincide with the user requirements.

In summary, during the software requirement definition process, the user requirements can be
mapped as follows:

• to a logical model, or

• to requirements in structured natural language, or

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 9 of 112

• to requirements in unstructured natural language (possibly identical to the user require-
ments from which they are derived)

In the EODiSP project, all three types of mappings are used. In order to give an overview of
the mapping approach, it is useful to divide the EODiSP into four parts:

• The Graphical User Interface (GUI) that controls the interaction between the user and
the EODiSP,

• The HLA Core that implements the subset of the HLA selected for the EODiSP,

• The JXTA Infrastructure that implements the distribution services for the EODiSP us-
ing the JXTA distribution infrastructure, and

• The Wrapper Generators that control the generation of the wrappers for selected kinds
of simulation packages to be integrated in the EODiSP.

For the GUI part, use cases are used to define the interaction between the users and the EOD-
iSP and XML Schemas are used to define the structure of the configuration information to be
provided by the user for an EODiSP run. The use case approach is semi-formal in the sense
that the specification of the use cases follows a structured method but does not use a formal
language. The XML Schema approach is more formal because XML Schemas are expressed
in the XSD language and can be directly used in the EODiSP implementation to check user
inputs or to automatically generate editors for entering user inputs.

The HLA Core part of the EODiSP is defined by a set of state machines. The state machines
are specified through a formal language [Chsm]. The state machine definition expressed in
chsm can be automatically translated into Java source code that implements the state ma-
chines. The chsm state machine description could in principle be made executable and verifi-
able but this is not in the EODiSP project owing to lack of tool support.

The JXTA part of the EODiSP is specified in natural language. Note that the JXTA infra-
structure is essentially “as is” and therefore its associated requirements are not problematic
and the need and benefits of a formal approach are correspondingly less felt.

The wrapper part of the EODiSP is specified by using XML Schemas to define the input to
the wrapper generator tools. For those simulation packages for which no wrapper code can be
generated automatically only an example of the wrapper code is given. In such cases, the
structure of the wrappers is specified in natural language.

The EODiSP approach is also illustrated in figure 1. The figures illustrates how the EODiSP
user requirements are mapped to three different types of software requirements.

Table 3.1.1 presents the same information in tabular form. It shows the approach that is taken
in deriving software requirements for each of the four parts of the EODiSP. The last column
in the table points to the sections in this document where the requirements are presented in
detail.

Software requirements expressed in unstructured natural language are stated in boxes with
the following format:

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 10 of 112

Ref. Requirement

Sx-y <Formulation of the requirement>

The first column contains an identifier of the requirement. The identifier is formed by the let-
ter 'R' followed by the number 'x' of the section where the requirement is formulated, and by
a sequential number 'y' that identifies the requirement within a certain section.

Table 3.1.1: Specification Approaches

EODiSP Part Approach Section

GUI Use Cases (structured) + XML Schemas (logical model) 5, 6

HLA Core State Machine in chsm language (compilable logical model) 7.1

JXTA Infrastructure Natural Language 8

Wrappers XML Schemas (logical model) + Natural Language 9, 10, 11

Residual Req.s Natural Language 12

3.2 Traceability to User Requirements

All user requirements must be traceable to one or more software requirements. For traceabil-
ity purposes, software requirements should be identified. This is normally done by assigning

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 1: Mapping User Requirements to Software Requirements

EODiSP
URD

Chsm
State Machines

XML Schemas

Logical Model

Use Cases

Structured Natural Language

Refinement of
User Requirements

Natural Language

Identical to
User Requirements

HLA Core

GUI Configuration

GUI

All Other
Requirements

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 11 of 112

a numerical identifier to each software requirements. Here, and in view of the approach out-
lined in the previous subsection, four categories of software requirements are recognized with
four separate identification policies:

• Use Case Requirements are identified by the use case identifier (i.e. one use case is re-
garded as one single software requirement).

• State Machine Requirements are identified by the name of the state machine (i.e. one
state machine is regarded as one single software requirement).

• XML Schema Requirements are identified by the name of the XML Schema (i.e. one
XML Schema is regarded as one single software requirement).

• Conventional Requirements are identified by a numerical identifier of the form Sx-y
where 'x' is the section in the present document where the requirement is defined and 'y'
is a sequential number that allows the specific requirement within the section to be
identified.

As discussed in the previous section, in some cases, user requirements are taken over un-
changed and are also used as software requirements. In these cases, and in order to ensure
consistency between the URD and the SRD, the text of the requirement is not repeated here.
A traceability matrix is given in appendix A. The traceability matrix makes it clear whether a
user requirement is mapped to some software requirements or whether it is taken over un-
changed and should therefore be considered an integral part of the SRD.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 12 of 112

4 Major Deviations from User Requirements
The analyses that led to the definition of the software requirements presented in this docu-
ment uncovered some inconsistencies in the EODiSP user requirements that make full com-
pliance with the reference [Urd] impossible.

The SRD-level analyses also identified some areas where streamlining and optimization of
the requirements of reference [Urd] would be advisable. In these cases, compliance with the
EODiSP URD would have been possible but was regarded as unwise.

This section discusses all important cases where the EODiSP software requirements as stated
in this document deviate from the user requirements as stated in reference [Urd]. Note that a
full traceability matrix from the URD to the SRD can be found in appendix A.

The table below lists in summary form the major deviations from the URD together with a
brief statement of their justification and a reference to the subsection in this section where
the deviation is discussed in greater detail:

Deviation Justification Section

SOMConfig and FOMConfig files are
dropped from the list of simulation man-
ager configuration files.

The function of these two files is in-
compatible with the use of an HLA-
based simulation core.

4.1

Simulation packages cannot ask to be
triggered according to a pre-defined
schedule.

This functionality cannot be implemen-
ted with the set of HLA services
baselined for implementation in the
EODiSP.

4.2

ExperimentInitConfig and Simulation-
Config configuration files are merged.

Optimization of user requirements. 4.3

ModelsConfig and SomSecurityConfig
configuration files are merged.

Optimization of user requirements. 4.4

Simulation models cannot exchange data
directly without passing through the sim-
ulation environment.

This functionality is incompatible with
the use of an HLA-based simulation
core.

4.5

A description of how the simulation man-
ager application detects the termination
of a simulation experiment is missing.

A new section with this description has
been added.

4.6

The first, third and fourth deviations do not affect the intrinsic functionality of the EODiSP.
They only affect the way the EODiSP is used. The second and fifth deviations instead have
an impact on the EODiSP functionality. The last entry is not exactly a deviation in the sense
of the other entries in the table, because it is completely new in the SRD. It does not limit or
extend the EODiSP functionality, nor does it change its usage.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 13 of 112

Finally, it should be stressed that this section has a temporary role only. Eventually, after dis-
cussions with ESA, the inconsistencies in the user requirements will have to be removed by
updating reference [Urd].

4.1 Definition of a Simulation Configuration

A simulation configuration is defined by defining which simulation models are used in a par-
ticular simulation and how they are interconnected.

In the EODiSP user requirements, the definition of a simulation configuration is done
through three configuration files – the SimulationConfig, the FOMConfig and SOMConfig
configuration files (see section 9 of the URD).

An HLA simulation is constructed as a set of interacting federates. The SimulationsConfig
file describes which federates take part in an HLA simulation. Each federate is described by
its object classes and attributes. The SOMConfig file is intended to describe how many in-
stances of an object class or an attribute shall be included in a particular simulation execu-
tion. The FOMConfig file describes how attribute instances of one object class instance are
connected to other attribute instances of another object class instance.

For purposes of illustration, it is useful to consider an example. Consider the case of a user
who has a simulation package that models the trajectory of a ballistic rocket. The simulation
package is implemented as an executable program that interacts with its environment through
input and output files. The input file defines the initial position and velocity of the rocket.
The output file (which is refreshed at every simulations step) gives the last computed position
of the rocket.

The user wishes to create a simulation where two rockets are launched and their trajectory is
recorded by a standard data display package. The data display package must be linked to one
or more data sources and simply plots all the data sources on a screen.

With the approach implied by the current EODiSP user requirements, such a simulation
would be set up as follows (see Figure 2 for a graphical representation):

• The following two object classes are defined in a FOM: Rocket and DataSource.

• The rocket simulation package is wrapped as an HLA federate.

• This HLA federate is deployed twice, once for each rocket that is desired to simulate.
Each of these federates creates an instance of the object class Rocket(r1 and r2 in
Figure 2).

• The data display package is wrapped as an HLA federate.

• This federate is deployed once. The DataSource class is instantiated twice (ds1 and
ds2 in Figure 2) in this federate, once fore each data source that should be plotted.

• The instantiation policy for the federates is described in the SOMConfig file.The de-
ployment of federates is described in the SimulationsConfig file.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 14 of 112

• The four object class instances (two rocket (r1 and r2) and two data source instances
(ds1 and ds2) are linked together such that the outputs of the two rocket instances are
linked to the inputs of the data source instances.

• The connections among the object instances are described in the FOMConfig file.

The above approach is inspired by the example of Matlab-like simulation environments
where users have a palette of pre-defined simulation modules which they can deploy and con-
nect as they wish for each individual simulation.

This approach however is not in line with the HLA spirit. This is because the HLA does not
really support the concept of reusable and independently deployable simulation models. An
HLA federate is built for a specific simulation and is designed to be embedded within a spe-
cific simulation setting (federation). It is normally not possible to change the connections of
an HLA federate without changing its implementation.

In the case of the example above, the connection between the rocket federate and the display
federate is hardwired in the two federates. It is generally not possible to take the rocket feder-
ate, unplug it from the display federate, and plug it into some other federate representing a
different simulation model. Note that this swap is not possible even when there is compatibil-
ity of number and types of input and output signals.

HLA federates, in other words, are units of encapsulation but they are not units of reuse.

In the EODiSP context, there is an obvious need to have reuse of simulation packages. This
need is not incompatible with the choice of an HLA-based infrastructure because, in the
EODiSP, the simulation packages are transformed into HLA federates through the wrapping
process. It therefore becomes possible to have reuse at the level of the simulation packages
but not at the level of the HLA federates.

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 2: Approach implied by the current EODiSP user requirements

Rocket Instance

r1

Rocket

int x
int y

Rocket Federate 1

exe
DataSource Instance

ds1

Data Source Federate

DataSource

int xPos
int yPos

x xPos

y yPos

Rocket Instance

r2

Rocket Federate 2

exe

x

y

DataSource Instance

ds2

xPos

yPos

Rocket Simulation Package

Rocket Simulation Package Display Simulation Package

FOM

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 15 of 112

If the same simulation package is to be reused in two different contexts, then it should be
wrapped as two different HLA federates, each adapted to its context. Note that, with this ap-
proach, reusability comes to depend on the ease with which simulation packages can be
wrapped. This makes the automation of the wrapping process – already foreseen in the EOD-
iSP concept – even more important.

With this second approach, the example simulation with the two rockets would be set up as
follows (see Figure 3 for a graphical representation):

• The following object classes are defined in a FOM: Rocket_1 and Rocket_2

• The rocket simulation package is wrapped a first time to generate an HLA federate that
exposes object class Rocket_1

• This federate is deployed and the generated wrapper automatically creates one instance
of the Rocket_1 object class.

• The rocket simulation package is wrapped a second time to generate a second HLA fed-
erate that exposes object class Rocket_2

• This federate is deployed and the generated wrapper automatically creates one instance
of the Rocket_2 object class.

• The data display package is wrapped as an HLA federate that is able to receive values
from federates that expose either object class Rocket_1 or Rocket_2. The federate
itself does not create any instances of object classes.

• This federate is deployed and automatically connects to the object classes Rocket_1
and Rocket_2.

The key difference with respect to the first approach is that federates are only deployed once.
Where two instances of the same simulation package are required, two separate federates are
generated by two dedicated wrappings of the simulation package, each federate exposing an-
other object class.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 16 of 112

A consequence is that there is no need for the SOMConfig and FOMConfig configuration
file. The simulation instantiation configuration is now hardcoded in the wrappers of the simu-
lation package. The wrapped simulation package (the HLA federate) is therefore no longer
reusable because it is targeted at a specific simulation configuration but the simulation pack-
age itself is reusable (but the ease with which it can be reused depends on the ease with
which it can be wrapped anew).

In the remainder of this document, the assumption is made that the second approach is adop-
ted.

4.2 Triggering of Simulation Models

In section 4.2 of reference [Urd], a model for the interaction of simulation packages is spe-
cified. This model includes the possibility for simulation packages to be triggered according
to a pre-defined schedule.

This type of interaction implies that a global simulation time is maintained. This would in
turn require the implementation of the HLA Time Management service. This service,
however, is currently not supported by the EODiSP (see section 6.7 of [Urd]). There are two
basic reasons that led to the decision not to support timing services:

• timing services are especially useful where simulation models can run in parallel but
this is not required in the EODiSP, and

• the order of execution of simulation packages in the EODiSP is sequential and pack-
ages are triggered not by time but by the arrival of their input values.

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 3: Second Approach without FOMConfig and SOMConfig

Rocket_1 Instance

Rocket_1

int x
int y

Rocket Federate 1

exe

Data Source Federate

Rocket_2

int x
int y

x

y

Rocket_2 Instance

Rocket Federate 2

exe

x

y

Rocket Simulation Package

Rocket Simulation Package Display Simulation Package

FOM

W
ra

p
p

er

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 17 of 112

In the remainder of this document, the assumption is made that timing services are not imple-
mented by the EODiSP and that therefore the triggering interaction for simulation packages
cannot be supported.

The lack of support for a simulation time also means that user requirement R6.4.2-3 cannot
be implemented in full. This requirement asks for users to have the ability to predefine the
times – either as simulation time or as clock time – when switches from step-by-step to con-
tinuous simulation mode and from continuous to step-by-step simulation model should take
place. Clearly, the scheduling of the switches based on simulation time is not possible if the
HLA timing service is not maintained.

4.3 ExperimentInitConfig and SimulationsConfig Configuration Files

In section 9.5 of reference [Urd], the configuration files for the simulation manager applica-
tion are specified. Two of these files – the ExperimentInitConfig and SimulationsConfig
files – are concerned with the definition of a simulation experiment. They were kept separate
because they had two different definition modes (indirect for the SimulationsConfig file, and
explicit for the ExperimentInitConfig file).

In order to streamline the configuration process, it has been decided to merge these two files
and to have for both the indirect definition mode. The name of the merged file is Simulation-
ManagerProject configuration file.

4.4 ModelsConfig and SomSecuritySetting Configuration Files

In section 9.6 of reference [Urd], the configuration files for the model manager application
are specified. Two of these files – the ModelsConfig and SomSecurityConfig files – are con-
cerned with the definition of the simulation models managed by the model manager applica-
tion.

In order to streamline the configuration process, it has been decided to merge these two files.
The name of the merged file is ModelManagerProject configuration file.

4.5 Data Passing Between Simulation Models

Requirement R6.3-1 in reference [Urd] asks for the EODiSP to allow simulation models to
exchange data among themselves directly without necessarily passing through the simulation
environment.

This requirement is incompatible with the selection of an HLA infrastructure that implements
the simulation environment as the RTI and the simulation models as federates. The HLA
standard stipulates that all data exchanged between federates must always pass through the
RTI. This makes compliance with requirement R6.3-1 impossible.

This introduces a network overhead in the case where two or more models reside on the same
node while the RTI is on a remote node. There are three solutions to overcome this problem.

The first offered solution is to run the RTI on the same node as the federates. This is only
feasible if the overall network performance is enhanced by this change, which greatly de-
pends on the network topology of the simulation experiment in question. In addition, the per-

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 18 of 112

son owning the federates has to be the simulation owner as well. If practical, this solution
does not violate the HLA standard in any way, but its application is limited.

The second solution is to implement the data transfer between federates as a means of ex-
changing files. This means that the first federate (the producer) creates a file that includes its
calculated values. The second federates (the consumer) reads this values and proceeds the
further. Instead of sending the whole file (which can grow large in certain cases) through the
RTI, only the information that the value has been updated would be sent to the RTI. This in-
formation can also include the path where the file can be read on the file system. The RTI
would then only send this information to interested federates. This solution conforms to the
HLA standard and is the preferred solution if the former is not applicable. The only restric-
tion of this solution is that it is not applicable when several distributed federates are inter-
ested in those values (i.e. in the content of the file). Then, the actual values needs to be sent
through the RTI in order to distribute them.

The third solution is not advisable and furthermore more difficult to implement. Therefore it
should be considered as a last resort for special cases. The solution would be to wrap all in-
volved simulation packages as a single federate. Firstly, this is a violation to the HLA ap-
proach because management data is not sent through the RTI, thus making it impossible to
track or log any of the actions that take place between those federates. Furthermore, the data
transfer itself has to be implemented by the programmer itself, since wrappers provided by
the EODiSP cannot provide this code in any case. As a last point, the wrapping of more than
one simulation package as one federate has also be done manually, because a wrapper is al-
ways considers only one simulation package.

4.6 Simulation End

A description of one part of a simulation experiment is missing in the URD. This relates to
how the simulation manager application is able to detect that a federation execution is com-
pleted. The HLA can be used to handle this through two different scenarios.

The first solution is that the last federate in a federation execution chain sends an interaction
informing all other federates that it has completed its task. This solution has several practical
disadvantages. Firstly, the programmer of a federate needs to know in advance that his feder-
ate will eventually be the last federate in the execution chain of a certain federation execu-
tion. This is often not known at the time when a federate is created. Secondly, it cannot be
guaranteed that there is always only one last federate in the chain. Since the EODiSP is a
purely data-driven simulation environment, it is possible that two (or more) federates are sub-
scribed to a value from the second-last federate, thus executing in parallel. In such a situ-
ation, the decision of which federate shall be responsible of indicating the end of a federation
execution can only be guessed. These shortcomings make this solution inapplicable for the
EODiSP environment.

The second solution to detect the end of a federation execution is through the use of syn-
chronization points. One federate (or possibly the simulation manager itself for the EODiSP
environment) registers a synchronization point within the RTI. Those federates having no
opinion about their ending condition achieve the synchronization point immediately. This, for
instance, would be the case for some simple federates such as the data transformation feder-

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 19 of 112

ates, because they would not know how often they are being used throughout a federation ex-
ecution. Other federates instead know exactly what the ending conditions are. These feder-
ates shall only achieve the synchronization point when their ending conditions are fulfilled.
The RTI will know that the federation execution is completed when all participating feder-
ates have achieved the synchronization point. It will inform all federates to resign from the
federation execution in order to destroy it. This approach solves the problems outlined in the
first solution above and is therefore preferred.

Using this mechanism also implies that the HLA services concerning synchronization point
must be implemented and available. In the URD, the corresponding services are declared as
priority 3 (not to be implemented). This needs to be changed for the services listed in table
4.6.1. The first columns lists the section from the HLA standard where the service is defined,
and the second column gives the name of the service. These columns are duplicates from the
URD. The third column indicates the priority which was assigned to the service by the URD
and the last column shows the new priority.

Table 4.6.1: HLA service used to detect federation execution end.

Section Service Old Prio. New Prio.

4.6 Register Federation Synchronization Point 3 1

4.7 Confirm Synchronization Point Registration † 3 1

4.8 Announce Synchronization Point † 3 1

4.9 Synchronization Point Achieved 3 1

4.10 Federation Synchronized † 3 1

The offered solution does not mention the end of a simulation experiment. In fact, only the
end of a federation experiment can be detected. This is not a problem, since a simulation ex-
periment consists of one ore more (possibly unrelated) federation executions, whose endings
can be determined by the RTI. If all federation executions included in a simulation experi-
ment are completed, the simulation manager knows that the whole experiment is completed.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 20 of 112

5 Use Cases
Use cases are one of the techniques that are used to define the EODiSP software require-
ments. They are in particular used to define the requirements applicable to the GUI part of
the EODiSP (see discussion in section 3.1).

This section presents all the use cases defined for the EODiSP GUI. The EODiSP GUI is im-
plemented over three separate applications: the simulation manager application, the model
manager application, and the support application. The associated use cases are specified in
subsections 5.2, 5.3 and 5.4, respectively.

For readers who are not familiar with the use case concept, subsection 5.1 provides an over-
view of how they are defined and the purpose they serve.

For convenience, table 5.1 lists all the use cases specified in this document. The first column
in the table gives the use case identifier, the second column gives its name, and the last
column points to the section where the use case is described.

Table 5.1: List of EODiSP Use Cases.

Use Case ID Use Case Name Section

UC_100 Simulation Manager Application Summary 5.2.1

UC_102 Set-up Simulation Manager Application 5.2.2

UC_104 Configure Simulation Experiment 5.2.3

UC_106 Run Experiment 5.2.4

UC_108 Load or Save Configuration 5.2.5

UC_110 Experiment Abort 5.2.6

UC_112 Configure Simulation Manager Application Log 5.2.7

UC_200 Model Manager Application Summary 5.3.1

UC_202 Set-up Model Manager Application 5.3.2

UC_204 Manage Federates in the Model Manager Application. 5.3.3

UC_208 Configure Model Manager Application Log 5.3.4

UC_302 Generate Wrapper Code for an Excel Workbook 5.4.1

UC_304 Generate Wrapper Code for an SMP2 simulation 5.4.2

UC_306 Generate Wrapper Code for Matlab-Generated Code 5.4.3

UC_308 Generate Wrapper Code for a Matlab Simulation 5.4.4

UC_310 Generate Wrapper Code for Source Code 5.4.5

UC_312 Generate Wrapper Code for a Standalone Executable 5.4.6

UC_314 Generate Wrapper Code a Data Processing Package 5.4.7

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 21 of 112

Use Case ID Use Case Name Section

UC_316 Creating a New SOM File 5.4.8

The following requirement acts as an umbrella requirement for all the EODiSP use cases.
Note that traceability from URD is mostly done in terms of the specific use cases in order to
have a better granularity. See also the discussion in section 5.1.1.

S5 -1 The EODiSP GUI shall support all the use cases listed in table 5.1.

5.1 Overview of Use Case Concept

Use cases are a good method to describe the interaction between an actor and the system.
These entities can be described as follows:

• An actor essentially is the user of the system. This can be a person or another system
interacting with the system to achieve a desired goal.

• The system is an entity which reacts to interactions performed by an actor. It is able to
achieve a desired goal. The goal which is to be achieved is specified in each use case.
In the EODiSP, the system is a piece of runnable software.

A use case describes what happens when the actor interacts with the system. The interactions
are performed in a sequential order. Therefore, a use case always starts with an actor interac-
tion, followed by other interactions from the actor or reactions from the system. The use
cases used throughout this section are goal-driven, meaning that a use case describes the ac-
tions to take (by the actor and the system) to fulfil a desired goal of the actor.

In the EODiSP context, there are three kinds of actors:

• The simulation owner (the person who wishes to use the EODiSP to perform a simula-
tion).

• The model owner (the person who wishes to use the EODiSP to make one or more of
his models available to a simulation manager)

• The person who wishes to wrap a simulation package to transform it into an EODiSP-
compatible simulation model (this will often be the same as the model owner).

Note that a use case does not describe the 'look and feel' of the graphical user interface. This
is an implementation issue and shall be independent of what the system should provide. A
use case describes interactions on the level of services. This makes them independent from
the implementation. It also makes use cases reusable because they shall apply to every imple-
mentation of the system, regardless of how the graphical user interface looks like.

The format of the uses cases in this document is the one which is proposed by Craig Larman
[Lar02]. It is closely related to the format proposed by Alistair Cockburn [Coc00], who also

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 22 of 112

provides good online resources (including an excerpt of his book) about writing use cases
[Coc].

Since it is much easier to read short use cases which have clearly defined boundaries than to
read one big use case describing every aspect of an application, the dedicated use cases for
each application have been split into smaller, more readable use cases. The sum of all use
cases belonging to one application makes up the description of interactions between an actor
and the system.

Every use case description throughout this document has 3 subsections. The first one is the
Definitions section. It includes a table defining the attributes of the use case, such as name,
level, description, etc. This information is connected with the use case and shall make its in-
tention clear. A detailed description of every attribute can be found in table 5.1.1.

The second subsection of a use case is the Main Success Scenario. It describes the interac-
tions between the primary actor and the system to achieve the specified goal. The Main Suc-
cess Scenario includes neither system failures, nor exceptions, nor alternative interactions
which may be supported by the system. Therefore, it describes the interactions performed by
most actors in most cases. If the main success scenario is finished, the primary actor's inten-
ded goal has been achieved. The description is given in text format. The sequence of interac-
tions is taken into account by using a numbered list. This sequence must be obeyed in most
cases in order to achieve the goal.

The third section is the Alternative Flows. It describes what can happen in addition to the
main success scenario. This can be any system exception or alternative steps the primary act-
or can choose from. A step in the alternative flow can either occur at any time or at a certain
step in the main success scenario. To highlight this, steps in an alternative flow are either
marked with a '*' (asterisk) or a number. Steps which can occur at any time are marked with
an asterisk. Steps which have a corresponding step in the main success scenario are marked
with the same number as the one in the main success scenario plus a letter indicating differ-
ent alternatives.

Some of the use cases might be very similar or even equal for different applications. This is
mostly the case for use cases with level 'Subfunction'. Instead of having these use cases in
one place, they are repeated for every application. This approach can be rather verbose but is
considered more convenient for the reader.

Table 5.1.1: Description of attributes used in the use cases.

Attribute Description

Number A number uniquely identifying the use case with the format UC_<Ap-
plication><Nr>.

UC_ is static for every use case. It is used in text to identify a reference
as being a use case.

The <Application> part is a two digit number identifying the type of ap-
plication for which the use case is written. This can be one of the follow-
ing:

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 23 of 112

Attribute Description

• 1: Identifying the type of application as simulation manager applic-
ation

• 2: Identifying the type of application as model manager application

• 3: Identifying the type of application as support application.

The <Nr> part of the number is a two digit number. This number takes
the sequence of the use case into account by advancing it to a higher
number. It can leave spaces between numbers to provide a 'slot' for future
use cases.

Name Every use case shall have a name which is given here. The name should
be descriptive and, if possible, unique.

Primary Actor The primary actor is one having a goal requiring the assistance of the sys-
tem. The use case describes how the primary actor can achieve this goal.

Level Every use case is assigned a level. This level describes the intention of
the use case. 3 levels are defined.

• Summary:
Use cases with this level represent collections of user goal level use
cases. They describe how several use cases can be assembled to-
gether and in which order they can be executed.

• User Goal:
Use cases with this level are of greatest interest. They describe a
goal which the actor can achieve by interacting with the system.

• Subfunction:
Use cases with this level are steps in a user goal use case. This use
cases are described as such because they are used in different user
goal use cases or because they are too complex to be directly integ-
rated in them.

Description A high level description of the goal which shall be achieved by the use
case. It is a summary of what can be found in more detail in the text of
the use case.

Pre-Condition Describes the states in which the system has to be prior to the start of the
use case.

Post-Condition Describes the state in which the system is after main success scenario of
the use case has been run.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 24 of 112

5.1.1 Traceability to Code

Use cases can be seen as requirements telling the system what services it shall provide to an
actor. In order to keep track of these requirements formulated by use cases, the unique num-
ber of each use case is used in the EODiSP code to make a reference to them. If all use cases
are referenced from within the code, it is ensured that all use case requirements are imple-
mented.

Another effect is, that if a use case needs to be modified, the impact on the code is easy to as-
sess.

A reference from use cases to the corresponding implementation code is not given because
this would be hard to maintain. Furthermore, use cases should be independent of an actual
implementation. Referencing code in a use case would break this important feature.

S5.1.1 -1 The EODiSP GUI code shall contain references to the use cases that is im-
plemented by the code.

5.2 Simulation Manager Application Use Cases

This section presents the use cases that define the simulation manager application. The simu-
lation manager application is one of the applications that implement the EODiSP GUI. Each
use case is defined in a dedicated subsection.

5.2.1 Use Case – Simulation Manager Application Summary

Definitions

Number UC_100

Name Simulation Manager Application Summary

Primary Actor Simulation owner

Level Summary

Description Describes how use cases belonging to the simulation manager application
are linked together and the sequence in which they shall be used. The de-
scription is from the point of view of the actor.

Pre-Condition None.

Post-Condition None.

Main Success Scenario

1. Actor sets up the simulation manager application (see use case UC_102).

2. Actor configures a simulation experiment (see use case UC_104).

3. Actor runs a simulation experiment (see use case UC_106).

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 25 of 112

Alternative Flows

None.

5.2.2 Use Case – Set-up Simulation Manager Application

Definitions

Number UC_102

Name Set-up Simulation Manager Application

Primary Actor Simulation owner

Level User goal

Description Describes the steps required to get a running, fully functional simulation
manager application. After this, simulation experiments can be con-
figured and run.

Pre-Condition • The simulation manager application must be installed on the system.

Post-Condition • The simulation manager application runs.

• The EODiSP network infrastructure is initialised.

• The simulation manager application is ready to be configured.

Main Success Scenario

1. Actor starts the simulation manager application. Depending on the platform, this can
be achieved by using a command on a console or by selecting the appropriate entry in
the start menu.

2. Actor chooses the application setting and the network setting to use from a list of
already existing application settings and network settings respectively.

3. System loads the 'ApplicationSettings' configuration file for the simulation manager
application from a predefined path in the file system.

4. System initialises the simulation manager application with the parameters given in the
'ApplicationSettings' configuration file.

5. System shows the GUI of the simulation manager application to the actor.

6. Actor chooses to initialise the EODiSP network.

7. System initialises the network infrastructure.

8. System displays to the actor whether the simulation manager application has already
been registered in the global simulation manager repository.

9. Actor chooses to register, deregister, or update the simulation manager application in
the global simulation manager repository.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 26 of 112

Alternative Flows

a*. At any time, system detects an internal, unrecoverable error.

1. System signals error.

2. System exits.

3. Actor restarts the simulation manager application.

5-7a. Actor adjusts the general settings.

1. Actor chooses to save the settings.

2. System stores the settings in the 'ApplicationSettings' configuration file.

2a. System detects that it cannot save the file.

1. System signals error.

2. Actor tries to save again or ignores the operation.

3. System displays updated settings.

5-7a Actor adjust the network settings.

1. Actor chooses to save the settings.

2. System stores the settings in the configuration files.

2a. System detects that it cannot save the file.

1. System signals error.

2. Actor tries to save again or ignores the operation.

5-7b. Actor adjusts simulation log settings. See use case UC_112.

7*. At any time during this step, system detects a network error during initialisation.

1. System signals error.

2. Actor tries to resolve the network error.

3. Actor chooses to initialise the network again.

7a. The system runs in remote mode (i.e. Internet connection is available):

1. System connects to the global simulation manager repository .

7b. The system runs in local mode (i.e. no Internet connection is available):

1. System does not attempt to connect to a remote host.

2. Use case ends.

9a. Actor chooses not to register the simulation manager application in the global simula-
tion manager repository.

1. System is running and fully functional.

9b. No network connection to the repository available.

1. System displays error and aborts operation.

9c. Register simulation manager application:

1. System connects to the EODiSP simulation manager repository.

1a. Simulation manager application is already registered in the global repository.

1. System displays information.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 27 of 112

2. System aborts operation.

2. System transfers information about the simulation manager application to the repos-
itory to uniquely identify it.

9d. Deregister simulation manager application:

1. System connects to the EODiSP simulation manager repository.

1a. Simulation manager application is not registered in the global repository.

1. System displays information.

2. System aborts operation.

2. System instructs global repository to deregister the simulation manager application.

9e. Update simulation manager application.

1. System connects to the EODiSP simulation manager repository.

1a. Simulation manager application is not registered in the global repository.

1. System instructs global repository to register the simulation manager applica-
tion.

1b. System instructs global repository to update registration for the simulation man-
ager application.

5.2.3 Use Case – Configure Simulation Experiment

Definitions

Number UC_ 104

Name Configure Simulation Experiment

Primary Actor Simulation owner

Level User goal

Description Describes the configuration which has to be made prior to starting a sim-
ulation experiment.

Pre-Condition • Use case UC_102 (Set-up simulation manager application) has been
successfully completed.

Post-Condition • A simulation experiment is configured and ready to be run.

Main Success Scenario

1. Actor chooses to find available federates.

2. System presents all federates which are currently available in the EODiSP network. It
only shows those federates which have been made available for this simulation man-
ager application.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 28 of 112

3. Actor integrates as many federates as he wishes (i.e. as needed for a specific federation
execution) from the list of available simulation models into an already existing federa-
tion execution.

4. System retrieves information about federates which are to be integrated, including ini-
tialisation data template files or a specification of its format, if available.

5. System displays an updated list of federates included in the federation.

6. Actor integrates as many federations as he wishes from the list of available federations
into a simulation experiment. These federations are now called federation executions.

7. System locally copies information about a federate into the simulation experiment, in-
cluding initialisation data template files, if such data is available.

8. System displays an updated list of federation executions included in a simulation ex-
periment.

9. System highlights federates which expect input data.

10.Actor enters initialisation data for all federates expecting input data.

Alternative Flows

a*. At any time, system detects an internal, unrecoverable error.

1. System tries to save unsaved data.

2. System signals error

3. Actor restarts the simulation manager application.

4. System enters a clean state.

b*. At any time, actor chooses to update the list of available federates.

1. System presents an updated list of available federates.

c*. At any time, actor chooses save the current configuration to the file system (see
UC_108).

1a. Actor chooses to load an already existing 'SimulationManagerProject' file (see
UC_108).

1. Go to step 8.

1b. Actor chooses to include a federate manually.

1. System presents a file dialogue.

2. Actor chooses an appropriate file from the file system.

2a. The chosen file does not represent a federate or the system encountered errors in
the file.

1. System displays error.

3. System adds this federate to the list of available federates.

3a. The federation execution to which the actor wants to add a federate does not yet exist.

1. Actor adds a new federation execution to the list of federation executions and gives
it a dedicated name.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 29 of 112

2. System displays updated list of federation executions.

4a. The newly integrated federate expects input data.

1. System marks the federate as special federate which expects input data.

6a. The simulation experiment to which the actor wants to add a federation execution does
not yet exist.

1. Actor adds a new simulation experiment to the list of simulation experiments and
gives it a unique name.

2. System displays updated list of simulation experiments.

10b. No participating federate can be found in the federation execution which is able to
publish the attributes needed by a federate which has been integrated.

1. System marks the federate as not fully integrated.

2. System displays an indication that the simulation experiment might not work prop-
erly.

1. Actor adds a federate to the federation which is able to publish the needed attrib-
utes.

2. System updates the federation execution in the appropriate simulation experi-
ments.

2a. Newly integrated federate is able to publish the needed attributes.

1. System marks the federate as fully integrated (removes visual indication of
not fully integrated).

2. System removes indication about the simulation experiment not working
properly.

2b. Newly integrated federate is not able to publish the needed attributes.

5.2.4 Use Case – Run Experiment

Definitions

Number UC_ 106

Name Run Experiment

Primary Actor Simulation owner

Level User goal

Description Starts a simulation experiment which has been configured. The configur-
ation of a simulation experiment is explained in use case UC_104.

Pre-Condition • Use case UC_104 (configure simulation experiment) has been success-
fully completed for the simulation experiment which is selected to run.

• No other experiment has been started from the simulation manager
application.

• All participating models in the simulation experiment are available in

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 30 of 112

the EODiSP network.

• If no network connection is configured, all federates must be available
locally.

Post-Condition • The simulation experiment has been completed successfully.

Main Success Scenario

1. Actor selects the simulation experiments which he wants to run.

2. Actor chooses to check the availability of the participating federates.

3. Actor chooses to start the simulation experiment.

4. System initialises simulation experiment.

5. System runs simulation experiment.

6. System detects that the simulation experiments has finished executing.

7. System signals end of simulation experiment to the actor.

Alternative Flows

2a. Not all participating federates are currently available in the EODiSP network.

1. Actor checks the availability of federates periodically until all federates are avail-
able in the EODiSP network.

4-5a. System detects an internal error during execution of a simulation experiment.

1. System signals error.

2. System tries to recover the error.

2a. System cannot recover error.

1. Actor aborts the executing simulation experiment (see use case UC_110).

2. Actor starts the simulation experiment again.

3. System continues to execute the simulation experiment.

4-5b. Actor chooses to abort the currently running simulation experiment (see use case
UC_110).

4-5c. At any time in continuous operation mode, actor switches to step-by-step operation
mode.

1. System waits until the currently running federate has finished its execution.

2. System holds the execution of the simulation experiment before the next step in the
federation execution starts.

3. Actor steps forward for one step.

4. System starts the execution of the next federate.

4-5d. At any time in step-by-step operation mode, actor switches to continuous operation
mode.

1a. System is currently not on hold.

1b. System is currently on hold waiting for the actor to step forward.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 31 of 112

1. System switches mode to continuous operation mode.

2. System automatically advances the simulation experiment without user interac-
tion.

4-5e. System detects a network error.

1a. Network error occurred in the simulation manager application.

1a. The simulation manager can reconnect to the EODiSP network during a certain
amount of time.

1b. The simulation manager cannot reconnect to the EODiSP network during a cer-
tain time.

1. System signals error.

2. Actor acknowledges error.

3. System stops the simulation experiment and enters a clean state.

4. System is ready to execute another simulation experiment, whenever the net-
work problem has been fixed.

1b. Network error occurred in one of the participating simulation models.

1. System signals error.

2. System informs all model manager applications involved in the simulation exper-
iment about the network error.

3. System tells the model manager applications to reinitialise all federates which
participate in the simulation experiment.

4. System stops the simulation experiment and enters a clean state.

5. System is ready to execute another simulation experiment.

5.2.5 Use Case – Load/Save Configuration

Definitions

Number UC_ 108

Name Load or Save Configuration

Primary Actor Simulation owner

Level Subfunction

Description Loads an existing 'SimulationManagerProject' configuration file into the
simulation manager application. This can be used to load a configuration
which has been done in another simulation manager application. When
loading such a configuration, there is no guarantee that the simulation
models are available for the simulation manager application in which the
configuration is loaded.

Pre-Condition • The simulation manager application is running.

Post-Condition • The configuration file has been loaded into the simulation manager ap-

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 32 of 112

plication.

• The configuration file has been saved to a specific location.

• No simulation experiment is currently active.

Main Success Scenario

1. Actor opens a configuration file through an 'open file dialogue'.

2. System processes the new configuration file.

3. System clears the currently active project configuration in the application.

4. System adds all federations and simulation experiments which are configured in the
document to the current simulation manager application.

5. Actor chooses to save the configuration file.

6. System asks for a location in which the file should be stored.

7. Actor chooses a location and a name for the file.

8. System saves the files to the given location and the given name.

Alternative Flows

2a.The configuration file does not conform to the XML Schema.

1. System signals error.

2. Actor chooses another configuration file to load.

8a. System detects that it cannot save the file.

1. System signals error.

2. Actor tries to save again or ignores operation.

5.2.6 Use Case – Experiment Abort

Definitions

Number UC_110

Name Experiment Abort

Primary Actor Simulation owner

Level Subfunction

Description Aborts a running simulation experiment before it is finished. There is no
recovery, once a simulation experiment has been aborted. All simulation
data which are not stored are lost.

Pre-Condition • A simulation experiment which is controlled by this simulation man-
ager application is currently running.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 33 of 112

Post-Condition • Simulation manager is in a clean state and ready to start a simulation
experiment.

Main Success Scenario

1. Actor chooses to abort the running simulation experiment.

2. System sends a message to all participating model manager applications asking them to
deregister all federates from the simulation experiment and to enter a clean state.

3. System waits until all federates have resigned from the federation.

4. System reinitialises itself and enters a clean state.

Alternative Flows

3a. Not all federates have resigned from the federation after waiting a configurable
amount of time.

1. System signals error to actor.

2. Actor acknowledges the error.

3. System reinitializes itself and enters a clean state.

5.2.7 Use Case – Configure Simulation Manager Application Log

Definitions

Number UC_112

Name Configure Simulation Manager Application Log

Primary Actor Simulation owner

Level Subfunction

Description The actor defines which messages shall be logged in the application.

Pre-Condition • Use case UC_102 (Set-up simulation manager application) has been
successfully completed.

Post-Condition • Log settings are adjusted.

Main Success Scenario

1. Actor chooses to adjust log settings.

2. System displays options to adjust log settings.

3. System displays a list of options which can be enabled or disabled.

4. Actor chooses which log options he wants to enable or disable.

5. System updates the 'ApplicationSettings' configuration file of the simulation manager
application..

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 34 of 112

Alternative Flows

None.

5.3 Model Manager Application Use Cases

This section presents the use cases that define the model manager application. The model
manager application is one of the application that implement the EODiSP GUI. It is normally
operated by a model owner. Each use case is defined in a dedicated subsection.

5.3.1 Use Case – Model Manager Application Summary

Definitions

Number UC_200

Name Model Manager Application Summary

Primary Actor Model owner

Level Summary

Description Describes how the use cases belonging to the model manager application
are linked together and in which order they can be used. The description
is from the point of view of the actor.

Pre-Condition None.

Post-Condition None.

Main Success Scenario

1. Actor sets up the model manager application (see use case UC_202)

2. Actor adds federates to the model manager application and configures them (see use
case UC_204).

Alternative Flows

None.

5.3.2 Use Case – Set-up Model Manager Application

Definitions

Number UC_ 202

Name Set-up Model Manager Application

Primary Actor Model owner

Level User goal

Description Describes the steps in order to get a running, fully functional model man-

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 35 of 112

ager application.

Pre-Condition • The model manager application must be installed on the system.

Post-Condition • The model manager application runs.

• The EODiSP network infrastructure is initialised.

• Federates can be added to the model manager application.

Main Success Scenario

1. Actor starts the model manager application. Depending on the platform, this can be
achieved by using a command in a console or by selecting the appropriate entry in the
start menu.

2. Actor chooses the application setting and the network setting to use from a list of
already existing application settings and network settings respectively.

3. System loads the 'ApplicationSettings' configuration file for the model manager applic-
ation from a predefined path in the file system.

4. System initialises the model manager application with the parameters given in the con-
figuration file.

5. System shows the GUI of the model manager application to the actor.

6. Actor chooses to initialise the EODiSP network.

7. System initialises the network infrastructure.

8. System makes already configured federates available to the EODiSP network.

Alternative Flows

a*. At any time, system detects an internal, unrecoverable error.

1. System signals error.

2. System exits.

3. Actor restarts the model manager application.

5-7a. Actor adjusts the general settings.

1. Actor chooses to save the settings.

2. System stores the settings in the 'ModelManagerProject' configuration file.

2a. System detects that it cannot save the file.

1. System signals error.

2. Actor tries to save again or ignores the operation.

3. System displays updated settings.

5-7a Actor adjust the network settings.

1. Actor chooses to save the settings.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 36 of 112

2. System stores the settings in the configuration files.

2a. System detects that it cannot save the file.

1. System signals error.

2. Actor tries to save again or ignores the operation.

5-7b. Actor adjusts simulation log settings. See use case UC_208.

7-8a. System detects a network error during initialisation.

1. System signals error.

2. Actor tries to resolve the network error.

3. Actor chooses to initialise the network again.

5.3.3 Use Case – Manage Federates in the Model Manager Application

Definitions

Number UC_204

Name Manage Federates in the Model Manager Application

Primary Actor Model owner

Level User goal

Description When a model manager application runs it is ready to integrate additional
federates and to make them available to certain simulation manager ap-
plications. This use case describes the interactions for this configuration.

Pre-Condition • Use case UC_202 (set-up model manager application) has been suc-
cessfully completed.

Post-Condition • Some (or all) federates included in the model manager application are
ready to be integrated into a simulation experiment.

Main Success Scenario

1. Actor chooses to add a federate.

2. System displays a dialogue which lets the actor choose the federate he wants to integ-
rate.

3. Actor chooses a 'SOM' configuration file which belongs to the federate he wants to in-
tegrate.

4. System processes the SOM configuration file.

5. System adds the selected federate to the list of managed federates in the model man-
ager application.

6. Actor selects the newly added federate from the list of managed federates.

7. Actor chooses to configure the security settings for the selected federate.

8. System displays options to specify security settings.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 37 of 112

9. Actor selects from a list of registered simulation manager applications to which the
federate shall be made available.

10.System automatically updates the 'SOMSecuritySettings' configuration file.

11.Actor chooses to make the federate available to the EODiSP network.

12.System internally adds the federate to the list of available federates for the configured
simulation manager application(s) in order to respond to requests coming from them.

13.System displays whether the federate has already been registered in the global federate
repository.

14.Actor chooses to register, deregister, or update a federate in the repository holding a
list of available federates.

Alternative Flow

3a. Additional configuration files are needed for this type of federate.

1. Actor chooses the additional configuration files to be integrated.

2. System processes additional configuration files.

4a. The configuration file does not conform to the XML Schema.

1. System signals error.

2. Actor chooses another configuration file to load.

6a. Actor selects an already existing federate from the list of managed federates.

9a. No simulation manager application is registered in the EODiSP network.

1. The actor waits until at least one simulation manager application has been registered
in the EODiSP network.

9b. No network connection is available to fetch the list of registered simulation manager
applications.

1. System displays error.

2. Actor tries to resolve the network error or ignores operation.

9c. Actor chooses to make the federate available to all simulation manager applications in
the EODiSP network.

9d. Actor chooses to manually specify a simulation manager application.

1. System presents an open file dialogue.

2. Actor chooses the file which uniquely identifies a simulation manager application.
This file can be created by the simulation manager application itself.

2a. System cannot processes the file.

1. System displays error.

2. Actor tries to load the file again or ignores the operation.

12a. System detects a network error.

1a. Network error occurred in the model manager itself.

1a. The model manager can reconnect to the EODiSP network during a certain
amount of time.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 38 of 112

1b. The model manager cannot reconnect to the EODiSP network during a certain
time.

1. System signals error.

2. Actor acknowledges error.

3. System reinitialises the federate.

4. Federate is in a clean state to be used by another simulation experiment.

1b. Network error occurred in one of the other participating simulation models.

1. System reports error in the log file.

2a. System does not receive a message from the simulation manager application in-
forming it to shut down.

2b. System receives a message from the simulation manager application informing
it to shut down.

1. System signals error.

2. Actor acknowledges error.

3. System reinitialises the federate.

4. Federate is in a clean state to be used by another simulation experiment.

1c. Network error occurred in the simulation manager application.

1a. The model manager can reconnect to the simulation manager application during
a certain amount of time.

1b. The model manager cannot reconnect to simulation manager application during
a certain time.

1. System signals error.

2. Actor acknowledges error.

3. System reinitialises the federate.

4. Federate is in a clean state to be used by another simulation experiment.

14a. Actor chooses not to register the federate in the global federate repository.

14b. No network connection to the repository available.

1. System displays error and aborts operation.

14c. Register federate:

1. System connects to the EODiSP federate repository.

1a. Federate is already registered in the global repository.

1. System displays information.

2. System aborts operation.

2. System transfers information about the federate to the repository to uniquely identify
it.

14d. Deregister federate:

1. System connects to the EODiSP federate repository.

1a. Federate is not registered in the global repository.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 39 of 112

1. System displays information.

2. System aborts operation.

2. System instructs global repository to deregister federate.

14e. Update federate:

1. System connects to the EODiSP federate repository.

1a. System is not registered in the global repository.

1. System instructs global repository to register federate.

1b. System instructs global repository to update the registration of the federate.

5.3.4 Use Case – Configure Model Manager Application Log

Definitions

Number UC_208

Name Configure Model Manager Application Log

Primary Actor Model owner

Level Subfunction

Description The actor can configure which messages shall be logged in the applica-
tion.

Pre-Condition • Use case UC_202 (set-up model manager application) has been suc-
cessfully completed.

Post-Condition • Log settings are adjusted.

Main Success Scenario

1. Actor chooses to adjust log settings.

2. System displays options to adjust log settings.

3. System displays a list of options which can be enabled or disabled.

4. Actor chooses which log options he wants to enable or disable.

5. System updates the 'ApplicationSettings' configuration file of the model manager ap-
plication..

Alternative Flow

None.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 40 of 112

5.4 Support Application Use Cases

This section presents the use cases that define the support application. The support applica-
tions are a set of applications that are provided by the EODiSP to help construct the wrappers
that transform the simulation packages into HLA federates.

5.4.1 Use Case – Generate Wrapper Code for an Excel Workbook

Definitions

Number UC_302

Name Generate Wrapper Code for an Excel Workbook

Primary Actor Model owner

Level User Goal

Description Describes the steps to generate the code that wraps an existing Excel
Workbook as an HLA federate that can be integrated into the EODiSP.

Pre-Condition • An Excel Workbook is available.

• Microsoft Excel is installed on the the model owners computer.

• The EODiSP Wrapper macro is installed in Microsoft Excel.

• The support application is running.

Post-Condition • The code that implements a federate wrapper for a given Excel Work-
book (federate interface implementation and Excel connector code).

• A SOM file that describes the publishing/subscribing facilities of the
federate.

Main Success Scenario

1. Actor starts Microsoft Excel and opens the Excel Workbook for which he wants to
generate the wrapper code.

2. Actor selects one or more cell ranges as input or output values.

3. System (EODiSP Wrapper macro) highlights input and output ranges.

4. User chooses to generate an ExcelMapping file skeleton.

5. System generates an Excel mapping file skeleton. The skeleton only contains the Excel
part of the mapping (one Excel element for each input and output range).

6. Actor chooses to load the generated mapping file into the support application.

7. System (support application) displays the mapping file.

8. Actor fills in the missing parts. Namely the mapping of the chosen input and output
ranges to HLA object class attributes. The changes can be done either in an external
XML editor or directly inside the support application using a text editor.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 41 of 112

9. Actor adds mappings from HLA attributes to Excel macros.

10.Actor chooses to generate the SOM file from the mapping file.

11.System generates the SOM file.

12.Actor chooses to generate the complete wrapper code.

13.System generates the federate interface wrapper code from the SOM and the connector
code using the information in the mapping file.

Alternative Flows

5a. No input or output ranges selected.

1. System signals error.

2. Go to step 2.

11a. Mapping file does not validate against the ExcelMapping XML Schema.

1. System signals error.

2. Actor corrects the mapping file and chooses to regenerate the SOM file.

13a. SOM file or the ExcelMapping file do not validates against their XML Schemas.

1. System signals error.

2. Actor corrects the mapping file and regenerates the SOM file (step 9) if necessary.

5.4.2 Use Case – Generate Wrapper Code for an SMP2 simulation

Definitions

Number UC_304

Name Generate Wrapper Code for an SMP2 simulation

Primary Actor Model owner

Level User Goal

Description Describes the steps to generate the code that wraps an existing SMP2
simulation as a federate that can be integrated into the EODiSP.

Pre-Condition • An SMP2 catalogue file is available.

• An SMP2 assembly file is available.

• The support application is running.

Post-Condition • The code that implements a federate wrapper for a given SMP2 simu-
lation (federate interface implementation and SMP2 connector code).

• A SOM file that describes the publishing/subscribing facilities of the
federate.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 42 of 112

Main Success Scenario

1. Actor chooses to load an SMP2 catalogue file.

2. Actor chooses to load an SMP2 assembly file.

3. System displays model instances and their features (properties, fields etc.) in a tree.

4. Actor selects one or more features in the tree and chooses to generate an SMP2Map-
ping file skeleton.

5. System generates an SMP2Mapping file skeleton. The skeleton only contains the
SMP2 part of the mapping (one feature element for each selected feature).

6. System displays the mapping file and highlights incomplete parts.

7. Actor fills in the missing parts. Namely the mapping of the chosen features to HLA ob-
ject class attributes. The changes can be done either in an external XML editor or dir-
ectly inside the support application using a text editor.

8. Actor chooses to generate the SOM file from the mapping file.

9. System generates the SOM file.

10.Actor chooses to generate the wrapper code.

11.System generates the federate interface wrapper code from the SOM and the connector
code using the information in the mapping file.

Alternative Flows

3a. Catalogue or Assembly files do not validate against XML Schema.

1. System signals error.

2. Actor chooses to another Assembly or Catalogue file.

5a. No features chosen.

1. System signals error.

2. Go to step 4.

9a. Mapping file does not validate against the SMP2Mapping XML Schema.

1. System signals error.

2. Actor corrects the mapping file and chooses to regenerate the SOM file.

11a. SOM file or the SMP2Mapping file do not validates against their XML Schemas.

1. System signals error.

2. Actor corrects the mapping file and regenerates the SOM file (step 8) if necessary.

5.4.3 Use Case – Generate Wrapper Code for Matlab-Generated Code

Definitions

Number UC_306

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 43 of 112

Name Generate Wrapper Code for Matlab-Generated Code

Primary Actor Model owner

Level User Goal

Description Describes the steps to generate the code that wraps an existing Matlab-
generated code as a federate that can be integrated into the EODiSP.

Pre-Condition • Matlab-generated code is available.

• The support application is running.

Post-Condition • The code that implements a federate wrapper for a given Matlab-gen-
erated code (federate interface implementation and connector code).

• A SOM file that describes the publishing/subscribing facilities of the
federate.

Main Success Scenario

1. Actor wraps the Matlab-generated code as an SMP2 model using the Mosaic tool and
integrates it into SimSat 2000.

2. Actor generates wrapper code for this SMP2 simulation (see use case UC_304).

Alternative Flows

None.

5.4.4 Use Case – Create Wrapper Code for a Matlab Simulation

Definitions

Number UC_308

Name Generate Wrapper Code for a Matlab Simulation

Primary Actor Model owner

Level User Goal

Description Describes the steps to create the code that wraps an existing Matlab sim-
ulation as a federate that can be integrated into the EODiSP.

Pre-Condition • A Matlab simulation is available.

• The support application is running.

Post-Condition • The code that implements a federate wrapper for a given Matlabsimu-
lation (federate interface implementation and connector code).

• A SOM file that describes the publishing/subscribing facilities of the
federate.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 44 of 112

Main Success Scenario

1. Actor creates a new SOM file (see use case UC_316).

2. Actor chooses to generate the federate interface implementation code from the SOM.

3. System generates the federate interface implementation code.

4. Actor implements the connector code that connects the federate interface implementa-
tion code with the Matlab simulation using the COM interface of the Matlab simula-
tion. COM calls are implemented using the SWT COM/Java bridge [Swt].

Alternative Flows

5a. SOM file does not validates against its XML Schema.

1. System signals error.

2. Actor corrects the SOM file and chooses to regenerate the federate interface imple-
mentation (step 4).

5.4.5 Use Case – Create Wrapper for Source Code

Definitions

Number UC_310

Name Generate Wrapper Code for Source Code

Primary Actor Model owner

Level User Goal

Description Describes the steps to create the code that wraps an existing executable
as a federate that can be integrated into the EODiSP.

Pre-Condition • Some source (C/C++/Fortran/Java) code is available that can be com-
piled to an executable program.

• The support application is running.

Post-Condition • The code that implements a federate wrapper for some given source
code (federate interface implementation and connector code).

• A SOM file that describes the publishing/subscribing facilities of the
federate.

Main Success Scenario

1. Actor creates a new SOM file (see use case UC_316).

2. Actor chooses to generate the federate interface implementation code from the SOM.

3. System generates the federate interface implementation code.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 45 of 112

4. Actor implements the connector code that connects the federate interface implementa-
tion code with the source code.

Alternative Flows

5a. SOM file does not validates against its XML Schema.

1. System signals error.

2. Actor corrects the SOM file and chooses to regenerate the federate interface imple-
mentation (step 4).

5.4.6 Use Case – Create Wrapper for a Standalone Executable

Definitions

Number UC_312

Name Generate Wrapper Code for a Standalone Executable

Primary Actor Model owner

Level User Goal

Description Describes the steps to create the code that wraps an existing executable
with a defined in- and/or output as a federate that can be integrated into
the EODiSP.

Pre-Condition • The input and output of a standalone executable is known.

• The support application is running.

Post-Condition • The code that implements a federate wrapper for the standalone ex-
ecutable (federate interface implementation and connector code).

• A SOM file that describes the publishing/subscribing facilities of the
federate.

Main Success Scenario

1. Actor creates a new SOM file (see use case UC_316).

2. Actor chooses to generate the federate interface implementation code from the SOM.

3. System generates the federate interface implementation code.

4. Actor implements the connector code that connects the federate interface implementa-
tion code with the standalone executable.

Alternative Flows

5a. SOM file does not validates against its XML Schema.

1. System signals error.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 46 of 112

2. Actor corrects the SOM file and chooses to regenerate the federate interface imple-
mentation (step 4).

5.4.7 Use Case – Create Wrapper for a Data Processing Package

Definitions

Number UC_314

Name Generate Wrapper Code a Data Processing Package

Primary Actor Model owner

Level User Goal

Description Describes the steps to create the code that wraps an existing data pro-
cessing package as a federate that can be integrated into the EODiSP.

Pre-Condition • The interface of a data processing package is known.

• The support application is running.

Post-Condition • The code that implements a federate wrapper for the dta processing
package (federate interface implementation and connector code).

• A SOM file that describes the publishing/subscribing facilities of the
federate.

Main Success Scenario

1. Actor creates a new SOM file (see use case UC_316).

2. Actor chooses to generate the federate interface implementation code from the SOM.

3. System generates the federate interface implementation code.

4. Actor implements the connector code that connects the federate interface implementa-
tion code with the data processing package.

Alternative Flows

5a. SOM file does not validates against its XML Schema.

1. System signals error.

2. Actor corrects the SOM file and chooses to regenerate the federate interface imple-
mentation (step 4).

5.4.8 Use Case – Creating a New SOM File

Definitions

Number UC_316

Name Creating a New SOM File

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 47 of 112

Primary Actor Model owner

Level Subfunction

Description Describes the steps to create a new SOM file from scratch.

Pre-Condition • The support application is running.

Post-Condition • A SOM file that defines the desired object classes and their attributes
and the ability of the federate for publishing them or subscribing to
them.

Main Success Scenario

1. Actor chooses to create a new SOM file.

2. System creates a valid SOM file with no object class definitions and displays the file in
a text editor.

3. Actor edits the SOM and adds the desired object class and attribute definitions to the
SOM.

Alternative Flows

None.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 48 of 112

6 GUI Configuration Files
This section defines the configuration files that are associated to the GUI part of the EODiSP.
The EODiSP GUI is implemented over three separate applications: the simulation manager
application, the model manager application, and the support application.

The GUI configuration files formally and fully define the type of information that users must
provide when they use the EODiSP. They are specified as XML Schema expressed in the
XSD language. Since the configuration files are specified in a formal language, their specific-
ation is used in the EODiSP implementation to check that users actually enter all the informa-
tion that is required from them and that the structure of this information complies with its
specification. The schema information is also used to automatically generate part of the edit-
ors where users enter their inputs.

Subsection 6.1 describes the approach taken in this document to specifying the XML Schem-
as. Subsections 6.2 and 6.3 discuss the configuration files of the simulation manager and
model manager applications. The configuration files for the support applications have a more
idiosyncratic character because they depend on the kind of wrappers supported by the EOD-
iSP and are therefore discussed separately in section 9.

6.1 XML Schema Documentation

The GUI configuration files are formally specified through XML Schemas written in the
XSD language. The XML Schemas for the EODiSP GUI configuration files are given in their
entirety in appendix C. This section presents them using a more informal (but more easily
readable) graphical and textual representation.

The representation format is shown in Figure 4. Each box in this figure represents an XML
element. Boxes are connected with an arrow line that shows the parent/child relationship
between XML element. These connection lines can be annotated by a cardinality.

Non-essential elements which have no attributes and only serve as container elements are not
described in more detail. Other elements are described in dedicated tables. Each table de-
scribes one XML element and its attributes. The format of these description tables is as fol-
lows:

Name: <The name of the element>

Description: <A detailed description of the element>

Parent element:
<Parent element of the described element or 'none' if it is a root
element>

Child element(s): <A comma separated list of child elements. Set to 'none' if this

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 4: Graphical representation of XML Schemas

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 49 of 112

element cannot have any child elements>

Attributes:
A list of attributes with the following form:
<attribute type> <attribute name>

Where appropriate, each attribute is described in detail in the text that follows the table.

The element description tables are automatically constructed by processing the XML Schema
themselves. This guarantees that the description given in this section is consistent with the
formal XML Schemas given in appendix C.

6.2 Simulation Manager Application Configuration Files

Table 6.2.1 lists all the EODiSP GUI configuration files associated with the simulation man-
ager application. For each configuration file a brief description of their role is given. More
details can be found in [Urd]. The last column gives an identifier for the XML Schema. The
identifier is used in the traceability matrix as a concise way to refer to the XML Schemas.

Note that the list of configuration files given in table 6.2.1 differs from the list of configura-
tion files of the simulation manager application as it is given in the URD. The deviations are
discussed in sections 4.1 and 4.3.

The XML Schemas are described in detail in dedicated subsections in this section. The fol-
lowing requirement acts as an umbrella requirement that mandates the applicability of the
XML Schemas. However, as discussed in section 3.2, traceability to user requirements is
sometimes done in terms of the individual XML Schemas.

S6.2 -1 The user inputs to be provided through the simulation manager application
shall conform to the XML Schemas listed in table 6.2.1.

Table 6.2.1: Configuration files of the simulation manager application

File Name Description ID

SimulationManager-
Project

Stores the configuration tree from an EODiSP simulation
manager application. This file can be reused to load a com-
plete configuration at a later time. Note that this file is ob-
tained by merging the SimulationsConfig and Experi-
mentInitConfig files of the URD.

XS_001

FOM Defines object classes, attributes, etc. and the information
they exchange at runtime.

HLA DTD

ApplicationSettings Stores general settings configured in the simulation man-
ager application.

XS_010

6.2.1 SimulationManagerProject Configuration File

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 50 of 112

A project configuration for the simulation manager application defines two things, federa-
tions and experiments. Each federation is assembled from one or more federates. Each exper-
iment consist of one or more federation executions. The interfaces of the federates are
defined in SOM files which are located in the model manager application.

Essential XML elements are described in the sections below:

Element <project>

Name: project

Description: The root element of the SimulationManagerProject file.

Parent element: none

Child element(s): federations, experiments

Attributes: xs:string name

Attribute "name"

• type: xs:string
• use: required

The name of the simulation manager project

Element <federation>

Name: federation

Description:
Describes a federation configuration that can be executed in an ex-
periment.

Parent element: federations

Child element(s): federate

Attributes: xs:ID name

Attribute "name"

• type: xs:ID
• use: required

The name of the federation configuration. Must be unique.

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 5: Structure of the SimulationManagerProject XML Schema

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 51 of 112

Element <federate>

Name: federate

Description: References a federate present in a model manager application.

Parent element: federation

Child element(s): none

Attributes: xs:anyURI uri

Attribute "uri"

• type: xs:anyURI
• use: required

References a federate on a model manager application. The exact format of this URI is not
defined yet but it shall reference a particular federate located in a model manager application.
The authority part of the URI is probaly an identification of the model manager where the
path part points to a particular federate (e.g: mymodelmanager/federate_1).

A federate is defined by its id (attribute id of a federate element in the ModelManagerPro-
ject file).

(see http://www.ietf.org/rfc/rfc2396.txt for the definition of an URI)

Element <experiment>

Name: experiment

Description:
An experiment combines several federation executions which can be
executed in one run.

Parent element: experiments

Child element(s): federationExecution

Attributes: xs:string name

Attribute "name"

• type: xs:string
• use: required

The name of the experiment

Element <federationExecution>

Name: federationExecution

Description:
A federation execution is a reference to a federation with the neces-
sary additional information to initialize and execute a federation.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/
http://www.ietf.org/rfc/rfc2396.txt

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 52 of 112

Parent element: experiment

Child element(s): init

Attributes: xs:IDREF federation

Attribute "federation"

• type: xs:IDREF
• use: required

References a federation name defined in a federation element.

Element <init>

Name: init

Description:

Each federate can have one or more initialization resources attached.
The init element defines the locations of these resources and defines
to which federate this resource belongs to. A resource can be a file
but also any other resource that is referencable by an URI (e.g. a
database).

Parent element: federationExecution

Child element(s): none

Attributes:

xs:string federate

xs:anyURI resource

xs:string type

Attribute "federate"

• type: xs:string
• use: required

Specifies the federate to which the initialization data is assigned to. The exact format has yet
to be decided. It could refercence a federate by using an XPath like expression (i.e. //fed
eration.0/federate.0 for the first federate appearing in the first federation).

Attribute "resource"

• type: xs:anyURI
• use: required

Specifies a resource that contains the initialization data for this federate. The type of this at-
tribute is a URI. Currently the only supported protocol is 'file:'
(i.e.file:///C:/initData/init.xml). Relative paths are allowed and are always rel-
ative to the location of the project file (i.e. file://../init.xml).

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 53 of 112

Attribute "type"

• type: xs:string
• use: required

Defines the type of the initialzation data. Possible types will be defined in a later phase.

6.2.2 FOM

The FOM file structure is defined by a DTD. The full DTD is part of the HLA standard and
defined in Annex C of [Omt00].

6.2.3 Application Settings

Application settings for the simulation manager application are stored in a set of key/value
pairs. A standard XML Schema is used for this purpose and is described in section 6.4. Table
6.2.2 lists valid keys and a description of the valid values for this key for the simulation man-
ager application:

Table 6.2.2: A list of keys defined for the Simulation Manager Application Settings

Key Description

RecentProjectFiles A list of the locations of recently used SimulationManager-
Project files.

NetworkImpl Specifies the network infrastructure implementation. Cur-
rently, the only meaningful value is jxta. If other network
infrastructures become available this key can be used to
choose between different network implementation.

NetworkMode Defines in which network mode the EODiSP shall operate.
The choices are 'local' or 'remote'. If in local mode, the EOD-
iSP will make no attempt to make a connection to the Inter-
net.

JxtaConfig An absolute or relative path to the directory where JXTA
configuration files reside or shall be saved respectively. If a
relative path is given, it is relative to the path given in the
environment variable 'EODISP_SIM_CONFIG'.

One special variable which is mentioned in table 6.2.2 is the environment variable
'EODISP_SIM_CONFIG'. It specifies a path to a directory where the all configuration files
for the simulation manager application shall be stored. If the environment variable is omitted
(i.e. not specified), the path {user_home}/.simConfig will be used as default value.
The value {user_home} is the home directory of the user currently logged in.

The directory specified with this environment variable will hold all configuration files related
to the simulation manager application, including JXTA configuration files.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 54 of 112

6.3 Model Manager Application Configuration Files

Table 6.3.1 lists all the EODiSP GUI configuration files associated with the model manager
application. For each configuration file a brief description of their role is given. More details
can be found in [Urd]. The last column gives an identifier for the XML Schema. The identifi-
er is used in the traceability matrix as a concise way to refer to the XML Schemas.

Note that the list of configuration files given in table 6.3.1 differs from the list of configura-
tion files of the model manager application as it is given in the URD. The deviations are dis-
cussed in sections 4.4.

The XML Schemas are described in detail in dedicated subsections in this section. The fol-
lowing requirement acts as an umbrella requirement that mandates the applicability of the
XML Schemas. However, as discussed in section 3.2, traceability to user requirements is
sometimes done in terms of the individual XML Schemas.

S6.3 -1 The user inputs to be provided through the model manager application shall
conform to the XML Schemas listed in table 6.3.1.

Table 6.3.1: Configuration files of the model manager application

File Name Description ID

ModelManager-
Project

Stores the configuration tree of federates which are included in
the model manager application and the path to find them. Note
that this file is obtained by merging the ModelsConfig and Som-
SecurityConfig files of the URD.

XS_002

SOM Stores information about object classes and object class attrib-
utes of a single federate.

HLA DTD

ApplicationSet-
tings

Stores general settings configured in the model manager ap-
plication.

XS_011

6.3.1 ModelManagerProject Configuration File

A model manager manages several federates and possibly makes them available to simulation
manager applications. Each federate is formally described in a SOM. The project configura-
tion file specifies which SOM files are loaded in the model manager application and which of

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 6: Structure of the ModelManagerProject XML Schema

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 55 of 112

these SOMs are available on the network. Finer grained settings for the publication of feder-
ates can be specified in the SOMSecuritySettings file.

Essential XML elements are described in the sections below:

Element <project>

Name: project

Description: The root element of the ModelManagerConfig file.

Parent element: none

Child element(s): federates

Attributes: xs:string name

Attribute "name"

• type: xs:string
• use: required

The name of the model manager project

Element <federate>

Name: federate

Description:
Describes a federate available on the model manager node and con-
trols its publication to the eodisp network.

Parent element: federates

Child element(s): initDecl, trustedSimulationManagers

Attributes:

xs:ID id

xs:anyURI som

xs:boolean public

Attribute "id"

• type: xs:ID
• use: required

Each federate is identified by a unique id. The format used is a Universal Unique Identifier
(UUID). See http://www.ietf.org/rfc/rfc4122.txt for a definition of it.

Attribute "som"

• type: xs:anyURI
• use: required

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/
http://www.ietf.org/rfc/rfc4122.txt

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 56 of 112

The URI that identifies a Simulation Object Model (SOM) file. Currently the only supported
protocol is 'file:' (i.e. file:///C:/soms/mySom.xml). Relative paths are allowed
and are always relative to the location of the project file (i.e. file://../soms/mySo
m.xml).

Attribute "public"

• type: xs:boolean
• use: required

Specifies if this federate should be available to simulation manager applications
(true/false). Finer grained security settings for a publication of a federate can be set in
the SOMSecuritySettings configuration file.

Not that if this attribute is set to true it does not mean that the federate is available to simula-
tion manager applications. It only declares the federate as being published. If the federate is
accessible by a simulation manager application is defined in the SOMSecuritySettings con-
figuration file.

Element <initDecl>

Name: initDecl

Description:

An initialization declaration specifies the kind of initialization data a
federate expects. Additionally it can provide a template resource
which will be delivered to the simulation manager to support the
simulation owner in creating the initialization data resource.

Parent element: federate

Child element(s): none

Attributes:

xs:string type

xs:anyURI template

xs:anyURI spec

xs:boolean required

Attribute "type"

• type: xs:string
• use: required

Defines the type of the data expected by the federate. Possible types will be defined in a later
phase.

Attribute "template"

• type: xs:anyURI
• use: optional

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 57 of 112

Specifies a resource that contains a template for the data expected by the federate.Currently
the only supported protocol is 'file:' (i.e. file://C:/myTemplateFile.xml). Re-
lative paths are allowed and are always relative to the location of the project file (i.e.
file://../myTemplateFile.xml).

Attribute "spec"

• type: xs:anyURI
• use: optional

Specifies an optional resource which gives a more detailed description of the initialization
data expected by a federate. The kind of resource which is specified in this attribute depends
on the type of the initialization. It could for example point to an XML Schema to define the
format of initialization data encoded in XML. But it can point to any other resource which
specifies the format of the initialization data. The format of the URI is restricted in the same
way as in the template attribute.

Attribute "required"

• type: xs:boolean
• use: required

If set to false the federate can be started without specifying any initialization data other-
wise initialization data has to be provided by the simulation manager.

Element <trustedSimulationManagers>

Name: trustedSimulationManagers

Description:

Lists the simulation manager applications which are trusted by the
model manager, that is, the simulation managers that are allowed to
make this federate a part of a federation execution and therefore run
this federate on the model manager node.

Parent element: federate

Child element(s): ref

Attributes: none

Element <ref>

Name: ref

Description: References a simulation manager application node.

Parent element: trustedSimulationManagers

Child element(s): none

Attributes: xs:anyURI uri

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 58 of 112

Attribute "uri"

• type: xs:anyURI
• use: optional

References a simulation manager application. The exact format of this URI is not defined yet
but it shall reference unambiguously a specific simulation manager application.

(see http://www.ietf.org/rfc/rfc2396.txt for the definition of an URI)

6.3.2 SOM

The SOM file structure is defined by a DTD. The full DTD is part of the HLA standard and
defined in Annex C of [Omt00].

6.3.3 Application Settings

Application settings for the model manager application are stored in a set of key/value pairs.
A standard XML Schema is used for this purpose and is described in section 6.4. Table 6.3.2
lists valid keys and a description to the valid values for this key for the simulation manager
application:

Table 6.3.2: A list of keys defined for the Simulation Manager Application Settings

Key Description

RecentProjectFiles A list of the locations of recently used ModelManagerPro-
ject files.

NetworkImpl Specifies the network infrastructure implementation. Cur-
rently, the only meaningful value is jxta. If other network
infrastructures become available this key can be used to
choose between different network implementation.

NetworkMode Defines in which network mode the EODiSP shall operate.
The choices are 'local' or 'remote'. If in local mode, the EOD-
iSP will make no attempt to make a connection to the Inter-
net.

JxtaConfig An absolute or relative path to the directory where JXTA
configuration files reside or shall be saved respectively. If a
relative path is given, it is relative to the path given in the
environment variable 'EODISP_MOD_CONFIG'.

One special variable which is mentioned in table 6.3.2 is the environment variable
'EODISP_MOD_CONFIG'. It specifies a path to a directory where the all configuration files
for the model manager application shall be stored. If the environment variable is omitted (i.e.
not specified), the path {user_home}/.modConfig will be used as default value. The
value {user_home} is the home directory of the user currently logged in.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/
http://www.ietf.org/rfc/rfc2396.txt

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 59 of 112

The directory specified with this environment variable will hold all configuration files related
to the model manager application, including JXTA configuration files.

6.4 General format of Application Settings

All applications defined for the EODiSP use the standard Java mechanism to store general
application settings. This mechanism is provided by the Java Properties class and allows
to save settings a set of of key/value pairs. The DTD of the XML file to which the data is
stored to is defined by the Properties class. Figure 7 shows the structure of this DTD.

The entry element defines an attribute key. Its content type is PCDATA which means it can
have any text content. For convenience and because the DTD is very short it is printed here
in full:

<?xml version="1.0" encoding="UTF8"?>
 <!ELEMENT properties (comment?, entry*) >
 <!ATTLIST properties version CDATA #FIXED "1.0">
 <!ELEMENT comment (#PCDATA) >
 <!ELEMENT entry (#PCDATA) >
 <!ATTLIST entry key CDATA #REQUIRED>

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 7: Structure of the DTD used by Java's Properties class

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 60 of 112

7 HLA Core
This section defines the requirements that are applicable to the HLA Core part of the EOD-
iSP. The requirements are stated in terms of the HLA services that are supported by the
EODiSP. These services are defined in the EODiSP URD. The services themselves are
defined in the HLA standard using a logical model based on state machines.

This section specifies which of the state machines defined by the HLA standard are imple-
mented in the EODiSP. Since the standard includes an extensive and accurate description for
each state machine, no further description of these state machines is given in this document.
However, references to the appropriate sections and descriptions in the HLA standard are
given.

Section 7.1 gives an overview of the state machine concept and it presents the modelling ap-
proach used in the EODiSP. Section 7.2 identifies the HLA state machines that are supported
by the EODiSP and section 7.3 presents the model for selected HLA state machines suppor-
ted by the EODiSP. Note that section 7.3 only give an overview of the state machine models.
The full definition can be found in appendix B.

7.1 State Machines

A state machine models behaviour composed of states, transitions and actions. A state stores
information about the past, i.e. it reflects the input changes from the system start to the
present moment. A transition indicates a state change and is described by a condition that
would need to be fulfilled to enable the transition. An action is a description of an activity
that is to be performed at a given moment. Several action types can be performed

• Entry action: Execute the action when entering a state.

• Exit action: Execute the action when exiting a state.

• Input action: execute the action dependant on present state and input conditions.

• Transition action: execute the action when performing a transition.

The HLA standard describes state machines in terms of state diagrams. State diagrams are
graphical representations of (finite) state machines. The most common form is a directed
graph, which is also used by the HLA.

In this document, for the more complex HLA state machine, a more formal description is
used. This is based on the concurrent hierarchical state machine [Chsm] modelling approach.
This approach uses its own language to represent a state machine. This language is a further
abstraction of a visual representation of a state machine. CHSM provides a compiler to use
with this language. The compiler output is Java code representing a state machine. This code
can be integrated into the EODiSP project. The use of CHSM makes it therefore possible to
transfer the visual representation in form of state diagrams in the HLA standard over a spe-
cialised language defined by CHSM into Java code.

Section 7.3 includes the documentation part of each CHSM file which has been created for
the EODiSP project. Every CHSM file represents one state machine defined in the HLA

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 61 of 112

standard. The documentation part of a CHSM file is only a description of what HLA services
are covered by this state machine as well as a reference to the appropriate section in the HLA
standard document. The whole CHSM definitions are included in the Appendix B of this doc-
ument.

This section discusses the CHSM language in which state machines are defined. It shall give
enough information to understand the listings in Appendix B where the whole CHSM repres-
entation of the state charts in the EODiSP projects are included. However, in case of interest,
more information about the CHSM language can be found on its website [Chsm].

Every CHSM definition file includes the definition for one state machine. Since in the EOD-
iSP project, multiple state machines need to be defined, there are multiple CHSM definition
files. Each of this file is named after the state machine's name in the HLA standard plus a file
extension. The file extension is '.chsmj', meaning that the file includes a CHSM definition for
a state chart and is intended to output Java Code (and therefore probably has Java code in-
cluded as well).

The structure of a single .chsmj file must follow the proposed structure of CHSM and always
has the following 3 sections (in this order):

• Declarations:
This is the first section. It includes general purpose documentation and Java code which
can be used in the description section. The integrated Java code can be virtually any-
thing supported by the Java language. It will be used to integrate the resulting state ma-
chine code into the EODiSP project.

• Description:
This is the second section. It includes the actual representation of the state machine, all
states, transitions, guards, etc. In other words, it defines the whole state machine in
terms of the CHSM language. As mentioned before, this section has access to the de-
clarations section. This opens the possibility to interact with code outside the definition
of this state machine (e.g. to check the state of another state machine).

• User Code:
This is the third section. It includes user written Java code which is accessible from
outside the generated state machine code (i.e. outside the generated classes). Another
possible way to access methods from other classes is to mark the generated classes as
public. Since this makes it obsolete to define a complete API to access the state ma-
chine, this is the preferred way for the EODiSP project. Therefore, this section remains
unused.

The declarations section is not much of interest for interpreting the chsmj files. It is merely
used to integrate the state machine into the rest of the EODiSP code. The interesting part is
the description section, where the actual definition of the state machine takes place.

The description section consists of everything needed to generate Java code representing a
single state machine. The concept for defining a state chart is the same for the HLA standard
and the CHSM language. Both use the state chart definition developed by David Harel

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 62 of 112

[Har87] (which has also become part of UML). This makes it easy to map the state charts
from the visual representation in the HLA standard to the textual representation in CHSM.

As stated before, a state machine consists of states, transitions and actions. In addition to this,
states can be grouped into clusters. A cluster can contain states or one or more clusters. An-
other characteristic of clusters is that they can run simultaneously. CHSM also defines a
class, which is the container for all clusters.

Therefore, we have the following hierarchy

1. class > state | cluster
2. cluster > state | cluster

The CHSM keyword for the main class is chsm, the keyword for clusters is cluster and
for states its state.

Within a state, one or more transitions can be specified. The format of a transition is
eventName > changeTo; Whenever the event with the name eventName is risen,
the state machine changes to the state or cluster with the name changeTo.

Section 7.3 describes the state machines which are converted from the HLA standard to the
CHSM language for the EODiSP project. For conciseness, only the documentation section of
the '.chsmj' files are given. The whole files including all sections of the chsm definition, as
used in the EODiSP project, are given in B.

7.2 State Machines in the EODiSP

The HLA defines are rich set of state machines, among which only a few are automatically
generated by using the CHSM approach. There are two main reasons for not using CHSM for
a state machine in the project. Firstly, some of the state machines are simply too trivial. It
would increase the implementation complexity if CHSM was used, without increasing stabil-
ity. These state machines are implemented directly using the Java programming language.
Secondly, some of the state machines are not applicable because they refer to a part of the
HLA standard which is not intended to be implemented in the EODiSP (i.e. HLA services
with priority 3).

Table 7.2.1 lists all state machines defined by the HLA. The first column gives an identifier
of the state machine. This is a unique name given for each state machine. The name is not
defined by the HLA, but should give an idea for the state machine's purpose. The second
column gives a reference to the section in the HLA standard document in which the state ma-
chine is defined. The third column states if, and how it is implemented. The choices 'chsm',
'java' and 'no' are possible. 'Chsm' means that the state machine is used in the EODiSP and
will be automatically generated by using the CHSM infrastructure. 'Java' means that the state
machine will be used in the EODiSP and will be implemented directly by using the Java pro-
gramming language. 'No' means that this state machine is not applicable to the EODiSP be-
cause it refers to a part of the HLA standard which will not be part of the EODiSP.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 63 of 112

The HLA standard document acts as formal definition for other state machines. For those
state machines which are implemented using 'chsm' (see column 3 in the table above), a
CHSM definition file will be given in addition to the HLA standard.

Table 7.2.1: List of all state machines defined by the HLA standard

Identifier HLA ref. Implementation

Federation Lifetime 4.1 chsm

Federate Lifetime 4.1.1 chsm

Normal Activity Permitted 4.1.1 java

Sync Point 4.1.3 java

Global Synch Label 4.1.3 java

Awaiting Synchronization 4.1.3 java

Local Synch Label 4.1.3 java

Object Class 5.1.4 java

Class Attribute 5.1.4 java

Class Attribute Privilege To Delete Object 1.5.4 java

Interaction Class 1.5.4 java

Object Instance Known 6.1.1 java

Implications of Ownership of Instance Attribute 6.1.1 java

Establishing Ownership of Instance Attribute 7.1 no

Temporal State 8.1.6 no

S7.2 -1 The EODiSP shall implement the HLA state machines as listed in table
7.2.1.

7.3 State Machine Descriptions

7.3.1 State Machine Federation Lifetime

The following documentation is taken from the file FederationLifetime.chsmj in the source
code of the EODiSP project. The complete file is delivered separately and is part of this
SRD.

//*****documentation*****

/**

* This document is a representation of a state machine defined by the HLA.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 64 of 112

* The original definition can be found in the IEEE 1516.1 specification document

* in section 4.1, figure 1--Basic states of the federation execution.

*

* The names of the transitions used in this state machine representation are taken

* from the HLA specification. They do not correspond to the names of the services.

*

* This state machine handles the following hla services related to federations.

*

* Create Federation Execution (section 4.2)

* Destroy Federation Execution (section 4.3)

* Join Federation Execution (section 4.4) -- also in other state machine

* Resign Federation Execution (section 4.5) -- also in other state machine

*

*/

7.3.2 State Machine Federate Lifetime

The following documentation is taken from the file FederateLifetime.chsmj in the source
code of the EODiSP project. The complete file is delivered separately and is part of this
SRD.

//*****documentation*****

/**

* This document is a representation of a state machine defined by the HLA.

* The original definition can be found in the IEEE 1516.1 specification document

* in section 4.1.1, figure 3--Lifetime of a federate.

*

* The names of the transitions used in this state machine representation are taken

* from the HLA specification. They do not correspond to the names of the services.

*

* This state machine handles the following hla services related to the declaration management.

*

* Join Federation Execution (section 4.4) -- also in other state machine

* Resign Federation Execution (section 4.5) -- also in other state machine

* Request Federation Save (section 4.11)

* Initiate Federation Save † (section 4.12)

* Federate Save Begun (section 4.13)

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 65 of 112

* Federate Save Complete (section 4.14)

* Federation Saved † (section 4.15)

* Request Federation Restore (section 4.18)

* Confirm Federation Restoration Request † (section 4.19)

* Federation Restore Begun † (section 4.20)

* Initiate Federate Restore † (section 4.21)

* Federate Restore Complete (section 4.22)

* Federation Restored † (section 4.23)

*

*/

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 66 of 112

8 The JXTA Infrastructure
The JXTA infrastructure is used as transport layer in the EODiSP to support communication
between simulation packages over a network. The infrastructure as such can be integrated
into the EODiSP without modification. Therefore, most of the requirements defined in the
user requirements document will be taken over to this document 'as is' (see the traceability
matrix in appendix A). However, the JXTA infrastructure needs to be configured for each ap-
plication. This configuration data will be incorporated into the dedicated application config-
uration document. The next section gives an overview of the possible configurations.

8.1 Configuration Properties

JXTA needs some configuration, mostly network-related, to work properly. The properties
which can be configured are defined by the JXTA infrastructure itself and cannot be changed
by the EODiSP.

JXTA reads a configuration file upon initialization and configures the whole infrastructure
appropriately. To facilitate the configuration task for the JXTA infrastructure, a Graphical
User Interface will be built. This GUI module will be part of both the simulation manager and
the model manager application. The settings configured through this GUI will be stored in a
dedicated file for each application instance (i.e. for each simulation manager application and
for each model manager application) separately. How the files are managed and stored is ex-
plained in more detail in section 8.2.

Table 8.1.1 introduces a list with properties applicable to both the simulation manager and
the model manager application. The list is not complete in the sense of JXTA, because some
options will be set automatically by the EODiSP framework. However, the list is complete
from the point of view of the user. Therefore, the list specifies the properties which are to be
configured by the user of either the simulation manager or the model manager application.

Table 8.1.1List of configuration properties applicable to the JXTA infrastructure

Property Description

Id A unique UUID which identifies the application. This value will be
automatically generated upon the first start up and should never be
changed.

Name The name of the peer. This should be a short string identifying the
application.

Description A description of the peer. This should be a text describing the peer
(e.g. if it is a simulation or model manager application).

IP Address The IP address of the network device which is used to communicate
with other peers. This can also be the localhost address (127.0.01) if
the EODISP works in local mode.

TCP Specifies if the TCP protocol shall be enabled.

TCP incoming Specifies if incoming TCP connections shall be enabled. If they are

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 67 of 112

Property Description

enabled, the appropriate port must not be blocked (e.g. by a fire-
wall).

TCP outgoing Specifies if outgoing TCP connections shall be enabled.

TCP port Specifies the port for incoming TCP connections if TCP incoming
is enabled.

TCP proxy Specifies if a proxy service for the TCP protocol shall be used.

TCP proxy address Specifies the IP address of the proxy service.

HTTP Specifies the HTTP protocol shall be enabled.

HTTP incoming Specifies incoming HTTP connections shall be enabled. If they are
enabled, the appropriate port must not be blocked (e.g. by a fire-
wall).

HTTP outgoing Specifies outgoing HTTP connections shall be enabled.

HTTP port Specifies the port for incoming HTTP connections if HTTP incom-
ing is enabled.

HTTP proxy Specifies if a proxy service for the HTTP protocol shall be used.

HTTP proxy address Specifies the IP address of the proxy service.

Rendezvous Specifies if a rendezvous server shall be used for communication.

Rendezvous address Specifies the IP address and port of the rendezvous server.

Relay Specifies if a relay server shall be used.

Relay address Specified the IP address and port of the relay server.

S8.1 -1 The EODiSP Model Manager and Simulation Manager applications shall
provide a GUI-based interface to allow users to set the JXTA properties lis-
ted in table 8.1.1.

8.2 Dedicated Configurations

As stated in the previous section, each single instance of a simulation manager application or
a model manager application needs its own JXTA configuration file. The main reason for this
is that each application instance needs to specify its own listening ports for incoming TCP or
HTTP connections.

The main place to store the configuration file for JXTA is defined by the 'JxtaConfig' prop-
erty in the application configuration file for the simulation manager application or the model
manager application (see section 6.2.3 and 6.3.3 respectively). This, however, is just the main
directory to store all JXTA related settings for all application instances. To be able to distin-

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 68 of 112

guish different configurations, a dedicated subdirectory will be created for each application
instance which is being started. The name of the directory will be the UUID which is used to
uniquely identify an application instance (see the discussion about the configuration files in
chapter 6 for more information). Upon start up, the user will be presented a list of possible
network (i.e. JXTA) configurations to choose from. If no configuration is present, a new one
will be created. Note that this type of interaction with the EODiSP is covered by use cases
UC_102 and UC_202.

A direct consequence of this configuration is, that it is not possible to run 2 instances of the
same application with the same network configuration. Although this might look like a draw-
back, it is the normal behaviour of every network capable software. The reason is, that if one
application acquires a port to listen on, no other application can acquire the exact same port.
Therefore, the second application needs its own configuration.

S8.2 -1 The EODiSP Model Manager and Simulation Manager applications shall al-
low users to save their JXTA configuration.

S8.2 -2 The EODiSP Model Manager and Simulation Manager applications shall al-
low users to load a previously saved JXTA configuration.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 69 of 112

9 General Wrapper Structure
In the EODiSP context, wrappers are used to integrate simulation packages within the EOD-
iSP environment. They transform a generic simulation package into an EODiSP-compatible
HLA federate.

There is much variety in wrapper types and structure. This section defines the requirements
that apply to all EODiSP wrappers. The next two sections – sections 10 and 11 – define re-
quirements that are specific to commonly used types of wrappers.

9.1 Wrapping Approach

In general, an EODiSP wrapper can serve two purposes:

• Language Bridges: the EODiSP is Java-based but most simulation packages are expec-
ted to be implemented in other languages (notably COM, C/C++ and Fortran). The
wrappers are used to allow non-Java packages to be integrated in the EODiSP.

• HLA Bridges: the EODiSP is based on the HLA concept but simulation packages are
not necessarily implemented as HLA federates. The wrappers are used to adapt their
interface to conform to the interface specified by the HLA standard.

In the EODiSP, these two functions of a wrapper are implemented in three separate elements.
The resulting wrapper architecture is shown in figure 8. Block 3 and 4 in the figure imple-
ment the HLA bridging function and block 2 implements the language bridging function.

The choice of the architecture of figure 8 is driven by the desire to, as far as possible, auto-
mate the wrapper generation process. The part of the HLA bridge that communicates with the
EODiSP environment (Block 4) needs to implement the HLA Federate Interface Specifica-
tion [Hla00]. This code is the same for all federates and only depends on the SOM the feder-

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 8: HLA Federate Wrapper

EODiSP Environment (HLA RTI)

Simulation Package (1)

(3)

(4)

(5)

HLA Federate Interface Implementation
(Java)

Connector Code
(Java)

Language Bridge (2)

Simulation
Package
Wrapper

Manually created
or generated

Generated

Fixed
Makes the simulation package

accessible through Java

Connects the simulation
package with the HLA federate

interface implementation

Implements the Interface given
by a SOM. Marked sections in

the code tag places where code
needs to be added (the

connector code) to connect it
with a simulation package.

Either provided by
the EODiSP, a third
party or manually

created

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 70 of 112

ate wants to expose. Therefore, the code implementing the federate interface can be gener-
ated in the same way for any HLA federate and much of it can be generated automatically.
Markers can be added in the code to tag the places where code needs to be added to connect
this implementation to a simulation package (this is indicated by the two "holes" in block 4 of
Figure 8).

The inputs for the generation of the block 4 code are the object class attributes the federate
wants to publish or subscribe to. A SOM contains exactly this information and therefore
serves as the input to the code generator.

The code that needs to be inserted in the generated code is shown in Figure 8 as block 3. This
code is either inserted manually or, for some specific simulation packages, generated auto-
matically.

In order to assist users in the construction of the wrappers for their simulation packages, the
EODiSP provides three kinds of facilities:

• HLA Federate Interface Implementation Generator: this is a program that automatic-
ally generates the HLA federate interface implementation of a wrapper (block 4 in fig-
ure 8). This program is incorporated in the EODiSP support application.

• Wrapper Generators: these are programs that automatically generate the entire wrap-
per (the SOM and the connector code, where the former is used to generate the HLA
federate interface implementation). These programs are only provided for commonly
used kinds of simulation packages with a well-defined structure. The wrapper generat-
ors are incorporated in the EODiSP support application.

• Sample Wrappers: these are complete wrappers for particular simulation packages.
They are intended to be used as blueprints for the construction of user-specific wrap-
pers. The sample wrappers are stand-alone pieces of code that are not integrated in the
EODiSP support application.

The HLA federate interface implementation generator is specified in subsection 9.2 below.
The wrapper generators are specified in section 10. The sample wrappers are specified in sec-
tion 11.

S9.1 -1 The EODiSP wrapper generators shall be implemented as two cooperating
elements: HLA federate interface implementation generator (for all wrappers)
and wrapper generators (for selected kinds of wrappers).

S9.1 -2 The EODiSP wrapper generators shall be controlled through one single sup-
port application..

9.2 HLA Federate Interface Implementation Generator

The HLA federate interface implementation generator generates parts of the code of an HLA
federate. The input is its interface description in the form of a SOM.

Table 9.2.1 lists the types of services for which code can be generated:

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 71 of 112

Table 9.2.1: Service for which code is generated

Service Description

Startup A startup method is generated that calls appropriate HLA services
to initialize the federate and join it to a federation execution.

Shutdown A shutdown method is generated that calls appropriate HLA ser-
vices to cleanly shutdown and resign the federate from a federation
execution.

Publishing For each HLA object class with sharing set to "Publish" a helper
method is generated that publishes all its attributes.

Subscription For each HLA object class with sharing set to "Subscribe" a helper
method is generated that subscribes to all its attributes.

Update Attributes For each attribute with sharing set to "Publish" an update method is
generated to update a particular attribute in the federation.

Reflect Attributes For each attribute with sharing set to "Subscribe" a callback meth-
od is generated that is invoked whenever the attribute value is up-
dated by the federation.

S9.2 -1 The EODiSP support application shall allow users to automatically generate
an HLA federated interface implementation skeleton from a SOM.

S9.2 -2 The HLA federate interface skeleton generate by the EODiSP support applic-
ation shall mark the points where package-specific code has to be provided by
the user.

9.3 Predefined Data Conversions

It has been specified in the URD that the EODiSP will provide a set of predefined simulation
models. Each of this models should take care of one clearly defined data conversion. A more
detailed analysis of the concept led to the decision that the concept itself should be changed
for certain data conversions, such that it should rather be included directly into the process of
generating the wrapper code.

The reason for this is that a federate needs to know its input and output values, including
their formats, prior to generating the wrapper code. Data conversions can be applied to both,
input and output values of a federate.

The connector code, which is generated by a support application, will provide the facility to
convert values for some predefined type of conversions. The specification of the conversion
is done in the support application itself.

The concept is therefore very similar to the one proposed in the URD, only that the imple-
mentation of the conversions does not reside in a dedicated federate but in the wrapper code
of the federate in question itself.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 72 of 112

This is a practical solution for some of the data conversions. Namely those, which can be
clearly identified and whose conversion can be implemented in a generic way. For those data
conversions which cannot be known by the EODiSP, the proposed solution in the SRD is still
kept, thus EODiSP will provide sample code to implement those data conversions.

As said before, only a limited and clearly defined set of data conversions is supported by the
EODiSP. Table 9.3.1 lists all types of conversions which are provided. Column 3 (Supported
By) shows how the data transformation will be supported. The value can be either 'Wrapper',
meaning that the data conversion will be directly supported by the wrapper code generation
process, or 'Federate', meaning that a dedicated federate can be used to achieve the desired
data conversion.

Table 9.3.1: List of predefined conversion types supported by the EODiSP

Conversion Type Description Supported By

Scaling Application of a constant factor to a value. Wrapper

Bias Adding a constant to a value. Wrapper

Type Casting Integer to float Wrapper

Application of Calibration
Curves

Look-up table based mapping of values,
interpolation

Federate

Matrix Operations extraction of sub-matrix, transposition Federate

Data Structure Modification Extraction of substructures or reformatting
of the structure.

Federate

S9.3 -1 The EODiSP support application shall allow users to generate wrapper skelet-
ons that implement the data conversions that are identified as 'Supported By
Wrapper' in column 3 listed in table 9.3.1.

S9.3 -2 The EODiSP environment shall provide skeleton code to facilitate the imple-
mentation of the data conversions that are identified as 'Supported By Feder-
ate' in column 3 listed in table 9.3.1.

9.4 Java/COM Bridge

Many simulation packages targeted at the MS-Windows operating system are provided with a
COM interface. It is therefore useful to offer a means to interface the EODiSP to COM ap-
plications. In the prototyping activities done during the user requirement definition phase, no
public domain Java/COM bridge was found that was capable of handling COM events.

During the software requirements phase it was instead found that a tweaked version of SWT
[Swt] makes it possible to subscribe to COM events raised by Microsoft Excel. The next re-
lease of SWT (3.2) will have this functionality fully integrated. The SWT will therefore be
used as the Java/COM bridge in the EODiSP.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 73 of 112

10 Wrapper Generators
This section defines the requirements that apply to the wrapper generators. Wrapper generat-
ors are provided for selected kinds of simulation package whose structure allows the wrapper
to be completely generated automatically. The wrapper generators are incorporated in the
EODiSP support application.

The simulation packages for which wrapper generators are provided are:

• Microsoft Excel Workbooks

• SMP2 Simulations. Namely SMP2 simulations running on SimSat 2000.

• Matlab-generated Code

The input to the wrapper generation process is a mapping from the data of the simulation
package to HLA object class attributes. A code generator then generates two artefacts from
this input. Firstly a SOM file that can be used to generate the HLA federate interface imple-
mentation (see section 9.2) and, secondly, the connector code that connects the HLA federate
interface implementation with the simulation package. This process is shown in Figure 9.

Subsections 10.1.1 and 10.2.1 describe the mapping files for each of the simulation packages
named above.

The mapping files are defined through XML Schemas. They are given in their full form in
appendix C. The subsections present them using a more informal (but more easily readable)
graphical and textual representation (See section 6.1 for a description of this representation).

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 9: Wrapper generation process for predefined wrapper types

HLA Federate Interface Implementation
(Java)

Connector Code
(Java)

Mapping File
(XML)

SOM Document
(XML)

Code Generator

Code Generator

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 74 of 112

Table 10.1 lists the mapping files that are provided by the EODiSP. The last column gives an
identifier for the XML Schema. The identifier is used in the traceability matrix as a concise
way to refer to the XML Schemas.

Table 10.1: XML Schemas for the Wrapper Mapping Files

Schema Name Description ID

ExcelMapping Mapping file for excel workbooks. XS_003

SMP2Mapping Mapping file for SMP2 model through SimSat 2000. XS_004

S10 -1 The wrapper generation process shall be implemented as it is described in fig-
ure 9.

S10 -2 The EODiSP wrapper generation process shall be driven by the wrapper map-
ping files listed in table 10.1.

10.1 Microsoft Excel Workbook Wrapper

The EODiSP wrapper for an Excel Workbook is divided into several elements. These ele-
ments are shown in Figure 10 as block 2 to 5.

The fixed elements (block 2 and 3) provide easy access from Java to the Excel COM inter-
face. This part is provided by the EODiSP as fixed code or Java library. The bridge between

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 10: Structure of the EODiSP Wrapper for Excel

Microsoft Excel

Microsoft Excel COM Interface

General Java/COM Bridge

General Java Excel Wrapper

Fixed

Generated
(1)

(2)

(3)

(4)

Simulation
Package

Simulation
Package
Wrapper

(5)HLA Federate Interface Implementation
(Java)

Excel Workbook Connector

EODiSP Environment (HLA RTI) (6)

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 75 of 112

Java and COM is implemented using a general Java/COM bridge. Specific methods of the
Excel COM interface will be made available through dedicated Java interfaces (block 3).
Among others, these include starting and stopping an Excel instance, opening and closing a
workbook, setting and getting values of cells in a Worksheet as well as subscribing to events
caused by a value change in a Excel Worksheet cell.

Block 4 in Figure 10 implements the connector code between the HLA federate interface im-
plementation and the General Excel Wrapper. Namely, if there's a request to publish an HLA
attribute it reads the value from the Excel Workbook and publishes it by using the methods
from the HLA federate interface implementation (Block 5). Vice versa, if an HLA attribute is
updated by another federate, it receives the value from the HLA federate interface imple-
mentation and writes the value to a specific cell in the Excel Workbook. Alernatively, an up-
date of an HLA attribute can trigger a VBA macro in the Excel Workbook.

S10.1 -1 The EODiSP support application shall provide the means the automatically
generate a wrapper for an excel workbook.

S10.1 -2 The structure of the excel workbook wrapper shall be as in figure 10.

10.1.1 Mapping File – ExcelMapping.xsd

In order to automatically generate the whole HLA wrapper code for Microsoft Excel the gen-
erator needs as its input a definition of the mapping from an Excel workbook to an HLA Fed-
eration Object Model (FOM). The mapping is such that a range of cells in an Excel work-
book is mapped to an attribute of a particular HLA object class in the FOM. Furthermore, the
code generator needs to know the data type of the range.

Essential XML elements are described in the sections below:

Element <mapping>

Name: mapping

Description:

Parent element: none

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 11: Structure of the ExcelMapping XML Schema

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 76 of 112

Child element(s): entry

Attributes: xs:anyURI fom

Attribute "fom"

• type: xs:anyURI
• use: required

References a Federation Object Model (FOM) using a Unified Resource Identifier (URI). All
object classes referenced in hla elements need to be defined in this FOM.

Element <entry>

Name: entry

Description:
An entry element describes the mapping from a range in an Excel
worksheet to an attribute of an HLA object class.

Parent element: mapping

Child element(s): excel, hla

Attributes: none

Element <excel>

Name: excel

Description:
The excel element describes the Excel part of the Excel to HLA
mapping. It either specifies a cell region (range) or a VBA macro.

Parent element: entry

Child element(s): data, macro

Attributes: none

Element <data>

Name: data

Description: The data (cell ranges) to be mapped to an HLA attribute.

Parent element: excel

Child element(s): none

Attributes:

xs:string worksheet

xs:string range

xs:string type

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 77 of 112

Attribute "worksheet"

• type: xs:string
• use: required

The name of the worksheet the range is contained in.

Attribute "range"

• type: xs:string
• use: required

The range of cells that holds the mapped value(s). A range is specified using the Excel VBA
(Visual Basic for Applications) notation for a range property. A range is specified by two
cells separated by a colon. A cell is defined by its row and column position on a worksheet
(e.g. A1 for column "A", row 1). The following table shows a few examples:

Range Description

A3:A3 Specifies the range containtin only the cell in column "A", row 3.

A3 Specifies the exact same cell as example above. A range specifying
only one cell can ommit the second cell after the colon.

A3:A6 The range containing the cells A3, A4, A5 and A6.

XPosition A range named XPosition in Excel.

See Excel VBA Language Reference (http://msdn.microsoft.com/library/default.asp?url=/lib-
rary/en-us/vbaxl11/html/xlobjRange1_HV05204333.asp) for detailed documentation.

If the range specifies more than one cell it must be mapped to an HLA attribute of type array.

Attribute "type"

• type: xs:string
• use: required

Specifies the data type of the values in the range. Only one data type can be specified per
range and, consequentially, all cells in the specified range need to be of the same data type.

Valid values are:

VT_R4 Single-precision floating-point

VT_R8 Double-precision floating-point

VT_BOOL Boolean

VT_I2 Integer

VT_I4 Long

VT_BSTR String

VT_DATE Date

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbaxl11/html/xlobjRange1_HV05204333.asp

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 78 of 112

VT_CY Currency

A detailed description of each data type can be found at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/automat/htm/chap6_7zdz.asp.

Element <macro>

Name: macro

Description:
Specifies a macro that is invoked when the corresponding HLA at-
tribute is updated.

Parent element: excel

Child element(s): none

Attributes: xs:string name

Attribute "name"

• type: xs:string
• use: required

Identifies the macro through its fully qualified name.

Element <hla>

Name: hla

Description:

The hla element describes the HLA part of the Excel to HLA map-
ping. It specifies an attribute of an object class defined in the Feder-
ate Object Model (FOM). The FOM is given by the fom attribute of
the root element.

Parent element: entry

Child element(s): objectClass

Attributes: none

Element <objectClass>

Name: objectClass

Description: The HLA object class

Parent element: hla

Child element(s): attribute

Attributes: xs:string name

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/automat/htm/chap6_7zdz.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/automat/htm/chap6_7zdz.asp

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 79 of 112

Attribute "name"

• type: xs:string
• use: required

The fully qualified name of an object class (E.g. HLARootObject.Rocket).

Element <attribute>

Name: attribute

Description:
The attribute to which the Excel range is mapped to. If more than
one attribute element is given, only part of the wrapper code can be
generated where other parts need to be implemented manually.

Parent element: objectClass

Child element(s): none

Attributes:
xs:string name

xs:string sharing

Attribute "name"

• type: xs:string
• use: required

The name of the HLA object class attribute

Attribute "sharing"

• type: xs:string
• use: required

Valid values are: publish, subscribe and publishSubscribe. The following table
describes each of them:

Value Description

publish Publish indicates that the attribute will be published to the HLA
simulation environment. It is published whenever its corresponding
value has changed in the Excel worksheet.

subscribe Subscribe indicates hat the corresponding Excel range can be up-
dated from the HLA simulation environment, namely by another
federate that publishes this attribute.

publishSub
scribe

The federate can both publish and subscribe to this attribute.
Whenever the corresponding range is updated by the HLA environ-
ment it is, in response, being published to the environment.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 80 of 112

10.2 SMP2 Simulation Wrapper

The EODiSP wrapper of an SMP2 simulation is divided into several elements. These ele-
ments are shown in Figure 12 as block 2 to 5.

The fixed components (block 2 and 3) provide easy access from Java to the SimSat SMP2
COM Adapter interface. This part is provided by the EODiSP as fixed code or Java library.
The bridge between Java and COM is implemented using a general Java/COM bridge (block
2).

Block 4 in Figure 12 implements the connector code between the HLA federate interface im-
plementation and the general Java SMP2 wrapper. Namely, if there's a request to publish an
HLA attribute it reads the value from an SMP2 model instance and publishes it by using the
methods from the HLA federate interface implementation (Block 5). Vice versa, if an HLA
attribute is updated by another federate, it receives the value from the HLA federate interface
implementation and writes the value to a specific SMP2 model instance.

In order to access any data from an SMP2 model instance running in an SMP2 simulation it
must fulfil the following requirements:

• The model is defined in a catalogue file

• The name of the model is known at the time the wrapper is generated. This is the case
if the model instantiation is specified in an SMP2 assembly file.

• The model implements the IDynamicInvocation Interface

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 12: Structure of the EODiSP Wrapper of an SMP2 simulation

SimSat 2000

SimSat COM Interface

General Java/COM Bridge

General Java SMP2 Wrapper

Fixed

Generated (1)

(2)

(3)

(4)

Simulation
Package

Simulation
Package
Wrapper

(5)

SMP2 COM Adapter

HLA Federate Interface Implementation
(Java)

SMP2 Connector

EODiSP Environment (HLA RTI)

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 81 of 112

• The model implements the IManagedModel interface

S10.2 -1 The EODiSP support application shall provide the means the automatically
generate a wrapper for an SMP2 model controlled through a SimSat 2000
application.

S10.2 -2 The structure of the SMP2 wrapper shall be as in figure 10.

10.2.1 Mapping File - SMP2Mapping.xsd

In order to generate the HLA wrapper code for an SMP2 simulation environment a mapping
from SMP 2 model instance features (fields, properties, operations etc.) to HLA Object Class
attributes is needed. It is important to note that model instances (in contrast to a definition of
a model) are mapped. This SMP2Mapping XML Schema defines the format of this mapping.

Essential XML elements are described in the sections below:

Element <mapping>

Name: mapping

Description:

Parent element: none

Child element(s): entry

Attributes: xs:anyURI fom

Attribute "fom"

• type: xs:anyURI
• use: required

References a Federation Object Model (FOM) using a Unified Resource Identifier (URI). All
object classes referenced in hla elements need to be defined in this FOM.

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 13: Structure of the SMP2Mapping XML Schema

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 82 of 112

Element <entry>

Name: entry

Description:
An entry element describes the mapping from an SMP2 model fea-
ture to one or more attributes of an HLA object class.

Parent element: mapping

Child element(s): smp2, hla

Attributes: none

Element <smp2>

Name: smp2

Description:
The smp2 element describes the SMP2 part of the SMP2 to HLA
mapping. It can specify a feature of a model instance which is going
to be mapped to an object class attribute.

Parent element: entry

Child element(s): feature

Attributes: none

Element <feature>

Name: feature

Description:

Parent element: smp2

Child element(s): none

Attributes:
xs:string modelInstance

xs:string type

Attribute "modelInstance"

• type: xs:string
• use: required

Specifies an SMP2 model instance of a running SMP2 simulation to which the feature be-
longs to with an absolute path. The syntax of the path is described in the SMP 2.0 Compon-
ent Model specification [Smpc05] in section 4.2.1.2.

Attribute "type"

• type: xs:string
• use: optional

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 83 of 112

SMP2 defines 10 different features for a model. Only for a few features the wrapper code can
be generated automatically. The following table describes for each feature the code that can
be generated. The following structure is used throughout the tables:

• Column 1: Lists the name of the SMP2 model feature
• Column 2: Indicates how much of the wrapper code can be generated automatically.

The following entries are possible:
• complete: The complete wrapper code can be generated automatically.
• ~complete: The complete wrapper code can be generated automatically if

special conditions are met. The conditions are explained in column 3.
• skeleton: Parts of the wrapper code can be generated automatically. For

others parts only skeleton code will be generated
• Column 3: Remarks and exceptions

Feature Gen Remarks/Exceptions

Property ~complete

The complete wrapper code can only be generated
automatically if the type of the property is one of the
following:

• SimpleType
• String
• Arrays with an item type of either Simple

Type or String

For more information on SMP2 types, see Chapter 4,
"Core Types", in the SMP2 Metamodel Documentation
[SMP2META].

Note that read-only properties need to be mapped to an
HLA attribute that has a sharing type of publish, and
subscribe for write-only properties respectively.

EntryPoint complete
An entry point must be mapped to an HLA attribute
with its sharing-type set to subscribe

Field ~complete

The complete wrapper code can only be generated
automatically if the type of the property is one of the
following:

• SimpleType
• String
• Arrays with an item type of either Simple

Type or String

For more information on SMP2 types, see Chapter 4,
"Core Types", in the SMP2 Metamodel Documentation
[SMP2META].

Operation skeleton -

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 84 of 112

EventSource/Event-
Sink

skeleton -

NestedType skeleton -

Reference skeleton -

Container skeleton -

Association skeleton -

Element <hla>

Name: hla

Description:

The hla element describes the HLA part of the Excel to HLA map-
ping. It specifies an attribute of an object class defined in the Feder-
ate Object Model (FOM). The FOM is given by the fom attribute of
the root element.

Parent element: entry

Child element(s): objectClass

Attributes: none

Element <objectClass>

Name: objectClass

Description: The HLA object class

Parent element: hla

Child element(s): attribute

Attributes: xs:string name

Attribute "name"

• type: xs:string
• use: required

The fully qualified name of an object class. E.g: HLARootObject.Rocket

Element <attribute>

Name: attribute

Description:
The attribute to which the SMP2 feature is mapped to. If more than
one attribute element is given, only part of the wrapper code can be
generated where other parts need to be implemented manually.

Parent element: objectClass

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 85 of 112

Child element(s): none

Attributes:
xs:string name

xs:string sharing

Attribute "name"

• type: xs:string
• use: required

The name of the HLA object class attribute

Attribute "sharing"

• type: xs:string
• use: required

Valid values are: publish, subscribe and publishSubscribe. The following table
describes each of them:

Value Description

publish Publish indicates that the attribute will be published to the HLA
simulation environment. It is published whenever its corresponding
value has changed in the Excel worksheet.

subscribe Subscribe indicates hat the corresponding Excel range can be up-
dated from the HLA simulation environment, namely by another
federate that publishes this attribute.

publishSub
scribe

The federate can both publish and subscribe to this attribute.
Whenever the corresponding range is updated by the HLA environ-
ment it is, in response, being published to the environment.

10.3 Matlab-Generated Code Wrapper

Matlab-generated code is transformed to an SMP2 simulation model by the Mosaic tool and
then integrated (by hand) into an SMP2 SimSat simulation. The wrapper for a so created
SMP2 simulation can then be wrapped using the wrapper generator for SMP2 simulations
(see section 10.2).

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 86 of 112

11 Sample Wrappers
This section defines the requirements for the sample wrappers. The sample wrappers are
complete wrappers that are provided as blueprints to help users construct their own wrappers.
Table 11.1 summarizes these sample wrappers.

Table 11.1: Summary of sample wrappers

Sample Wrapper Description

Matlab Simulation Sample Wrapper An EODiSP wrapper for a simple Simulink
block that simulates the trajectory of a rock-
et.

Fortran Source Code Sample Wrapper An EODiSP wrapper for a simple Fortran
program that simulates the trajectory of a
rocket.

C++ Source Code Sample Wrapper A wrapper for a simple C++ class that simu-
lates the trajectory of a rocket.

Standalone Executable Sample Wrapper A sample wrapper for the EarthCARE simu-
lator.

Data Processing Package Sample Wrapper A sample wrapper for the Java library
JFreeChart - a library for generating charts.

S11 -1 The EODiSP shall provide sample wrappers for the simulation packages listed
in table 11.1.

11.1 Matlab Simulation Sample Wrapper

The sample wrapper for Matlab simulations is a wrapper for a simple Simulink block that
simulates the trajectory of a rocket. Figure 14 shows the in- and outputs of this block.

These in- and outputs are manually translated into one federate exposing two HLA object
classes. The object classes defined in the resulting SOM file are shown in Figure 15.

The behaviour of the wrapper is described in the following list:

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 14: In-/Outputs of the Rocket Simulink block

int startX
int startY
int startVelX
int startVelY

Rocket Input

int x
int y
int velX
int velY

Rocket Output

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 87 of 112

1. The federate wrapper registers an object class instance of type RocketOut. The
name of the instance is set to rocketOut.

2. The federate subscribes to all attributes defined in the object class RocketIn.

3. The federate waits for new values of the startX, startY, startVelX,
startVelY and nextStep attributes.

4. Whenever the federate is informed of an update of these attributes it sets the appropri-
ate input variable in Matlab/Simulink.

5. If the nextStep attribute is updated it calculates the Simulink block and sub-
sequently updates all attributes in the rocketOut object by reading the appropriate
output values of the Simulink block.

11.2 Fortran Source Code Sample Wrapper

The sample wrapper for Fortran source code is a wrapper for a simple Fortran program that
simulates the trajectory of a rocket. Figure 16 shows the subroutines of this Fortran program.

The subroutines are manually translated into one federate exposing two HLA object classes
which will make the interface of the Fortran program available on the federate. The object
classes defined in the resulting SOM file are shown in Figure 17.

The behaviour of the wrapper is described in the following list:

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 16: Subroutines of the Fortran Rocket program

void setStartX(int x)
void setStartY(int y)
void setStartVelX(int x)
void setStartVelY(int y)
void next_step(int nrOfSteps)
int getX()
int getY()
int getVelX()
int getVelY()

Rocket

Figure 15: UML of the Rocket object classes

HLAinteger startX (S)
HLAinteger startY (S)
HLAinteger startVelX (S)
HLAinteger startVelY (S)
HLAinteger nextStep (S)

RocketIn (S)

HLAinteger x (P)
HLAinteger y (P)
HLAinteger velX (P)
HLAinteger velY (P)

RocketOut (P)

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 88 of 112

1. The federate wrapper registers an object class instance of type RocketOut. The
name of the instance is set to rocketOut.

2. The federate subscribes to all attributes defined in the object class RocketIn.

3. The federate waits for new values of the startX, startY, startVelX,
startVelY and nextStep attributes.

4. Whenever the federate is informed of an update of these attributes it calls the appropri-
ate subroutine in the Fortran program (e.g. setStartX() when startX is updated).

5. If the nextStep attribute is updated it calls the nextStep() subroutine and sub-
sequently updates all attributes in the rocketOut object by using getter subroutines
(e.g: getX()).

11.3 C++ Source Code Sample Wrapper

The sample wrapper for C++ source code is a wrapper for a simple C++ class that simulates
the trajectory of a rocket. Figure 18 shows the interface of this C++ class in a UML diagram.

The class is manually translated into one federate exposing two HLA object classes which
will make the the interface of the C++ Rocket class available on the federate. The object
classes defined in the resulting SOM file are shown in Figure 19.

The behaviour of the wrapper is described in the following list:

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 18: UML of the C++ Rocket class which shall be wrapped

void setStartX(int x)
void setStartY(int y)
void setStartVelX(int x)
void setStartVelY(int y)
void next_step(int nrOfSteps)
int getX()
int getY()
int getVelX()
int getVelY()

Rocket

Figure 17: UML of the Rocket object classes

HLAinteger startX (S)
HLAinteger startY (S)
HLAinteger startVelX (S)
HLAinteger startVelY (S)
HLAinteger nextStep (S)

RocketIn (S)

HLAinteger x (P)
HLAinteger y (P)
HLAinteger velX (P)
HLAinteger velY (P)

RocketOut (P)

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 89 of 112

1. The wrapper instantiates the Rocket C++ class once.

2. The federate wrapper registers an object class instance of type RocketOut. The
name of the instance is set to rocketOut.

3. The federate subscribes to all attributes defined in the object class RocketIn.

4. The federate waits for new values of the startX, startY, startVelX,
startVelY and nextStep attributes.

5. Whenever the federate is informed of an update of these attributes it calls the appropri-
ate method on the C++ Rocket instance (e.g. setStartX() when startX is up-
dated).

6. If the nextStep attribute is updated it calls the nextStep() C++ method and sub-
sequently updates all attributes in the rocketOut object by using getter methods on
the C++ rocket instance (e.g: getX()).

11.4 Standalone Executable Sample Wrapper

The sample wrapper for a standalone executable will be done using the EarthCARE simulator
[EaC04] as the simulation package. The simulation shall provide an example of wrapping the
sequential execution of the EarthCARE executables lid_filter, lidar and
lidar_ret1.

Figure 20 shows the execution order and their inputs and outputs. The input that is exported
to the federate interface are two specific values of the lidar.in file, namely the hori
zonzalResolution and verticalResolution. The output is the values extracted
from the file OUTFILE_ray_para_lr.dat. This is reflected by the SOM that makes up
the interface of the federate wrapper (see Figure 20).

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 19: UML of the Rocket object classes

HLAinteger startX (S)
HLAinteger startY (S)
HLAinteger startVelX (S)
HLAinteger startVelY (S)
HLAinteger nextStep (S)

RocketIn (S)

HLAinteger x (P)
HLAinteger y (P)
HLAinteger velX (P)
HLAinteger velY (P)

RocketOut (P)

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 90 of 112

The behaviour of the wrapper is described in the following list:

1. The federate registers an object class instance of type EarthCARESampleOut. The
name of the instance is set to earthCARESampleOut.

2. The federate subscribes to the object class attributes horizonzalResolution and
verticalResolution.

3. The federate waits for new values of the horizonzalResolution and vertic
alResolution attributes.

4. Whenever the federate is informed of an update of these attributes it writes these new
values to the lidar.in file and starts the sequence of execution outlined in Figure
20 (lid_filter > lidar > lidar_ret1) and waits until the output file
OUTFILE_ray_para_lr.dat is available.

5. The federate reads the new values from the output file and updates the rayPara at-
tribute of the earthCARESampleOut instance.

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 20: EarthCARE

Simulation Package

SOM

lid_filter

lidar

lidar.out

lidar_ret1

lidar.in

lid_filter.out

scene

OUTFILE ray para lr.dat

in

out

HLAFloat horizontalResolution (S)
HLAFloat verticalResolution (S)

EarthCARESampleIn (S)

FloatArray rayPara (P)

EarthCARESampleOut (P)

Federate

executable program

legend:

in/output file
exported to federate
interface

in/output file
only used within
simulation package

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 91 of 112

11.5 Data Processing Package Sample Wrapper

The sample wrapper for the data processing package uses JFreeChart [Jfc] to visualize the
trajectory of a rocket. It is considered that the trajectory data is provided by a federate that
exposes the object class shown in Figure 21.

The behaviour of the wrapper is described in the following list:

1. The federate subscribes to all attributes defined in the object class RocketOut.

2. Whenever the federate wrapper is informed of an update of these attributes it uses the
functions of JFreeChart to draw a line to the actual location of the rocket.

Copyright 2005 P&P Software GmbH – All Rights Reserved

Figure 21: Object class providing the values for the JFreeChart federate

HLAinteger x (P)
HLAinteger y (P)
HLAinteger velX (P)
HLAinteger velY (P)

RocketOut (P)

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 92 of 112

12 General Requirements
This section defines the software requirement that impact the EODiSP as a whole. The struc-
ture of this section mirrors that of the corresponding sections in the EODiSP URD. In gener-
al, the software requirements in this section are obtained by refining or specializing the user
requirements from which they are derived.

12.1 Target Operating System

The EODiSP will be implemented in Java and will be targeted at the version 1.5 of the Java
Virtual Machine.

The user requirements left the door open to the use of the Eclipse as an OS-like platform
upon which to develop the GUI part of the EODiSP. The use of Eclipse was especially at-
tractive in view of the possibility of rapidly creating editors for editing complex configura-
tion information. This type of complex configuration information was expected to occur in
the case of SOMConfig and FOMConfig files. However, as discussed in section 4.1, these
two files are no longer used and hence the advantage of basing the EODiSP GUI on Eclipse
are correspondingly lessened.

Given the potential drawbacks for non-specialist users arising from the need to install the Ec-
lipse environment, the decision has been taken not to require Eclipse as a support for the
EODiSP.

Note that this is a user-level decision only. Eclipse will still be used to implement some parts
of the EODiSP core but this usage will be invisible to the end users and hence need not be
considered at requirements level.

S12.1 -1 The EODiSP shall be built to run on a Java Virtual Machine version 1.5. T

12.2 Licensing Requirements

The EODiSP licencing requirements are dictated by the need to produce an end application
that can be made available under a GPL licence.

Table 12.2.1 lists the third-party software packages that are used in the EODiSP. The first
column in the table gives the name of the package. The second column gives a brief descrip-
tion of the package. The last column gives the licence for the package. It is important to
stress that all the above software packages are available on licence that GPL-compatible.

Table 12.2.1: List of configuration properties applicable to the JXTA infrastructure

Name Description Licence

JXTA A peer-to-peer Network layer. Sun Project JXTA Software License

SWT Standard Widget Library. Eclipse Public License Version 1.0

Saxon An XSLT 2.0 Processor. Mozilla Pubic Licence 1.0

EMF The Eclipse Modeling Framework. Eclipse Public License Version 1.0

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 93 of 112

Name Description Licence

JFreeChart Java class library for generating charts. LGPL

S12.2 -1 The EODiSP shall incorporate the third-party software listed in table 12.2.1.

12.3 Installation Requirements

The installation requirements are still TBD.

12.4 Predefined HLA Federates

There are some services that are mandated by the EODiSP URD but which are not covered
by the HLA standard. As a general principle, these services are provided by predefined feder-
ated. Users who wish to have access to these services will need to deploy the predefine feder-
ates and will then have to link up to the appropriate input or output data.

At present, only one predefined federate is foreseen that will provide the services listed in
table 12.4.1.

Table 12.4.1: List of services to be provided by the EODiSP Predefined Federate

Service Description

Active Model Provides an identifier of the currently active model. The active
model is the next model that is due for execution (recall that in the
EODiSP models are executed in sequence.

Message Logging Allows other models to ask for string messages to be logged.

S12.4 -1 The EODiSP shall provided a predefined federate offering the services lis-
ted in table 12.4.1.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 94 of 112

Appendix A: Traceability Matrix
The table in this appendix shows the traceability matrix for software requirements defined in
this document against the user requirements defined in reference [Urd]. The traceability mat-
rix shows how user requirements are mapped to software requirements. The mapping ap-
proach is discussed in section 3.1.

The first column in the table contains the reference to all the user requirements defined
[Urd]. The second column contains the reference to the software requirements to which the
user requirement is mapped. The software requirement reference can be one of the following
(see also section 3.2):

• a reference to a use case, or

• a reference to an XML schema, or

• a reference to a state machine, or

• a reference to a software requirement

The third column contains the mapping status for the use requirement. This can be one of the
following: 'FM', 'PM', or 'TO'. The value 'FM' is used for user requirements that are fully
mapped to one or more software requirements. The value 'PM' is used for user requirements
that are only partially mapped to software requirements. This is usually due to deliberate de-
viations from the requirements baseline or to lack of information at the time this document is
issued. Finally, the value 'TO' designates user requirements that are taken over unchanged .
These requirements are not reproduced in the present document but should be considered to
be an integral part of it.

The last column in the table contains various remarks or justifications of any deviations from
the requirement baseline.

UR Ref. SR Ref. Status Remarks

R4.1-1
S10.1-1
S10.2-1
S11-1

FM
Recall that Matlab generated models will be mapped through the Mosaic
tool.

R4.1-2 TBD TBD
At the time of writing, the Mosaic tool was not yet available to make an ex-
ample for the type Matlab-generated simulation package.

R4.1-3 S10.1-1 FM

R4.2-3
SOM DTD

S12.4-1
PM

Access to general simulation information will be through the predefined fed-
erate of section 12.4

R6.1-1 None TO

R6.1-2 None TO

R6.1-3 None TO

R6.2-1 S6.2-1 FM The EODiSP is configurable by the means of editing configuration files. Sec-

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 95 of 112

UR Ref. SR Ref. Status Remarks

tion 6.2 specifies these configuration files in detail.

R6.2-2

 S9.1-2
S10.1-1
S10.2-1
S11-1

FM

R6.3-1 None This user requirement is incompatible with the use of an HLA-based infra-
structure. See section 4.5.

R6.4.1-1
UC_104
UC_106

FM
Note that the terms 'simulation run' is a synonym for 'federation execution'.

R6.4.2-1 UC_106 FM

R6.4.2-2 UC_106 FM

R6.4.2-3 UC_106 PM
Mapping is only partial because the simulation time will not be maintained
in the EODiSP since the HLA timing service is not baselined for implementa-
tion. See section 4.2.

R6.4.2-4 UC_106 FM

R6.4.3-1 UC_106 FM

Note that the EODiSP does not directly provide the means to start/stop a
simulation model. This must be supported by a simulation model. The simu-
lation experiment, however, will not abort upon stopping a simulation model
if in step-by-step mode. It is not guaranteed that the simulation experiment
remains in a consistent state if using this feature.

R6.4.4-1 UC_112
UC_208

FM

R6.4.4-2 None TO

R6.4.4-3 None TO

R6.4.4-4 None TO

R6.4.4-5 None TO

R6.4.5-1 S9.3-1 FM
The URD asks for the data conversions to be implemented in pre-defined
models. The SRD specifies that they be implemented in the wrappers. There
is no impact on the functionality seen by the user

R6.5-1 None TO

R6.7-1 S7.2-1 FM

G6.7-1 None TO

R7.2-1 None TO

R7.2-2 S8.1-1 FM

R7.2-3 None TO

R7.2-4 None TO

G7.2-5 None TO

R7.2-6 None TO

R7.3-1 S8.1-1 FM

R7.6-1 None TO

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 96 of 112

UR Ref. SR Ref. Status Remarks

R8.1-1
S9.1-2
S9.2-1

FM

R8.1-2
S9.2-1
S10-1

FM
The URD asks for the wrapper generation to be XSL-based. The SRD relaxes
this requirements and only refers to “code generators”. There is no impact
on the user.

R8.1-3 S9.2-2 FM

R8.1-4 S9.2-1
S10-2

FM

R8.1-5 S10-2 PM
Fully automatic generation of wrappers only possible for some kinds of sim-
ulation packages. In some cases, sample wrappers are provided instead of
wrapper generators.

R8.2-1 S10.1-2 FM The COM wrapper is included in the excel wrapper. See figure 10.

R8.2-2 S10.2-1 FM
The mapping of SMP2 models is limited to models that are inside the SimSat
2000 application.

R8.2-3 S11-1 FM The selected data processing package is JFreeChart. This choice is subject
to agreement from ESA.

R8.2-4 S11-1 FM

R8.2-5 S11-1 FM

R8.2.2-1 S10.2-1 FM

R9.2-1 S12-1 FM

R9.2-2 S12-1 FM

R9.2-3 None
The use of Eclipse as a support for the GUI is not baselined in the EODiSP.
See section 12.1.

R9.2-4 None The use of Eclipse as a support for the GUI is not baselined in the EODiSP.
See section 12.1.

R9.3-1 S12-2 FM

R9.3-2 S12-2 FM

R9.4-1 UC_100 FM

R9.4-2 UC_200 FM

R9.4-3 UC_300 FM

R9.5-1
UC_104
S6.2-1

FM

R9.5-2 UC_106 FM

R9.5.1-1 None TO

R9.5.1-2 S6.2-1 FM

R9.5.1-3 XS_001
XS_010

FM

R9.5.1-4 S6.2-1 PM
Some of the configuration files in table 9.5.1-1 have been merged and others
have been dropped. See sections 4.1 and 4.3.

R9.5.1-5 UC_108 FM

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 97 of 112

UR Ref. SR Ref. Status Remarks

R9.5.2-1 S5-1 FM

R9.6-1 UC_204 FM

R9.6-2 UC_204 FM

R9.6.1-1 None TO

R9.6.1-2 S5-1 FM

R9.6.1-3
 XS_002
XS_020

FM

R9.6.1-4 S6.3-1 PM Some of the configuration files in table 9.6.1-1 have been merged. See sec-
tions 4.4.

R9.6.1-5 UC_206 FM

R9.6.2-1 S5-1 FM

R9.7-1 UC_302 FM

R9.7-2 UC_302 FM

R9.7-3 UC_302 FM

R9.7.1-1 None TO

R9.7.1-2 None TO

R9.7.1-3 None TO

R9.7.1-4
S9.2-1
S10-2

FM

R9.7.1-5 None TO

R9.7.2-1 None TO

G11.1.1-1 UC_106 FM

G11.1.1-1 UC_106 FM The reference of this user requirement should be changed to G11.1.1-2.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 98 of 112

Appendix B: State Machines
This appendix presents the complete definition of the HLA state machines that are modelled
in chsm. The background to their usage in the EODiSP can be found in section 7.

B.1 FederationLifetime
package org.eodisp.common.smcgen;

import org.eodisp.common.sm.EodispStateMonitor;

//*****documentation*****

/**
* This document is a representation of a state machine defined by the HLA.
* The original definition can be found in the IEEE 1516.1 specification document
* in section 4.1, figure 1Basic states of the federation execution.
*
* The names of the transitions used in this state machine representation are taken
* from the HLA specification. They do not correspond to the names of the services.
*
* This state machine handles the following hla services related to federations.
*
* Create Federation Execution (section 4.2)
* Destroy Federation Execution (section 4.3)
* Join Federation Execution (section 4.4) also in other state machine
* Resign Federation Execution (section 4.5) also in other state machine
*
*
* Generation of the code can be done using the chsm compiler for java (chsm2java)
* using the following command:
* {@code $chsm2java [options] sourcefile definitionfile}
*
* For the EODiSP framework, this file will automatically build by the ant build
script.
*/

//*****declarations*****

/**
*
* This classe is used to monitor the enter and exit events of states
* in the state machine.
*/
class FederationLifetimeMonitor extends EodispStateMonitor {

public FederationLifetimeMonitor(CHSM_STATE_ARGS) {
super(CHSM_STATE_INIT);

}
}

%%
//*****description*****
// The main class. Contains all clusters and states defined by this state machine.
public chsm FederationLifetime is {

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 99 of 112

/**
* A federate have sent a request to resign from the currently running
* federation execution.
* We do not check the resigning federate, but we check if it is the last
* supporting federate in the execution. If this is the case, we change
* the state to 'noJoinedFederates', otherwise, we keep the state
* of 'supportingJoinedFederates'.
*/
event resignFederate %{

//check if it is the last federate which resigns.
return false;

%};

// Cluster: 'FederationLifetimeRoot'.
// The root cluster for this state machine. This is only a container including alls
// clusters and states specified in the state machine.
cluster FederationLifetimeRoot(notExist, Exist) {
} is {

// State: 'notExist'. Initial state in this cluster.
// It means that no federation execution has yet been created.
// This state is kind of virtual, because there is no execution to work with.
state notExist {

// Event: 'createFederationExecution'.
// Change to cluster: 'Exists'
// Defined in the IEEE 1516.1 specification document in section 4.2.
createFederationExecution > Exist;

}

// Cluster: 'Exists'.
// When entered, this is the default mode of operation of an federation
// execution. As long as an execution exists, one of the two states
// within this cluster must be active.
cluster Exist(noJoinedFederates, supportingJoinedFederates) {
} is {

// State: 'noJoinedFederates'. Initial state in this cluster.
// It means that the federation execution is running, but there are
// currently no joined federates.
state noJoinedFederates {

// Event: 'federateJoined'.
// Change to state: 'supportingJoinedFederates'
// Defined in the IEEE 1516.1 specification document in section 4.4.
federateJoined > supportingJoinedFederates;

// Event: 'destroyFederationExecution'.
// Change to state: 'notExists'
// Defined in the IEEE 1516.1 specification document in section 4.3.
destroyFederationExecution > FederationLifetimeRoot.notExist;

}

// State: 'noJoinedFederates'.
// It means that the federation execution is running and there are
// joined federates in the execution. This is default state when
// a simulation is being performed.
state supportingJoinedFederates {

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 100 of 112

// Event: 'resignFederate'.
// Change to state: 'noJoinedFederates'
// Defined in the IEEE 1516.1 specification document in section 4.5.
resignFederate > noJoinedFederates;

// Event: 'joinFederate'
// Change to state: no Change
// Defined in the IEEE 1516.1 specification document in section 4.4.
joinFederate %{

// We are already in the state of supporting joined federates.
// If a new federate joines the execution, we stay in this state,
// without leaving the state.

%};
}

}
}

}
%%
//*****user code*****

B.2 FederateLifetime
package org.eodisp.common.smcgen;

import org.eodisp.common.sm.EodispStateMonitor;
import org.eodisp.common.sm.StateConditions;
import org.eodisp.common.sm.StateConditions.ConditionsEnum;

//*****documentation*****

/**
* This document is a representation of a state machine defined by the HLA.
* The original definition can be found in the IEEE 1516.1 specification document
* in section 4.1.1, figure 3Lifetime of a federate.
*
* The names of the transitions used in this state machine representation are taken
* from the HLA specification. They do not correspond to the names of the services.
*
* This state machine handles the following hla services related to the declaration
management.
*
* Join Federation Execution (section 4.4) also in other state machine
* Resign Federation Execution (section 4.5) also in other state machine
* Request Federation Save (section 4.11)
* Initiate Federation Save † (section 4.12)
* Federate Save Begun (section 4.13)
* Federate Save Complete (section 4.14)
* Federation Saved † (section 4.15)
* Request Federation Restore (section 4.18)
* Confirm Federation Restoration Request † (section 4.19)
* Federation Restore Begun † (section 4.20)
* Initiate Federate Restore † (section 4.21)
* Federate Restore Complete (section 4.22)
* Federation Restored † (section 4.23)
*
*

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 101 of 112

* Generation of the code can be done using the chsm compiler for java (chsm2java)
* using the following command:
* {@code $chsm2java [options] sourcefile definitionfile}
*
* For the EODiSP framework, this file will automatically build by the ant build
script.
*/

//*****declarations*****

/**
* This classe is used to monitor the enter and exit events of states
* in the state machine.
*/
class FederateLifetimeMonitor extends EodispStateMonitor {

public FederateLifetimeMonitor(CHSM_STATE_ARGS) {
super(CHSM_STATE_INIT);

}
}

class Conditions {
public static int condition = 0;

public static int getCondition() {
return condition;

}
}

class FederateLifetimeConditions {

public static boolean getConsrainedCondition() {
return StateConditions.getCondition(ConditionsEnum.FederateLifetimeConstrained);

}

public static boolean getTimeAdvancingCondition() {
return

StateConditions.getCondition(ConditionsEnum.FederateLifetimeTimeAdvancing);
}

}

%%
//*****description*****

// The main class. Contains all clusters and states defined by this state machine.
public chsm FederateLifetime is {

/**
* We check, whether a request to restore a federate fails or not. In case
* of failure, we return to state 'active', in case of success we change
* to state 'waitingforRestoreToBegin'.
*/
event requestFederationRestore() %{

//TODO: check whether the request fails > return false in case of failure.
return true;

%};

// Cluster: 'FederateLifetimeRoot'.

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 102 of 112

 // The root cluster for this state machine. This is only a container including all
// clusters and states specified in the state machine.
cluster FederateLifetimeRoot(initialization, JoinedFederate, stopped) {
} is {

// State: 'initialization'. Initial state in this cluster.
// It means that a federate has been initialize and want to join the
// federation execution.
state<FederateLifetimeMonitor> initialization {

//Event: 'joinFederationExecution'.
// Change to cluster: 'JoinedFederate'
// Defined in the IEEE 1516.1 specification document in section 4.4.
joinFederationExecution > JoinedFederate;

}

// Cluster: 'JoinedFederate'.
// This cluster is a container for all cluster and states for a federate
// when this federate has joined the federation execution.
// A federate stays in one of this states until it resigns from the
// execution.
cluster JoinedFederate(concurrentComponents) {

// Event: 'resignFederationExection'
// Change to state: 'stopped'
// Defined in the IEEE 1516.1 specification document in section 4.5.
// At any time and in any state, a federate can resign from the
// currently joined federation execution. In this case, we change
// the state immediately to 'stopped'.
resignFederationExection > FederateLifetimeRoot.stopped;

} is {

// Set: 'concurrentComponents'.
// A set of concurrently existing clusters. It is a container containing
// clusters and states. These cluster can operate independently from each

other.
set concurrentComponents(FederateActivity, FederatePermissions) {
} is {

// Cluster: 'FederateActivity'.
// This cluster defines the states concerning the activity of a
// federate while it joins a federation execution.
cluster FederateActivity(ActiveFederate, SaveFederate, RestoreFederate) {
} is {

 // Cluster 'ActiveFederate'. Initial cluster within this cluster.
 // This cluster contains the states while a federation is active.
 // This is the normal mode of a federate when it has joined a
 // federation execution. It can leave the active states for saving
 // or restoring.
 cluster ActiveFederate(active, restoreRequestPending) history {

 // Event: 'initiateFederateSave †'.
// Change to state: 'instructedToSave'.
// Defined in the IEEE 1516.1 specification document in section

4.12.
 // From any state in this cluster, a save can be initiated. Upon
returning to this

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 103 of 112

 // cluster, it will continue in the state in which it was before
(history).
 initiateFederateSave > SaveFederate.instructedToSave;
 } is {

// State: 'active'. Initial state in this cluster.
// It means that the federate has joined the federation execution
// and is active. This is the normal state for a running federate.
state<FederateLifetimeMonitor> active {

// Event: 'requestFederationRestore'.
// Change to state: 'restoreRequestPending'.
// Defined in the IEEE 1516.1 specification document in section

4.18.
requestFederationRestore > restoreRequestPending;

// Event: 'federationRestoreBegun †'.
// Change to state: 'preparedToRestore'.
// Defined in the IEEE 1516.1 specification document in section

4.20.
federationRestoreBegun > RestoreFederate.preparedToRestore;

}

// State: 'restoreRequestPending'.
// It means that the federate sent out a request for saving its
// state. The RTI will response to this request by either success
// or failure. Depending on this response, the state will be changed
// appropriately.
state<FederateLifetimeMonitor> restoreRequestPending {

// Event: 'confirmFederationRestoratonRequest †'.
// Change to state: 'waitingforRestoreToBegin'.
// Defined in the IEEE 1516.1 specification document in section

4.19.
// If the response of the RTI is success, this change will take

place and
// the state of the federate will be saved.
confirmFederationRestoratonRequest >

RestoreFederate.waitingForRestoreToBegin;

// Event: 'confirmFederationRestoratonRequest †'.
// Change to state: 'active'.
// Defined in the IEEE 1516.1 specification document in section

4.19.
// If the response of the RTI is failure, this change will take

place and
// the state of the federate will not be saved.
confirmFederationRestoratonRequest > active;

}
}

// Cluster: 'SaveFederate'.
 // This cluster contains the states while a federate's state
 // is being saved. When the federate is saved, this cluster
 // will be left and cluster 'ActiveFederate' will be reentered.

cluster SaveFederate(instructedToSave, waitingForFederationToSave,
saving) {

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 104 of 112

// Event: 'federationSaved †'.
// Change to cluster: 'ActiveFederate'.
// Defined in the IEEE 1516.1 specification document in section

4.15.
// Informs the federate, that the federation save process is

complete.
// An indication whether it was successful or not can be given with
// the savesuccess indicator.
federationSaved > ActiveFederate;

} is {

// State: 'instructedToSave'. Initial state of this cluster.
// It means that the RTI has initiated the federation save process.
// Upon entering this state, the federate will change it state to
// proceed with the save request.
state<FederateLifetimeMonitor> instructedToSave {

// Event: 'federateSaveBegun'.
// Change to state: 'saving'.
// Defined in the IEEE 1516.1 specification document in section

4.13.
federateSaveBegun > saving;

}

// State: 'saving'.
// It means that a federate is in the process of saving. The RTI
// shall be notified that the federate is beginning to save its

sate.
state<FederateLifetimeMonitor> saving {

// Event: 'federateSaveComplete'.
// Change to state: 'waitingForFederationToSave'.
// Defined in the IEEE 1516.1 specification document in section

4.14.
federateSaveComplete > waitingForFederationToSave;

}

// State: 'waitingForFederationToSave'.
// This notifies the RTI that the federate has completed its attempt

to
// save its state. It can indicate either if the attempt has

succeded or
// faild by the savesucess indicator.
state<FederateLifetimeMonitor> waitingForFederationToSave {

// We don't change the state in here, therefore, no events are
present.

// Whenever the RTI sends the 'federationSaved' Event, this
cluster will

// be left. This is defined in the head of this cluster.
}

}

// Cluster: 'RestoreFederate'.
// This cluster contains the states while a federate's state is being
// restored. When the federate has restored (whether successful or

not),
// this cluster will be left and the "ActiveFederate' cluster will be
// reentered in its last state.
cluster RestoreFederate(waitingForFederationToRestore,

waitingForRestoreToBegin, preparedToRestore, restoring) {

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 105 of 112

// Event: 'federationRestored †'.
// Change to cluster: 'ActiveFederate'.
// Defined in the IEEE 1516.1 specification document in section

4.23.
// If the restoration process has finished, this cluster is left.
// The RTI can indicate the end of the process by this event.
federationRestored > ActiveFederate;

} is {

// State: 'waitingForRestorToBegin'. Initial state in this cluster.
// It means that the federate has requested a federation restoration

and
// that the response was successful.
state<FederateLifetimeMonitor> waitingForRestoreToBegin {

// Event: 'federationRestoreBegun †'.
// Change to state: 'preparedToRestore'.
// Defined in the IEEE 1516.1 specification document in section

4.20.
federationRestoreBegun > preparedToRestore;

}

// State: 'preparedToRestore'.
// It means that the RTI has informed the federate that a

restoration is imminent.
// The federate stops providing information to the RTI immediately.
state<FederateLifetimeMonitor> preparedToRestore {

// Event: 'initiateFederateRestore †'.
// Change to state: 'restoring'.
// Defined in the IEEE 1516.1 specification document in section

4.21.
initiateFederateRestore > restoring;

}

// State: 'restoring'.
// It means that a the federate has been instructed to return to a
// previously saved state. In this state, the federate restores
// that state.
state<FederateLifetimeMonitor> restoring {

// Event: 'federateRestoreComplete'.
// Change to state: 'waitingForFederationToRestore'.
// Defined in the IEEE 1516.1 specification document in section

4.22.
federateRestoreComplete > waitingForFederationToRestore;

}

// State: 'waitingForFederationToRestore'.
// It means that the RTI has been notified that the federate has

completed
// the requested attempt to restore a previous state.
state<FederateLifetimeMonitor> waitingForFederationToRestore {

// We don't change the state in here, therefore, no events are
present.

// Whenever the RTI sends the 'federationRestored' Event, this
cluster will

// be left. This is defined in the head of this cluster.
}

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 106 of 112

}
}

// Cluster: FederatePermissions.
// This cluster defines the states concerning permissions to perform

events. This
// cluster runs concurrently to the 'FederateActivity' cluster.
cluster FederatePermissions(normalActivityPermitted,

normalActivityNotPermitted) {
} is {

 // State: normalActivityPermitted. Initial state of this cluster.
 // It means, that if the federate is in any active state, permissions for

activities are granted.
 // This is the normal case if a federate is running. Whenever the state

machine indicates a leave from
 // the 'ActiveFederate' cluster, the permissions will be withdrawn by

changing the state to 'normalActivityNotPermitted'.
 state<FederateLifetimeMonitor> normalActivityPermitted{

exit(FederateActivity.ActiveFederate) > normalActivityNotPermitted; }

// State: 'normalActivityNotPermitted'.
// It means that the federate is not in an active state and the

permissions for activities are not granted.
// Whenever the state machine reenters the 'ActiveFederate' cluster, the

state will be changed.
 state<FederateLifetimeMonitor> normalActivityNotPermitted{

enter(FederateActivity.ActiveFederate) > normalActivityPermitted; }
 }

}
}

//The federate has resigned from the joined federate state and is in its end
state (stopped).

// State: stopped.
// It means that the federate has left the federation execution. It is therefore

no longer present
// for the simulation. For the state machine, the federate resides in the

stopped state.
// The federate cannot leave this state. It is the end state.
state<FederateLifetimeMonitor> stopped {

// End state.
}

}
}

%%
//*****user code*****

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 107 of 112

Appendix C: XML Schemas
This appendix lists all XML Schema files defined in this document. Documentation elements
(xs:annotation) are omitted to increase readability. For each file a reference name, the name
of the XML Schema file and the chapter describing its documentation is given.

C.1 SimulationManagerProjectFile.xsd

Reference: XS_001

Name: SimlationManagerProjectFile.xsd

Documentation: Section 6.2.1

<?xml version="1.0" encoding="UTF8"?>
<xs:schema xmlns="http://www.w3.org/1999/xhtml"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="project">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="federations" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="federation" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="federate" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="uri" type="xs:anyURI" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:ID" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="experiments" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="experiment" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="federationExecution" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="init" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="federate" type="xs:string" use="required">
 </xs:attribute>
 <xs:attribute name="resource" type="xs:anyURI" use="required">
 </xs:attribute>
 <xs:attribute name="type" type="xs:string" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 108 of 112

 <xs:attribute name="federation" type="xs:IDREF" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>

C.2 ModelManagerProjectFile.xsd

Reference: XS_002

Name: ModelManagerProjectFile.xsd

Documentation: Section 6.3.1

<?xml version="1.0" encoding="UTF8"?>
<xs:schema xmlns="http://www.w3.org/1999/xhtml"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="project">
 <xs:complexType>
 <xs:sequence maxOccurs="1" minOccurs="1">
 <xs:element name="federates" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="federate" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="initDecl" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="type" type="xs:string" use="required">
 </xs:attribute>
 <xs:attribute name="template" type="xs:anyURI" use="optional">
 </xs:attribute>
 <xs:attribute name="spec" type="xs:anyURI" use="optional">
 </xs:attribute>
 <xs:attribute name="required" type="xs:boolean" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="trustedSimulationManagers" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ref" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="uri" type="xs:anyURI">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 109 of 112

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required">
 </xs:attribute>
 <xs:attribute name="som" type="xs:anyURI" use="required">
 </xs:attribute>
 <xs:attribute name="public" type="xs:boolean" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>

C.3 ExcelMapping.xsd

Reference: XS_003

Name: ExcelMapping.xsd

Documentation: Section 10.1.1

<?xml version="1.0" encoding="UTF8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/1999/xhtml">
 <xs:element name="mapping">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="entry" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="excel">
 <xs:complexType>
 <xs:choice>
 <xs:element name="data">
 <xs:complexType>
 <xs:attribute name="worksheet" type="xs:string" use="required">
 </xs:attribute>
 <xs:attribute name="range" type="xs:string" use="required">
 </xs:attribute>
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="VT_R4"/>
 <xs:enumeration value="VT_R8"/>
 <xs:enumeration value="VT_BOOL"/>
 <xs:enumeration value="VT_I2"/>
 <xs:enumeration value="VT_I4"/>
 <xs:enumeration value="VT_BSTR"/>
 <xs:enumeration value="VT_DATE"/>
 <xs:enumeration value="VT_CY"/>
 </xs:restriction>
 </xs:simpleType>

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 110 of 112

 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="macro">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="hla">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="objectClass">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="attribute" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required">
 </xs:attribute>
 <xs:attribute name="sharing" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="publish"/>
 <xs:enumeration value="subscribe"/>
 <xs:enumeration value="publishSubscribe"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="fom" type="xs:anyURI" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>

C.4 SMP2Mapping.xsd

Reference: XS_004

Name: SMP2Mapping.xsd

Documentation: Section 10.2.1

<?xml version="1.0" encoding="UTF8"?>

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 111 of 112

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/1999/xhtml" id="SMP2Mapping">
 <xs:element name="mapping">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="entry" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="smp2">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="feature" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:attribute name="modelInstance" type="xs:string" use="required">
 </xs:attribute>
 <xs:attribute name="type">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="property"/>
 <xs:enumeration value="entryPoint"/>
 <xs:enumeration value="field"/>
 <xs:enumeration value="operation"/>
 <xs:enumeration value="eventSource"/>
 <xs:enumeration value="eventSink"/>
 <xs:enumeration value="nestedType"/>
 <xs:enumeration value="reference"/>
 <xs:enumeration value="container"/>
 <xs:enumeration value="associaton"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="hla">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="objectClass">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="attribute" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required">
 </xs:attribute>
 <xs:attribute name="sharing" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="publish"/>
 <xs:enumeration value="subscribe"/>
 <xs:enumeration value="publishSubscribe"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

www.pnp-software.com

EODiSP Project
Software Requirements Document

Ref: PP-SRD-EOP-0001
Issue 1.1

Page 112 of 112

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="fom" type="xs:anyURI" use="required">
 </xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>

Copyright 2005 P&P Software GmbH – All Rights Reserved

http://www.pnp-software.com/

	1 Glossary and Acronyms
	2 References
	3 Introduction
	3.1 General Approach
	3.2 Traceability to User Requirements

	4 Major Deviations from User Requirements
	4.1 Definition of a Simulation Configuration
	4.2 Triggering of Simulation Models
	4.3 ExperimentInitConfig and SimulationsConfig Configuration Files
	4.4 ModelsConfig and SomSecuritySetting Configuration Files
	4.5 Data Passing Between Simulation Models
	4.6 Simulation End

	5 Use Cases
	5.1 Overview of Use Case Concept
	5.1.1 Traceability to Code

	5.2 Simulation Manager Application Use Cases
	5.2.1 Use Case – Simulation Manager Application Summary
	5.2.2 Use Case – Set-up Simulation Manager Application
	5.2.3 Use Case – Configure Simulation Experiment
	5.2.4 Use Case – Run Experiment
	5.2.5 Use Case – Load/Save Configuration
	5.2.6 Use Case – Experiment Abort
	5.2.7 Use Case – Configure Simulation Manager Application Log

	5.3 Model Manager Application Use Cases
	5.3.1 Use Case – Model Manager Application Summary
	5.3.2 Use Case – Set-up Model Manager Application
	5.3.3 Use Case – Manage Federates in the Model Manager Application
	5.3.4 Use Case – Configure Model Manager Application Log

	5.4 Support Application Use Cases
	5.4.1 Use Case – Generate Wrapper Code for an Excel Workbook
	5.4.2 Use Case – Generate Wrapper Code for an SMP2 simulation
	5.4.3 Use Case – Generate Wrapper Code for Matlab-Generated Code
	5.4.4 Use Case – Create Wrapper Code for a Matlab Simulation
	5.4.5 Use Case – Create Wrapper for Source Code
	5.4.6 Use Case – Create Wrapper for a Standalone Executable
	5.4.7 Use Case – Create Wrapper for a Data Processing Package
	5.4.8 Use Case – Creating a New SOM File

	6 GUI Configuration Files
	6.1 XML Schema Documentation
	6.2 Simulation Manager Application Configuration Files
	6.2.1 SimulationManagerProject Configuration File
	6.2.2 FOM
	6.2.3 Application Settings

	6.3 Model Manager Application Configuration Files
	6.3.1 ModelManagerProject Configuration File
	6.3.2 SOM
	6.3.3 Application Settings

	6.4 General format of Application Settings

	7 HLA Core
	7.1 State Machines
	7.2 State Machines in the EODiSP
	7.3 State Machine Descriptions
	7.3.1 State Machine Federation Lifetime
	7.3.2 State Machine Federate Lifetime

	8 The JXTA Infrastructure
	8.1 Configuration Properties
	8.2 Dedicated Configurations

	9 General Wrapper Structure
	9.1 Wrapping Approach
	9.2 HLA Federate Interface Implementation Generator
	9.3 Predefined Data Conversions
	9.4 Java/COM Bridge

	10 Wrapper Generators
	10.1 Microsoft Excel Workbook Wrapper
	10.1.1 Mapping File – ExcelMapping.xsd

	10.2 SMP2 Simulation Wrapper
	10.2.1 Mapping File - SMP2Mapping.xsd

	10.3 Matlab-Generated Code Wrapper

	11 Sample Wrappers
	11.1 Matlab Simulation Sample Wrapper
	11.2 Fortran Source Code Sample Wrapper
	11.3 C++ Source Code Sample Wrapper
	11.4 Standalone Executable Sample Wrapper
	11.5 Data Processing Package Sample Wrapper

	12 General Requirements
	12.1 Target Operating System
	12.2 Licensing Requirements
	12.3 Installation Requirements
	12.4 Predefined HLA Federates
	Appendix A: Traceability Matrix
	Appendix B: State Machines
	B.1 FederationLifetime
	B.2 FederateLifetime

	Appendix C: XML Schemas
	C.1 SimulationManagerProjectFile.xsd
	C.2 ModelManagerProjectFile.xsd
	C.3 ExcelMapping.xsd
	C.4 SMP2Mapping.xsd

