
The Framework Profile

C1 Implementation

- USER MANUAL -

Alessandro Pasetti & Vaclav Cechticky

7 February 2018

Revision 1.2.2
PP-UM-COR-0001

P&P Software GmbH
High Tech Center 1

8274 Tägerwilen
Switzerland

Web site: www.pnp-software.com
E-mail: pnp-software@pnp-software.com

Abstract

This document is the User Manual for the C1 Implementation of the
FW Profile. The FW Profile is a specification-level modelling language
defined as a restriction of UML. The core modelling constructs offered
by the FW Profile are State Machines, Procedures (equivalent to UML’s
Activity Diagrams), and RT Containers (encapsulations of threads).

The FW Profile is implementation-independent. The C1 Implementa-
tion is a C language implementation of the modelling concepts of the FW
Profile. The main features of the C1 Implementation are: small memory
footprint, small CPU demands, scalability, and high reliability.

The C1 Implementation is provided with a Qualification Data Package
which can be used to support the certification of applications built using
its components.

1

www.pnp-software.com
mailto:pnp-software@pnp-software.com

PP-UM-COR-0001 Revision 1.2.3

Contents

1 Introduction 7

2 Installation & Content Overview 8
2.1 Dependency on External Libraries 8
2.2 Support Documentation . 8
2.3 Software Source Code . 9
2.4 Doxygen Documentation . 9
2.5 Test Suite . 9
2.6 Demo Application . 10
2.7 Coding Examples . 10
2.8 Acceptance Test Procedure and Test Reports 11
2.9 Support Scripts . 12
2.10 Naming Conventions . 13

3 State Machine Representation 15
3.1 State Machine Descriptor . 15
3.2 State Machine Module . 16
3.3 State Machine Actions and Guards 17
3.4 State Machine Data . 17
3.5 Error Checking . 17
3.6 Else Guards . 18
3.7 Compliance with UML State Machine Model 18

4 Procedure Representation 19
4.1 Procedure Descriptor . 19
4.2 Procedure Module . 20
4.3 Procedure Actions and Guards 21
4.4 Procedure Data . 21
4.5 Error Checking . 21
4.6 Else Guards . 22
4.7 Compliance with UML Activity Diagram Model 22

5 RT Container Representation 23
5.1 RT Container Descriptor . 23
5.2 The Activation Thread . 24
5.3 RT Container Procedures . 24
5.4 Notification Mechanism . 25
5.5 RT Container State . 25
5.6 Container Data . 26
5.7 Error Checking . 27

6 State Machine Usage 28
6.1 State Machine Descriptor Creation 29
6.2 State Machine Descriptor Configuration 31
6.3 State Machine Execution . 33
6.4 State Machine Extension . 34

c©2012 P&P Software GmbH. All Rights Reserved. 2

PP-UM-COR-0001 Revision 1.2.3

7 Procedure Usage 38
7.1 Procedure Descriptor Creation 39
7.2 Procedure Descriptor Configuration 41
7.3 Procedure Execution . 43
7.4 Procedure Extension . 43

8 RT Container Usage 46
8.1 RT Container Descriptor Creation 46
8.2 RT Container Descriptor Configuration 46
8.3 RT Container Descriptor Notification 48

9 Implementation Issues 50
9.1 Memory Management . 50
9.2 Memory Footprint . 51

9.2.1 Code Memory Requirements 51
9.2.2 Descriptor Requirements 52

9.3 CPU Requirements . 55
9.4 Concurrency . 56
9.5 Recursion . 57
9.6 Order of Execution . 57
9.7 User Overridable Types . 58
9.8 Counter Overflow . 58

A State Machine Model of the FW Profile 59
A.1 Definition of State Machines . 59
A.2 State Machine Behaviour . 61
A.3 UML 2 Compliance . 66

B Procedure Model of the FW Profile 67
B.1 Definition of Procedures . 67
B.2 Procedure Behaviour . 68
B.3 UML 2 Compliance . 71

C RT Container Model of the FW Profile 73
C.1 Role of RT Containers . 73
C.2 Definition of RT Container . 73
C.3 RT Container Behaviour . 74
C.4 RT Container Properties and Usage Constraints 78

c©2012 P&P Software GmbH. All Rights Reserved. 3

PP-UM-COR-0001 Revision 1.2.3

List of Figures
1 Internal Structure of a State Machine Descriptor 16
2 Internal Structure of a Procedure Descriptor 19
3 RT Container States . 26
4 Test State Machine SM5 . 28
5 Extension Mechanism for State Machine Descriptors 35
6 Test procedure PR2 . 38
7 Extension Mechanism for Procedure Descriptors 44
8 Logic for the Start and Stop Commands to a State Machine . . . 63
9 Logic for Processing Transition Commands by a State Machine . 64
10 Logic for Executing Transitions in a State Machine 65
11 Procedure Start/Stop Commands 69
12 Procedure Execution Logic . 71
13 Start and Stop Operations for RT Containers 74
14 RT Container Procedures . 76

c©2012 P&P Software GmbH. All Rights Reserved. 4

PP-UM-COR-0001 Revision 1.2.3

List of Tables
1 Structure of Host Directory . 8
2 Software Modules in the C1 Implementation 9
3 Execution Steps and Pass-Fail Criteria for ATP 11
4 Files in State Machine Module 16
5 Files in Procedure Module . 20
6 Methods to Create a State Machine 29
7 Methods to Create a Procedure 39
8 Code Memory Footprint for C1 Implementation Modules 52
9 SM Descriptor Memory Footprint (Bytes) Example 53
10 Procedure Descriptor Memory Footprint (Bytes) Example 54
11 RT Container Properties and Usage Constraints 78

c©2012 P&P Software GmbH. All Rights Reserved. 5

PP-UM-COR-0001 Revision 1.2.3

Listings
1 Dynamic Creation of Test State Machine SM5 30
2 Static Creation of Test State Machine SM5 30
3 Direct Creation of Test State Machine SM5 30
4 Configuration of Test State Machine SM5 32
5 Direct Configuration of Test State Machine SM5 32
6 Commanding Sequence for Test State Machine SM5 34
7 Dynamic Creation and Configuration of Derived State Machine . 36
8 Static Creation and Configuration of Derived State Machine . . . 37
9 Dynamic Creation of Test Procedure PR2 40
10 Static Creation of Test Procedure PR2 40
11 Direct Creation of Test Procedure PR2 40
12 Configuration of Test Procedure PR2 41
13 Direct Configuration of Test Procedure PR2 42
14 Commanding Sequence for Test Procedure PR2 43
15 Dynamic Creation and Configuration of Derived Procedure . . . 45
16 Static Creation and Configuration of Derived Procedure 45
17 Creation of a RT Container Instance 46
18 Configuration of a RT Container Instance 48
19 Notification of a RT Container Instance 49
20 Pseudo-code of Activation Thread 75

c©2012 P&P Software GmbH. All Rights Reserved. 6

PP-UM-COR-0001 Revision 1.2.3

No part of this publication may be reproduced, transmitted, transcribed,
stored in any retrieval system, or translated into any language by any means

without express prior written permission of P&P Software GmbH.

Copyright c©2013 P&P Software GmbH. All Rights Reserved.

c©2012 P&P Software GmbH. All Rights Reserved. 7

PP-UM-COR-0001 Revision 1.2.3

1 Introduction

This document is the User Manual for the C1 Implementation. The C1 Imple-
mentation is a C-language implementation of the modelling concepts of the FW
Profile of reference [1]. It offers components to build State Machines, Proce-
dures (activity diagrams) and RT Containers (encapsulations of threads). It is
extensively documented and tested. An overview of the definition of the FW
Profile is presented in Appendix A (State Machine Concept), in Appendix B
(Procedure Concept), and in Appendix C (RT Container Concept).

The main features of the C1 Implementation are:

• Well-Defined Semantics: clearly and unambiguously defined behaviour.

• Minimal Memory Requirements: core module footprint of a few
kBytes.

• Small CPU Demands: one single level of indirection (due to actions
and guards being implemented as function pointers).

• Scalability: memory footprint and CPU demands are independent of
number and size of state machine, procedure, and RT Container instances.

• High Reliability: test suite with 100% code, branch, and condition
coverage (excluding error branches for system calls).

• Formal Specification: user requirements formally specify the implemen-
tation.

• Requirement Traceability: all requirements are individually traced to
their implementation and to verification evidence.

• Formal Verification: key requirements are formally verified using the
Spin verifier on a Promela model.

• Documented Code: doxygen documentation for all the source code.

• Demo Application: complete application demonstrating capabilities
and mode of use.

• Support for Extensibility: an inheritance-like mechanism is provided
through which a derived state machine or a derived procedure is created
from a base state machine or base procedure by overriding some of its
actions or guards.

c©2012 P&P Software GmbH. All Rights Reserved. 8

PP-UM-COR-0001 Revision 1.2.3

2 Installation & Content Overview

The C1 Implementation is distributed as one single single zip file. This file
should be expanded in a dedicated directory. This directory becomes the host
directory for the C1 Implementation.

The host directory contains a set of sub-directories. The sub-directories are
listed in table 1. An overview of their content is presented in the following
sub-sections.

The C1 Implementation software is delivered as source code and therefore no
further installation operations are needed.

Table 1: Structure of Host Directory
Sub-Directory Sub-Directory Description

doc Holds the support documentation for the C1 Implemen-
tation (see section 2.2).

examples Holds the source code for the coding examples (see section
2.7), including the Demo Application (see section 2.6).

log Holds the test reports generated by the Acceptance Test
Procedure (see section 2.8).

src Holds the source code for the C1 Implementation (see
section 2.3).

tests Holds the source code for the Test Suite (see section 2.5).

2.1 Dependency on External Libraries

The State Machine and Procedure modules of the C1 Implementation only need
the stdlib of the C language. The RT Container part needs an implementation
of POSIX threads, i.e. pthreads. If this is not available, the RT Container
modules cannot be used but this has no impact on the use of the State Machine
and Procedure modules.

On most linux systems, the implementation of the POSIX API is available in a
library called libpthread.

2.2 Support Documentation

The C1 Implementation is delivered with the following support documents:

• A FAQ Document which answers frequently asked questions about the
C1 Implementation

• The FW Profile Definition Document which defines the UML profile
implemented by the C1 Implementation

• A User Manual (this document) which describes how the C1 Implemen-
tation is used

• A User Requirement Document which formally specifies the C1 Im-
plementation through a set of requirements and provides validation and

c©2012 P&P Software GmbH. All Rights Reserved. 9

PP-UM-COR-0001 Revision 1.2.3

verification evidence for each requirement

• A Doxygen Documentation which provides the detailed design docu-
mentation for the C1 Implementation, its test suite and its demo applica-
tion

The last three documents, together with the Test Suite, constitute the Qual-
ification Data Package (QDP) for the C1 Implementation. The QDP is
provided for users who need to certify their application or, more generally, who
need to provide evidence of its correctness. The QDP contains the typical infor-
mation which is required for software certification purposes. It can therefore be
included in the certification data package of end-applications and it relieves the
user of the need to produce such information for the C1 Implementation part
of their applications.

2.3 Software Source Code

The source code of the C1 Implementation is stored in sub-directory /src. It
is divided into modules. A module consists of a small number of C header files
which define an interface to perform a set of logically related operations together
with the C implementation files which implement this interface. Table 2 lists
the modules in the C1 Implementation with a brief description of their content.
More detailed information on the interface and implementation of each module
can be found in the doxygen documentation.

The C1 Implementation modules are completely independent of each other and
can be used either together or separately. Each user decides which modules to
use and to link in his executable.

Table 2: Software Modules in the C1 Implementation
Mod. Name Module Description

State Machine Implementation of the State Machine
Concept of the FW Profile.

Procedure Implementation of the Procedure Concept
of the FW Profile.

RT Container Implementation of the RT Container Con-
cept of the FW Profile.

2.4 Doxygen Documentation

The source code of the C1 Implementation, of its Test Suite and of its Demo
Application is documented in accordance with doxygen rules. The entry point
to the doxygen documentation is the index.html file in the docs/doxygen di-
rectory of the delivery.

2.5 Test Suite

The Test Suite is a complete application which demonstrates all aspects of the
behaviour of the state machine and procedure implementations. Its implemen-

c©2012 P&P Software GmbH. All Rights Reserved. 10

PP-UM-COR-0001 Revision 1.2.3

tation code is in the tests directory of the delivery.

The main program of the Test Suite application is in file FwTestSuite.c. This
program consists of a set of test cases. The test cases are declared in file
FwSmTestCases.h for the state machine part, in file FwPrTestCases.h for the
procedure part, and in file FwRtTestCases.h for the RT Container part. Each
test case exercises a specific aspect of the State Machine, Procedure, or RT
Container behaviour.

The test cases operate on test state machines, on test procedures, and on test RT
containers. The test state machines are declared in files FwSmMakeTest.h. The
test procedures are declared in files FwPrMakeTest.h. The test RT containers
are declared in files FwRtMakeTest.h.

The Test Suite offers 100% code, branch, and condition coverage of the C1
Implementation modules with the exception of the error branches in the creation
and configuration operations which are entered when the application runs out
of memory (i.e. when malloc fails) or when a POSIX system call fails.

The Test Suite application can be built by running one of the support scripts
delivered with the C1 Implementation (see section 2.9).

2.6 Demo Application

The Demo Application is a complete application which demonstrates the use
of the C1 Implementation by implementing a simplified but realistic monitor-
ing system for a Hardware Device. The Demo Application is described in the
Doxygen documentation of the C1 Implementation. Its implementation code is
in the examples/src/app directory of the delivery.

The Demo Application can be built by running one of the support scripts de-
livered with the C1 Implementation (see section 2.9).

At present, the Demo Application does not cover the RT Container part of the
C1 Implementation.

2.7 Coding Examples

Simple coding examples are provided for the procedures, the state machines, and
the RT containers. Each coding example is a self-contained program which con-
sists of a main program which creates, configures and runs a sample procedure,
or a sample state machine, or a sample RT container. The coding example are
stored in directories: examples/src/sm tutorials (for the state machine part),
examples/src/pr tutorials (for the procedure part), and examples/src/rt tutorials

(for the RT container part).

The coding example programs can be built by running one of the support scripts
delivered with the C1 Implementation (see section 2.9).

c©2012 P&P Software GmbH. All Rights Reserved. 11

PP-UM-COR-0001 Revision 1.2.3

2.8 Acceptance Test Procedure and Test Reports

The C1 Implementation is passed through an Acceptance Test Procedure (ATP)
prior to its release. The ATP is executed as a sequence of steps which are defined
in table 3. For each step, a pass-fail criterium is defined. An execution of the
ATP is successful if all the ATP steps satisfy their pass-fail criterium.

Table 3: Execution Steps and Pass-Fail Criteria for ATP
N Step Pass-Fail Criterium

1 Run Doxygen on the entire source
code of the C1 Implementation,
Test Suite and Demo Application

Neither errors nor warnings are re-
ported by Doxygen

2 Compile the C1 Implementation
source code files with ”all warn-
ings” enabled and with the op-
tions required to run gcov for both
branch and statement coverage

Neither errors nor warnings are re-
ported by the compiler

3 Compile the Test Suite source
code files with ”all warnings” en-
abled

Neither errors nor warnings are re-
ported by the compiler

4 Build the executable to run the
Test Suite for the C1 Implemen-
tation and to generate the *.gcno

and *.gcda files

Neither errors nor warnings are re-
ported by the linker

5 Run the Test Suite with Valgrind The Test Suite runs to completion;
all test cases are declared to have
completed successfully; no errors
are reported by Valgrind

6 Run gcov on all the C1 Implemen-
tation Files to which coverage re-
quirements apply

For each C1 Implementation File
to which coverage requirements
apply, a *.c.gcov file is created
and the file shows full statement
and branch coverage with excep-
tion of branches entered as a re-
sult of a failure of malloc or of a
POSIX sytem call or of branches
which cannot be entered by design

7 Compile the Demo Application
Files with ”all warnings” enabled

Neither errors nor warnings are re-
ported by the compiler

8 Build the executable to run the
Demo Application for the C1 Im-
plementation

Neither errors nor warnings are re-
ported by The linker

9 Run the Demo Application with
Valgrind

No errors are reported by Valgrind

10 Compile the Coding Example
Files with ”all warnings” enabled

Neither errors nor warnings are re-
ported by the compiler

11 Build the executable to run the
Coding Examples for the C1 Im-
plementation

Neither errors nor warnings are re-
ported by the linker

c©2012 P&P Software GmbH. All Rights Reserved. 12

PP-UM-COR-0001 Revision 1.2.3

N Step Pass-Fail Criterium

12 Run the Coding Examples No errors are reported.

The RunAcceptanceTest.sh shell script (not included in the delivery for end
customers) automatically executes all the procedure steps described in the table
and it generates several test reports. The following test reports are included in
the delivery:

• Report with the code coverage information generated by gcov

• Report with outcome of running Valgrind on Test Suite application

• Report with outcome of running Valgrind on Demo Application

In the case of the gcov report, the ATP script uses egrep to extract all the lines
of code with no statement or branch coverage together with the 6 preceding
lines. This is sufficient to check whether the incomplete coverage arises in the
handling of a malloc or POSIX system call failure or because a certain branch is
impossible to enter by design (in which case a comment just before the untaken
branch must be present).

2.9 Support Scripts

Two Makefiles are provided to build the executables of the C1 Implementation.
These Makefile can be used with the generally available make tool to generate
different targets. One Makefile is provided in the root and used for building
the C1 implementation library and the test suite. The following targets are
supported:

• make release Builds the fwprofile library with optimization enabled

• make debug Builds the fwprofile library with optimization disabled but
debugging information enabled.

• make coverage Builds with enabled coverage

• make coverage-info Generates the gcov files which contain the coverage
information

• make test Generates the test suite

• make run-test Runs the test suite

The second Makefile is provided in sub-directory /examples and is used to build
the example executables. The following targets are supported:

• make all Builds all examples including the demo application

• make run-all Runs all examples including the demo application

The C1 implementation library, test suite and examples are created in the /bin

directory.

The RT Container module requires an implementation of the POSIX library (see
section 2.1). By default, the support scripts assume this library to be available
in the search path under the name libpthread. If a different library is used,
the script files must be updated. If no POSIX library is available, the script

c©2012 P&P Software GmbH. All Rights Reserved. 13

PP-UM-COR-0001 Revision 1.2.3

files must be updated to remove linking of the RT Module files.

2.10 Naming Conventions

The C1 Implementation exports the following items towards users:

• Header and body files

• Global functions

• Types defined through typedef in FwSmConstants.h

• Constants and macros defined through #define directives

The naming conventions for these items are as follows.

The names of the header and body files of the C1 Implementation and of the
global functions they export are written as a concatenation of strings (without
underscores). The first letter in each string is capitalized. The names have the
following form: Fw<Xx><Name>. The prefix ”Fw” identifies a name as belonging
to a FW Profile implementation. The string ”Xx” identifies the domain within
the FW Profile world to which the name belongs. The following values are
possible for this string:

• ”Sm” identifies a name related to the state machine domain of the FW
Profile,

• ”Pr” identifies a name related to the procedure domain of the FW Profile,

• ”Rt” identifies a name related to the RT container domain of the FW
Profile,

• ”Da” identifies a name related to the Demo Application.

The string ”Name” is the proper name of the function or file and it is made
up of a concatenation of other strings. The following abbreviations are used in
forming this name:

• ”A”: ”action” (as in ”action node”)

• ”Act”: ”action” (as in ”action attached to a procedure node”)

• ”Activ”: ”activation” (as in ”activation procedure of a RT container”)

• ”App”: ”application” (as in ”the Demo Application”)

• ”Attr”: ”attribute”

• ”Aux”: ”auxiliary” (as in ”auxiliary function”)

• ”Config”: ”configuration” (as in ”the configuration of a state ma-
chine”)

• ”Cond”: ”condition” (as in ”POSIX condition variable”)

• ”Cont”: ”container” (as in ”RT container”)

• ”Cnt”: ”counter”

• ”Cps”: ”choice pseudo-state”

• ”Cur”: ”current” (as in ”current state” or in ”the current absorbed by a
device”)

• ”D”: ”decision” (as in ”decision node”)

c©2012 P&P Software GmbH. All Rights Reserved. 14

PP-UM-COR-0001 Revision 1.2.3

• ”D”: ”dynamic” (as in ”dynamic memory allocation”)

• ”Dec”: ”decision” (as in ”decision node in a procedure”)

• ”Der”: ”derived” (as in ”the derived state machine”)

• ”Desc”: ”descriptor” (as in ”the descriptor of a state machine”)

• ”Err”: ”error” (as in ”the error code field of a state machine descriptor”)

• ”Emb”: ”embedded” (as in ”embedded state machine”)

• ”Exec”: ”execute” or ”execution”

• ”Fin”: ”final” (as in ”final node”)

• ”Fps”: ”final pseudo-state”

• ”Func”: ”functional” (as in ”functional behaviour”)

• ”Ini”: ”initial” (as in ”initial mode”)

• ”Init”: ”initialization” (as in ”initialization of a state machine de-
scriptor”)

• ”Ips”: ”initial pseudo-state”

• ”Notif”: ”notification” (as in ”notification procedure of a RT con-
tainer”)

• ”Pr”: ”procedure”

• ”Rec”: ”recursive” (as in ”recursive function”)

• ”Rt”: ”real-time”

• ”S”: ”static” (as in ”static memory allocation”)

• ”Sm”: ”state machine”

• ”Sta”: ”state” (as in ”the state of a state machine”)

• ”Temp”: ”temperature” (as in ” the temperature of the device”)

• ”Trans”: ”transition” (as in ”the transition between two states”)

The names of the types defined through typedef start with the string ”FwSm”
(in the state machine domain), or ”FwPr” (in the procedure domain), or ”FwRt”
(in the RT container domain) and terminate with the string: ” t”.

The names of the #define constants are written in capitals and are made up of
strings concatenated with underscores.

c©2012 P&P Software GmbH. All Rights Reserved. 15

PP-UM-COR-0001 Revision 1.2.3

3 State Machine Representation

This section describes how the state machine concept is implemented in the
C1 Implementation. This section gives an overview description only. Detailed
information is found in the Doxygen documentation. The state machine concept
is described in appendix A.

3.1 State Machine Descriptor

The C1 Implementation represents a state machine through a state machine
descriptor (SMD). A SMD is a data structure which holds all the information
required to describe a state machine. Users only manipulate pointers to SMDs.
These are defined as instances of type FwSmDesc t. The internal structure of an
SMD is described in header file FwSmPrivate.h and is represented in informal
notation in Figure 1.

As shown in the figure, an SMD is internally split into two parts: the base de-
scriptor and the extension descriptor. The base descriptor holds the information
which defines the topology of the state machine, namely:

• The list of states in the state machine

• The list of choice pseudo-states in the state machine

• The list of transitions in the state machine

The extension descriptor holds the information which may be overridden when
the state machine is extended. This consists of:

• The list of actions used in the state machine (both the state actions and
the transition actions)

• The list of transition guards used in the state machine

• The list of state machines embedded in the state machine

• The pointer to the state machine data (the data upon which the state
machine actions and guards operate, see Section 3.4)

• The current state of the state machine

• The error code for the state machine (see Section 3.5)

• The state machine counters

Applications manipulate a state machine by passing its SMD to the functions
defined by the C1 Implementation. Thus, for instance, an application executes
a state machine through the following function call: FwSmExecute(smDesc).
Here, smDesc is the pointer to the SMD of the state machine to be executed.

In general, applications never need to directly access the internal fields of an
SMD. They therefore do need not be concerned with the internal structure of
an SMD. Familiarity with the internal SMD structure only becomes important
when, for memory or CPU efficiency reasons, users wish to by-pass some of the
functions provided by the C1 Implementation and need to directly manipulate
the SMD. This is discussed further in section 6.

c©2012 P&P Software GmbH. All Rights Reserved. 16

PP-UM-COR-0001 Revision 1.2.3

Fig. 1: Internal Structure of a State Machine Descriptor

3.2 State Machine Module

The implementation of the state machine concept is split into several files which
together make up the State Machine Module (see Table 2). The files in the state
machine module are listed in Table 4.

Table 4: Files in State Machine Module
Files Description

FwSmCore.h,
FwSmCore.c,
FwSmPrivate.h

Provide an interface to start and stop a state machine
and to send a transition command to it.

FwSmDCreate.h,
FwSmDCreate.c

Provide an interface to create a new SMD. This inter-
face is simple to use but relies on dynamic memory
allocation. Applications which wish to avoid dynamic
memory allocation can use the alternative services of
FwSmSCreate.h.

FwSmSCreate.h,
FwSmSCreate.c

Provide macros to instantiate a new SMD (without us-
ing dynamic memory allocation) and functions to initial-
ize it. The services in this file are alternative to those
of FwSmDCreate.h.

FwSmConfig.h,
FwSmConfig.c

Provide an interface to configure a newly created SMD
by defining its states and transitions.

FwSmAux.h,
FwSmAux.c

Provides an interface to auxiliary services which are use-
ful during the application development phase.

All applications using the C1 Implementation need the Core files. The FwSmPrivate.h
header file defines the internal structure of an SMD. In most cases, applications
can ignore this header file and only interact with state machines through the
high-level functions declared in the other header files.

c©2012 P&P Software GmbH. All Rights Reserved. 17

PP-UM-COR-0001 Revision 1.2.3

The DCreate and SCreate files are normally alternative to each other (but
deployment of both in the same application is possible). Applications which
are severely constrained in memory can instantiate and configure the SMDs of
their state machines by directly manipulating their internal fields. This requires
a detailed understanding of the internal structure of the SMD but allows an
application to dispense with both the DCreate and SCreate files and with the
Config files. An example of direct instantiation and configuration of an SMD
is provided in function FwSmMakeTestSM5Dir in the Test Suite.

The Aux files are not intended for inclusion in a final application.

3.3 State Machine Actions and Guards

The state machine actions and guards are defined as function pointers of type,
respectively, FwSmAction t and FwSmGuard t. Applications must provide func-
tions of these two types to implement the actions and guards of their state
machines. Both the guard and the action functions are called with the SMD as
an argument.

Note that, if a state machine uses the same action or the same guard more than
once, the associated function pointer is only stored once in the SMD.

3.4 State Machine Data

The SMD includes a field holding a pointer to the state machine data. The state
machine data are data which are manipulated by the state machine actions and
guards. The exact type of the state machine data is defined by applications for
each state machine. In most cases, it will take the form a struct whose fields
represents the inputs and outputs for the state machine actions and guards.
The SMD treats the pointer to the state machine data as a pointer to void.
Functions FwSmSetData and FwSmGetData allow this pointer to be set in and to
be retrived from an SMD.

The FW Profile allows transition commands to carry parameters and to return
values. The parameters represent the parameters passed to the actions and
guards triggered by the transition command and the return values represent
the values returned by these actions. In the C1 Implementation a transition
command is represented by an integer identifier and does not directly carry
parameters or generate return values. However, the state machine data can be
used as an equivalent mechanism through which a caller of a transition command
can exchange data with the actions and guards of a state machine.

3.5 Error Checking

The state machine functions perform a limited amount of error checking. Con-
figuration functions (namely functions in module FwSmConfig.h) perform con-
sistency checks on the configuration parameters specified by the user. Details
can be found in the doxygen description of the configuration functions.

The functions which trigger a transition in a state machine (namely FwSmStart,

c©2012 P&P Software GmbH. All Rights Reserved. 18

PP-UM-COR-0001 Revision 1.2.3

FwSmMakeTrans, and FwSmExecute) flag the following situations as errors (both
of these situations are forbidden by the FW Profile):

• A transition encounters a choice pseudo-state whose out-going transitions
all have a false guard

• A transition is encountered which has a choice pseudo-state as both source
and destination

Errors are reported through the error code field in the SMD which stores the
identifier of the last error encountered by the implementation. The value of the
error code can be read with the FwSmGetErrCode function. Nominally, the error
code should be equal to smSuccess. If this is not the case, the behaviour of the
state machine is undefined.

The error codes are listed as enumerated values in file FwSmConstants.h.

3.6 Else Guards

An ”Else” guard is a guard in a transition out of a choice pseudo-state which
is true when the guards of all other out-going transitions from the same choice
pseudo-state are false. ”Else” guards are not directly supported but their effect
can be achieved as follows. The out-going transitions from a choice pseudo-state
are evaluated in the order in which they were added to the state machine when
the state machine was configured. If the last transition to be added to a choice
pseudo-state is given a guard which always returns true, then this transition
will behave like a transition with an ”Else” guard.

3.7 Compliance with UML State Machine Model

The definition of the state machine concept in UML is complex, often unclear,
and sometimes ambiguous. The C1 Implementation adopts the state machine
model of the FW Profile [1]. This is a subset of the UML model which is clearly
and unambiguously defined.

c©2012 P&P Software GmbH. All Rights Reserved. 19

PP-UM-COR-0001 Revision 1.2.3

4 Procedure Representation

This section describes how the procedure concept is implemented in the C1
Implementation. This section gives an overview description only. Detailed in-
formation is found in the Doxygen documentation. The procedure concept is
described in appendix B.

4.1 Procedure Descriptor

The C1 Implementation represents a procedure through a procedure descriptor
(PRD). A PRD is a data structure which holds all the information required
to describe a procedure. Users only manipulate pointers to PRDs. These are
defined as instances of type FwPrDesc t. The internal structure of a PRD is
described in header file FwPrPrivate.h and is represented in informal notation
in Figure 2.

Fig. 2: Internal Structure of a Procedure Descriptor

As shown in the figure, a PRD is internally split into two parts: the base de-
scriptor and the extension descriptor. The base descriptor holds the information
which defines the topology of the procedure, namely:

• The list of action nodes in the procedure

• The list of decision nodes in the procedure

• The list of control flows in the procedure

The extension descriptor holds the information which may be overridden when
the procedure is extended. This consists of:

• The list of actions used in the procedure

• The list of control flow guards used in the procedure

• The pointer to the procedure data (the data upon which the procedure
actions and guards operate, see Section 4.4)

• The current node of the procedure

• The error code for the procedure (see Section 4.5)

• The procedure counters

c©2012 P&P Software GmbH. All Rights Reserved. 20

PP-UM-COR-0001 Revision 1.2.3

Applications manipulate a procedure by passing its PRD to the functions de-
fined by the C1 Implementation. Thus, for instance, an application executes
a procedure through the following function call: FwPrExecute(prDesc). Here,
prDesc is the pointer to the PRD of the procedure to be executed.

In general, applications never need to directly access the internal fields of a
PRD. They therefore do not need to be concerned with the internal structure
of a PRD. Familiarity with the internal PRD structure only becomes important
when, for memory or CPU efficiency reasons, users wish to by-pass some of the
functions provided by the C1 Implementation and need to directly manipulate
the PRD. This is discussed further in section 7.

4.2 Procedure Module

The implementation of the procedure concept is split into several files which
together make up the Procedure Module (see Table 2). The files in the state
machine module are listed in Table 5.

All applications using the C1 Implementation need the Core module. The
FwPrPrivate.h header file defines the internal structure of a PRD. In most
cases, applications can ignore this header file and only interact with procedures
through the high-level functions declared in the other header files.

The DCreate and SCreate modules are normally alternative to each other (but
deployment of both in the same application is possible). Applications which
are severely constrained in memory can instantiate and configure the PRDs of
their procedures by directly manipulating their internal fields. This requires
a detailed understanding of the internal structure of the PRD but allows an
application to dispense with both the DCreate/SCreate modules and with the
Config module. An example of direct instantiation and configuration of a PRD
is provided in function FwPrMakeTestPR2Dir in the Test Suite.

Table 5: Files in Procedure Module
Files Description

FwPrCore.h,
FwPrCore.c,
FwPrPrivate.h

Provides an interface to start and stop a procedure and
to send a transition command to it.

FwPrDCreate.h,
FwPrDCreate.c

Provides an interface to create a new PRD. This interface
is simple to use but relies on dynamic memory allocation.
Applications which wish to avoid dynamic memory allo-
cation can use the alternative services of FwPrSCreate.h.

FwPrSCreate.h,
FwPrSCreate.c

Provides macros to instantiate a new PRD (without using
dynamic memory allocation) and functions to initialize it.
This interface is alternative to that of FwPrDCreate.h.

FwPrConfig.h,
FwPrConfig.c

Provides an interface to configure a newly created PRD
by defining its nodes and control flows.

c©2012 P&P Software GmbH. All Rights Reserved. 21

PP-UM-COR-0001 Revision 1.2.3

4.3 Procedure Actions and Guards

The procedure actions and guards are defined as function pointers of type,
respectively, FwPrAction t and FwPrGuard t. Applications must provide func-
tions of these two types to implement the actions and guards of their procedures.
Both the guard and the action functions are called with the PRD as an argu-
ment.

Note that, if a procedure uses the same action or the same guard more than
once, the associated function pointer is only stored once in the PRD.

4.4 Procedure Data

The PRD includes a field holding a pointer to the procedure data. The procedure
data are data which are manipulated by the procedure actions and guards. The
exact type of the procedure data is defined by applications for each procedure. In
most cases, it will take the form a struct whose fields represents the inputs and
outputs for the procedure actions and guards. The PRD treats the pointer to the
procedure data as a pointer to void. Functions FwPrSetData and FwPrGetData

allow this pointer to be set in and to be retrived from a PRD.

The FW Profile allows execution commands to carry parameters and to return
values. The parameters represent the parameters passed to the actions and
guards triggered by the execution command and the return values represent the
values returned by the actions. In the C1 Implementation, the execute command
(function FwPrExecute does not directly carry parameters or generate return
values. However, the procedure data can be used as an equivalent mechanism
through which the entity which executes a procedure can exchange data with
the actions and guards of a procedure.

4.5 Error Checking

The procedure functions perform a limited amount of error checking. Config-
uration functions (namely functions in module FwPrConfig.h) perform consis-
tency checks on the configuration parameters specified by the user. Details can
be found in the doxygen description of the configuration functions.

The FwPrExecute function which executes a procedure flags the following situ-
ation as an error: a decision node is encountered whose out-going control flows
all have a false guard. Note that this situation is explicitly forbidden by the
FW Profile.

Errors are reported through the error code field in the PRD which stores the
identifier of the last error encountered by the implementation. The value of the
error code can be read with the FwPrGetErrCode function. Nominally, the error
code should be equal to prSuccess. If this is not the case, the behaviour of the
procedure is undefined.

The error codes are listed as enumerated values in file FwPrConstants.h.

c©2012 P&P Software GmbH. All Rights Reserved. 22

PP-UM-COR-0001 Revision 1.2.3

4.6 Else Guards

An ”Else” guard is a guard in a control fllow out of a decision node which is
true when the guards of all other out-going control flows from the same decision
node are false. ”Else” guards are not directly supported but their effect can
be achieved as follows. The out-going control flows from a decision node are
evaluated in the order in which they were added to the procedure when the
procedure was configured. If the last control flow to be added to a decision node
is given a guard which always returns true, then this transition will behave like
a transition with an ”Else” guard.

4.7 Compliance with UML Activity Diagram Model

The definition of the procedure concept in UML is complex, often unclear, and
sometimes ambiguous. The C1 Implementation adopts the procedure model of
the FW Profile [1]. This is a subset of the UML model which is clearly and
unambiguously defined.

c©2012 P&P Software GmbH. All Rights Reserved. 23

PP-UM-COR-0001 Revision 1.2.3

5 RT Container Representation

This section describes how the RT Container concept is implemented in the
C1 Implementation. This section gives an overview description only. Detailed
information is found in the Doxygen documentation. The RT Container concept
is described in appendix C.

5.1 RT Container Descriptor

The C1 Implementation represents a RT Container through a RT Container
Descriptor (RTD). An RTD is a data structure which holds all the information
required to describe a RT Container and its current state. It is defined as an
instance of type: struct FwCrDesc.

Users normally only manipulate pointers to RTDs. The C1 Implementation
accordingly defines type FwRtDesc t to represent a pointer to an RTD.

Applications manipulate a RT Container by passing its RTD to the functions
defined by the C1 Implementation. Thus, for instance, an application notifies a
RT Container through the following function call: FwRtNotify(rtDesc). Here,
rtDesc is the pointer to the RTD of the container to be notified (i.e. it is a
variable of type FwRtDesc t).

A RT Container consists of one thread (the Activation Thread) and two pro-
cedures (the Activation Procedure and the Notification Procedure). Within the
RTD, the Activation Thread is implemented by a POSIX thread. Notification of
this thread requires the use a POSIX mutex and a POSIX conditional variable.
Both the mutex and the conditional variable are included in the RTD.

The Activation Procedure and Notification Procedure are represented in the
RTD through the pointers to the functions implementing the procedures’ ac-
tions.

Users may want to exchange data with the container procedures. For this pur-
pose, the RTD includes a field holding a pointer to generic container data.

The thread and procedure information are static data which are set when the RT
Container is configured and which remain constant afterwards. Additionally, the
RTD also holds dynamic data which are updated during the life of the container
to reflect the way it is used. The dynamic data consists of: the container state,
the value of its notification counter, and the value of its error code.

Thus, in summary, the RTD holds the following data:

• A POSIX Thread to implement the Activation Thread (see section 5.2)

• A POSIX Mutex and Condition Variable to support implementation of
the notification mechanism for the Activation Thread (see section 5.4)

• A set of function pointers implementing the actions of the Activation Pro-
cedure and of the Notification Procedure (see section 5.3)

• The container data (see section 5.6)

c©2012 P&P Software GmbH. All Rights Reserved. 24

PP-UM-COR-0001 Revision 1.2.3

• The current state of the container (see section 5.5)

• The notification counter (see section 5.4)

• The error code for the container (see section 5.7)

The full definition of the RTD can be found in FwRtConstants.h.

5.2 The Activation Thread

The Activation Thread is implemented as a POSIX thread. The thread is
completely encapsulated within the RT Container and users of the container do
not normally need to interact with it.

The Activation Thread is created and released when the RT Container is started.
By default, the thread is created with default values for all its attributes. If non-
default values for the thread attributes are desired, the user can use function
FwRtSetPosixAttr to load a POSIX thread attribute object with the desired
attribute values.

5.3 RT Container Procedures

A RT Container implements the Activation Procedure and the Notification Pro-
cedure. Although these procedures are defined as standard FW Profile proce-
dures, they are implemented within a RT Container without using the Procedure
Module of the C1 Implementation. This is done in order to avoid a coupling
between the RT Container Module and the Procedure Module of the C1 Imple-
mentation.

The procedure logic shown in figure 14 is therefore directly coded into the RT
Container. This logic is parameterized with the functions which implement the
adaptation points of the two procedures. These functions must be defined by
the user when the container is configured.

The procedure functions are loaded into the container as function pointers which
must conform to the FwRtAction t stereotype. Functions which conform to
this stereotype take the container data (see section 5.6) as a parameter and
return an integer outcome. The outcome only has a meaning for functions
which implement decision points for the procedures namely:

• Implement Notification Logic which determines whether a notification is
skipped (return value is 0) or is forwarded (return value is 1)

• Implement Activation Logic which determines whether, in response to a
notification, the container’s functional behaviour is skipped (return value
is 0) or is executed (return value is 1)

• Execute Functional Behaviour which determines whether the container’s
functional behaviour has terminated (return value is 1) or not (return
value is 0)

In all other cases, the outcome of the procedure function is a dummy value.

For all procedure functions, default implementations are provided which do

c©2012 P&P Software GmbH. All Rights Reserved. 25

PP-UM-COR-0001 Revision 1.2.3

nothing and return 1. Thus, users only need to explicitly define a procedure
function when its behaviour differs from this default.

The procedure functions may only be defined at configuration time using dedi-
cated setter functions provided by FwRtConfig.h. If these functions are called
at other times, they will cause the container to be placed in an error state.

5.4 Notification Mechanism

Users of a RT Container send a notification to the thread encapsulated in the
container by calling FwRtNotify. A call to this function triggers the execution of
the Notification Procedure. If the notification requests is accepted by the Noti-
fication Procedure (this determined by the Implement Notification Logic action
in the procedure), the value of the notification counter (variable notifCounter

in the RTD) is incremented. The Activation Thread is released whenever the
notification counter has a value greater than zero. Every release of the Acti-
vation Thread causes the counter to be decremented by 1 (see logic in section
C.3).

Notification requests are therefore buffered by a RT Container. Since variable
notifCounter is of type FwRtCounterU2 t, buffering will be performed up to
the point where this type overflows.

The value of the Notification Counter (which is accessible through function
FwRtGetNotifCounter) can also be used to detect overrun situations. An over-
run occurs when the (n+1)-th notification is received before the Activation
Procedure has completed processing of the n-th notification. This situation has
arisen if, when the Activation Procedure is executed, it finds that the Notifica-
tion Counter has a value greater than zero.

It is not possible to directly attach data to a notification request. Users can pass
data to the notified thread through the ”container data” described in section
5.6 but these data are not specific to a particular notification request. If a
user needs to attach data to a notification request, it must implement a buffer
within the container data structure and must implement the buffering logic in
the ”Implement Notification Logic” function (see figure 14).

5.5 RT Container State

The RT Container concept of appendix C recognizes two states for a RT Con-
tainer: STOPPED and STARTED. The RT Container of the C1 Implementation
has an expanded set of states which are shown in an informal notation in figure
3. The nominal states are:

1. rtContUninitialized: this is the state of the container when it is being
configured, i.e. before it is initialized for the first time with function
FwRtInit or after it has been shut down with function FwRtShutdown.

2. rtContStopped: this corresponds to state STOPPED as defined by the
FW Profile. In the absence of errors, this state is entered when the con-
tainer has completed its configuration and after it has been stopped with

c©2012 P&P Software GmbH. All Rights Reserved. 26

PP-UM-COR-0001 Revision 1.2.3

function FwRtStop.

3. rtContStarted: this corresponds to state STARTED as defined by the
FW Profile. In the absence of errors, this is the state of the container
after it has been successfully started with function FwRtStart and until
it is stopped with function FwRtStop.

Additionally, a number of error states are present. The rtConfigErr state
is entered when a configuration function is called during normal operation (i.e.
after the container has been initialized with function FwRtInit and before it has
been shut down with function FwRtShutdown). An error state is also entered
if a POSIX system call fails. For each kind of POSIX system call, an error
state is defined. Once the container has entered an error state its behaviour is
undefined. For this reason, no out-going transitions from the error states are
shown in figure 3.

The range of values of the container state is defined in type FwRtState t. The
value of the container state can be read through function FwRtGetContState.

Fig. 3: RT Container States

5.6 Container Data

The RTD includes a field holding a pointer to the container data. The con-
tainer data are data which are manipulated by the functions in the container
procedures. The exact type of the container data is defined by applications
for each container. In most cases, it will take the form a struct whose fields
represent the inputs and outputs for the procedure functions. The RTD treats
the pointer to the container data as a pointer to void. Functions FwRtSetData
and FwRtGetData allow this pointer to be set in, and to be retrieved from, an
RTD.

c©2012 P&P Software GmbH. All Rights Reserved. 27

PP-UM-COR-0001 Revision 1.2.3

The container data may also be used as a means to attach data to a notification
request (see discussion in section 5.4).

Note that some of the procedure functions may be called by (at least) two
different threads: one or more external threads which notify the container by
calling FwRtNotify and the Activation Thread which is internal to the container.
If the container data are used to exchange data between these two kinds of
procedure functions, then the user must implement protection mechanisms to
ensure that these shared data are accessed in mutual exclusion.

5.7 Error Checking

Two forms of error checks are performed by the RT Container functions:

1. It is checked that POSIX system calls are successful. A POSIX system
call fails if it returns an error code. In that case, the error code is stored in
the errCode field of the RTD and the state of the RT Container is set to
an error state which depends on the system call which reported the error
(e.g. if a call to pthread mutex lock has failed, the container state is set
to rtMutexLockErr).

2. It is checked that configuration functions are only called when the con-
tainer is being configured (i.e. when it is in state rtContUninitialized).
If a configuration function is called during normal operation, the state of
the RT Container is set to the error state rtConfigErr.

If the RT Container is in an error state, its behaviour is undefined. The error
states and the error codes are listed as enumerated values in FwRtConstants.h.

c©2012 P&P Software GmbH. All Rights Reserved. 28

PP-UM-COR-0001 Revision 1.2.3

6 State Machine Usage

The basic mode of use of a state machine in the C1 Implementation is as follows:

• The state machine descriptor (SMD) is created

• The state machine descriptor is configured

• The state machine is sent transition commands

Examples of creation and configuration of a state machine can be found in the
FwSmMake* functions of the FwSmMakeTest.h module in the Test Suite. Ex-
amples of state machine commanding can be found in the FwSmTestCases.h

module in the Test Suite and in the Demo Application.

The pseudo-code examples in this section refer to the test state machine SM5
which is shown in Figure 4. This test state machine is built by function
FwSmMakeTestSM5 in the Test Suite and it is used in a number of test cases
in the test suite.

Fig. 4: Test State Machine SM5

c©2012 P&P Software GmbH. All Rights Reserved. 29

PP-UM-COR-0001 Revision 1.2.3

6.1 State Machine Descriptor Creation

In the state machine creation process, a state machine descriptor together with
all its internal data structures is instantiated and initialized.

A state machine descriptor can be created in one of three alternative ways as
described in Table 6. The last column in the table gives a pointer to one or
more functions in the Test Suite where each creation method is demonstrated.

Table 6: Methods to Create a State Machine
Method Description SM Example

Dynamic
Creation

Creation is done through the
FwSmDCreate function. The caller
specifies the size of the state machine
and the function allocates the memory
for the SMD and its internal data
structures and returns a pointer to
the SMD. This creation interface is
simple but relies on dynamic memory
allocation (malloc). Release of the
memory allocated at creation can be
done with functions FwSmRelease and
FwSmReleaseRec.

MakeTestSM1,
MakeTestSM5

Static
Creation

Creation is done in two steps. First,
the SMD and its internal data struc-
tures are instantiated using macro
FW SM INST (if the state machine
has choice pseudo-states) or macro
FW SM INST NOCPS (if the state machine
has no choice pseudo-states), and then
the SMD and its internal data struc-
tures are initialized using the FwSmInit

function. No dynamic memory alloca-
tion is used.

MakeTestSM1Static,
MakeTestSM5Static

Direct
Creation

The application directly instantiates
the internal data structures of the
state machine descriptor. Memory
footprint is reduced because neither
the FwSmDCreate function nor the
FwSmInit is needed but users must un-
derstand the internal structure of an
SMD (this is defined in header file
FwSmPrivate.h).

MakeTestSM5Dir

c©2012 P&P Software GmbH. All Rights Reserved. 30

PP-UM-COR-0001 Revision 1.2.3

The listings below illustrate the three ways to create an SMD for the case of the
test state machine SM5 (see Figure 4). The characteristics of the state machine
are: 2 states, 1 choice pseudo-state, 7 transitions, 4 actions and 2 guards. With
reference to the number of actions and of guards, it is recalled that actions
which appear more than once are counted only once (in state machine SM5, the
state actions appear twice because the two states have the same actions and
the transition action appears seven times because all transitions have the same
transition action). Similarly, guards which appear more than once are counted
only once (in state machine SM5, the guard Flag 1 occurs four times and the
guard Flag 2 occurs once).

Note that, in listing 1 (dynamic creation case), the variable smDesc holds a
pointer to the SMD whereas in listings 2 and 3 (static and direct creation), it
holds the SMD itself. Most users should use either the approach of listing 1 or
that of listing 2. The approach of listing 3 requires a detailed understanding
of the internal organization of an SMD and should only be used in applications
where memory requirements are so tight that it is desirable to drop the SMD
creation functions provided by the C1 Implementation.

1 /* Create and initialize the state machine descriptor */

2 FwSmDesc_t smDesc = FwSmCreate (2, 1, 7, 4, 2);

Listing 1: Dynamic Creation of Test State Machine SM5

1 /* Instantiate data structures for state machine descriptor */

2 FW_SM_INST(smDesc , 2, 1, 7, 4, 2)

3

4 /* Initialize data structures for state machine descriptor */

5 FwSmInit (& smDesc);

Listing 2: Static Creation of Test State Machine SM5

1 /* Instantiate data structures for state machine descriptor */

2 static SmTrans_t trans [7];

3 static FwSmAction_t actions [5];

4 static FwSmGuard_t guards [3];

5 static SmPState_t pStates [2];

6 static SmCState_t cStates [1];

7 static FwSmDesc_t esmDesc [2];

8 static struct FwSmDesc smDesc;

9 static SmBaseDesc_t smBase;

10

11 /* Initialize state machine descriptor */

12 smBase.pStates = pStates;

13 smBase.cStates = cStates;

14 smBase.trans = trans;

15 smBase.nOfPStates = 2;

16 smBase.nOfCStates = 1;

17 smBase.nOfTrans = 7;

18 smDesc.smBase = &smBase;

19 smDesc.transCnt = 0;

20 smDesc.curState = 0;

21 smDesc.smData = NULL;

22 smDesc.nOfActions = 5;

23 smDesc.nOfGuards = 3;

24 smDesc.smActions = actions;

c©2012 P&P Software GmbH. All Rights Reserved. 31

PP-UM-COR-0001 Revision 1.2.3

25 smDesc.smGuards = guards;

26 smDesc.esmDesc = esmDesc;

27 smDesc.errCode = success;

28 smDesc.smData = NULL;

Listing 3: Direct Creation of Test State Machine SM5

6.2 State Machine Descriptor Configuration

After being created, an SMD is initialized but is not yet configured. Configura-
tion is done using the functions defined in header file FwSmConfig.h. Configu-
ration is done in steps as follows:

1. The states of the state machine are defined with the FwSmAddState func-
tion.

2. The choice pseudo-states of the state machine are defined with
the FwSmAddChoicePseudoState function.

3. The transitions of the state machines are defined with the FwSmAddTrans*
functions (there are several of these functions, one for each type of tran-
sition source and destination).

4. The pointer to the state machine data in the state machine descriptor is
set with the FwSmSetData function.

5. The consistency and completeness of the state machine configuration may
be verified with function FwSmCheck or FwSmCheckRec.

6. The configuration of a state machine can be printed with function
FwSmPrintConfig.

The only constraint on the order in which these steps are performed is that
a transition from a state or choice pseudo-state can only be defined after the
source state or choice pseudo-state has been defined.

Configuration of a state machine can only be done once: a state machine which
has already been configured cannot be configured again.

The pseudo-code in listing 4 shows configuration steps 1 to 3 for the case of
the test state machine SM5 (see Figure 4). In the pseudo-code, the variables
with names like incrCnt1By2 (”increment counter 1 by 2”) are the functions
representing the actions in the state machine and the variables with names
like retFlag1 (”return Flag 1”) are the functions representing the guards in
the state machine. The variables CPS1, STATE S1 and STATE S2 are the
identifiers of the choice pseudo-state and of the two states of the state machine.
The variables TR2 to TR6 are the identifiers of the transition commands in the
state machine.

Note that the identifiers of choice pseudo-states and states must be integers
in the range 1 to n where n is, respectively, the number of choice pseudo-
states or the number of states in the state machine. The identifiers of the
transition commands are non-negative integers but they are not constrained to
be sequential.

c©2012 P&P Software GmbH. All Rights Reserved. 32

PP-UM-COR-0001 Revision 1.2.3

Users who are severely constrained in memory can avoid linking the configura-
tion functions by directly configuring an SMD and its internal data structures.
This, however, requires an understanding of the internal structure of an SMD
(this is defined in header file FwSmPrivate.h). An example of direct SMD con-
figuration can be found in function FwSmMakeTestSM5Dir in the Test Suite. The
memory saving of taking this approach is about 2 kBytes (this is the memory
footprint of the FwSmConfig.h module, see Section 9.2). The pseudo-code of
listing 5 re-casts the pseudo-code of listing 4 to perform a direct configuration
of test state machine SM5 (see Figure 4).

1 /* Configure the states */

2 FwSmAddState(smDesc , STATE_S1 , 1, &incrCnt1By1 , &incrCnt1By4 , &

incrCnt1By2 , NULL);

3 FwSmAddState(smDesc , STATE_S2 , 3, &incrCnt1By1 , &incrCnt1By4 , &

incrCnt1By2 , NULL);

4

5 /* Configure the choice pseudo -state */

6 FwSmAddChoicePseudoState(smDesc , CPS1 , 2);

7

8 /* Configure the state transitions */

9 FwSmAddTransIpsToSta(smDesc , STATE_S1 , &incrCnt2By1);

10 FwSmAddTransStaToSta(smDesc , TR2 , STATE_S1 , STATE_S2 , &incrCnt2By1 ,

&retFlag1);

11 FwSmAddTransStaToCps(smDesc , TR6 , STATE_S2 , CPS1 , &incrCnt2By1 ,

NULL);

12 FwSmAddTransCpsToSta(smDesc , CPS1 , STATE_S1 , &incrCnt2By1 , &

retFlag1);

13 FwSmAddTransCpsToSta(smDesc , CPS1 , STATE_S2 , &incrCnt2By1 , &

retFlag2);

14 FwSmAddTransStaToFps(smDesc , TR5 , STATE_S2 , &incrCnt2By1 , &retFlag1

);

15 FwSmAddTransStaToSta(smDesc , TR4 , STATE_S2 , STATE_S2 , &incrCnt2By1 ,

&retFlag1);

Listing 4: Configuration of Test State Machine SM5

1 /* Configure the array of state machine actions */

2 actions [0] = &SmDummyAction;

3 actions [1] = &incrCnt1By1;

4 actions [2] = &incrCnt1By2;

5 actions [3] = &incrCnt1By4;

6 actions [4] = &incrCnt2By1;

7

8 /* Configure the array of state machine guards */

9 guards [0] = &SmDummyGuard;

10 guards [1] = &retFlag1;

11 guards [2] = &retFlag2;

12

13 /* Configure the array of embedded state machines */

14 esmDesc [0] = NULL;

15 esmDesc [1] = NULL;

16

17 /* Configure the array of proper states */

18 pStates [0]. outTransIndex = 1;

19 pStates [0]. nOfOutTrans = 1;

20 pStates [0]. iEntryAction = 1;

21 pStates [0]. iDoAction = 2;

22 pStates [0]. iExitAction = 3;

23

c©2012 P&P Software GmbH. All Rights Reserved. 33

PP-UM-COR-0001 Revision 1.2.3

24 pStates [1]. outTransIndex = 2;

25 pStates [1]. nOfOutTrans = 3;

26 pStates [1]. iEntryAction = 1;

27 pStates [1]. iDoAction = 2;

28 pStates [1]. iExitAction = 3;

29

30 /* Configure the array of choice pseudo -states */

31 cStates [0]. outTransIndex = 5;

32 cStates [0]. nOfOutTrans = 2;

33

34 /* Configure the array of transitions */

35 trans [0]. dest = STATE_S1;

36 trans [0].id = 0;

37 trans [0]. iTrAction = 4;

38 trans [0]. iTrGuard = 0;

39

40 trans [1]. dest = STATE_S2;

41 trans [1].id = TR2;

42 trans [1]. iTrAction = 4;

43 trans [1]. iTrGuard = 1;

44

45 trans [2]. dest = -CPS1;

46 trans [2].id = TR6;

47 trans [2]. iTrAction = 4;

48 trans [2]. iTrGuard = 0;

49

50 trans [3]. dest = 0;

51 trans [3].id = TR5;

52 trans [3]. iTrAction = 4;

53 trans [3]. iTrGuard = 1;

54

55 trans [4]. dest = STATE_S2;

56 trans [4].id = TR4;

57 trans [4]. iTrAction = 4;

58 trans [4]. iTrGuard = 1;

59

60 trans [5]. dest = STATE_S1;

61 trans [5].id = -1;

62 trans [5]. iTrAction = 4;

63 trans [5]. iTrGuard = 1;

64

65 trans [6]. dest = STATE_S2;

66 trans [6].id = -1;

67 trans [6]. iTrAction = 4;

68 trans [6]. iTrGuard = 2;

Listing 5: Direct Configuration of Test State Machine SM5

6.3 State Machine Execution

A state machine is executed by sending it a command to perform a transition.
In accordance with the FW Profile, before being executed, a state machine must
be started. This is done with the FwSmStart function. Applications can check
whether a state machine has already been started with function FwSmIsStarted.

After a state machine has been started, it will respond to requests to perform a
transition (but note that sending such a request to a state machine which has not
been started is not an error - the request is simply ignored). State transitions
are exclusively triggered by transition commands. Each state machine reacts

c©2012 P&P Software GmbH. All Rights Reserved. 34

PP-UM-COR-0001 Revision 1.2.3

to a finite number of transition commands. Each transition command has an
identifier (a non-negative integer).

The range of transition command identifiers is defined by a user when a state
machine is configured. The identifier 0 is reserved for the Execute transition
command. The Execute transition command is a transition command which
triggers the execution of the do-action of the current state of a state machine.
The #define constant FW TR EXECUTE is provided to represent the identifier of
the ”Execute” transition.

A transition command is sent to a state machine with function FwSmMakeTrans.
As a matter of convenience, function FwSmExecute is provided to send the Ex-
ecute command to a state machine.

A state machine is stopped with function FwSmStop. State machines can be
started and stopped as many times as desired.

The example in listing 6 shows a short commanding sequence for the SM5 state
machine. In the pseudo-code, variable smDesc holds the pointer to the SMD
(i.e. variable smDesc is of type FwSmDesc t). The state machine is first started.
This brings it to state S1. The state machine is then sent transition commands
TR2 and TR6. The response of the state machine to these commands depends
on the values of the flags Flag 1 and Flag 2. If, for instance, Flag 1 is true
and Flag 2 is false, then the first transition command brings the state machine
to S2 and the second one brings it back to S1.

1 /* Start the state machine */

2 FwSmStart(smDesc);

3

4 /* Send transition command TR2 to the state machine */

5 FwSmMakeTrans(smDesc , TR2);

6

7 /* Send transition command TR6 to the state machine */

8 FwSmMakeTrans(smDesc , TR6);

9

10 /* Stop the state machine */

11 FwSmStop(smDesc);

Listing 6: Commanding Sequence for Test State Machine SM5

6.4 State Machine Extension

The C1 Implementation supports an extension mechanism for state machines
which is similar to the inheritance-based extension mechanism of object-oriented
languages. The extension mechanism is optional : there is no requirement that
all applications using the C1 Implementation also use the extension mechanism.

A state machine (the base state machine) can be extended to create a new
state machine (the derived state machine). A derived state machine can either
be created dynamically with the FwSmDCreateDer function or else it can be
instantiated statically with macro FW SM INST DER and initialized with function
FwSmInitDer.

c©2012 P&P Software GmbH. All Rights Reserved. 35

PP-UM-COR-0001 Revision 1.2.3

After being created, a derived state machine is a clone of its base. It can then
be configured by performing one or more of the following operations:

• Overriding its actions (through function FwSmOverrideAction)

• Overriding its guards (through function FwSmOverrideGuard)

• Embedding new state machines in its states (through function FwSmEmbed).

The internal structure of the SMD is designed to minimize the memory re-
quirements of derived state machines (see Figure 1). An SMD is split into two
parts: the Base Descriptor and the Extension Descriptor. The Base Descrip-
tor holds the information about the state machine topology (its states, choice
pseudo-states and their connections) whereas the Extension Descriptor holds
the information about the state machine actions and guards and its embedded
state machines. During the extension process, only the Extension Descriptor is
duplicated whereas the Base Descriptor is shared between a state machine and
its children (see Figure 5). This significantly reduces memory occupation in a
situation where a large number of state machines are derived from the same
base state machine.

Fig. 5: Extension Mechanism for State Machine Descriptors

The extension mechanism is useful where there is a need to define a large number
of state machines which share the same topology (same set of states, of choice
pseudo-states, and of transitions) but differ either in their actions, or in their
guards, or in the internal behaviour of their states.

As an example, consider an application which manages a set of external hard-

c©2012 P&P Software GmbH. All Rights Reserved. 36

PP-UM-COR-0001 Revision 1.2.3

ware devices all of which are characterized by the same basic states (e.g. OFF,
STANDBY, OPERATIONAL) and by the same behaviour in states OFF and
OPERATIONAL, but which have different and device-specific behaviour in state
STANDBY. In this case, it is convenient to proceed as follows:

• A base state machine is defined to model the behaviour which is shared
by all devices

• For each device, a state machine is derived which overrides the behaviour
in state STANDBY in a manner that is specific to each device.

The Demo Application offers another example of a situation where the extension
mechanism is useful. In this application, several Failure Detection (FD) Checks
must be implemented for the same Hardware Device. All FD Checks share the
same basic behaviour: they can be enabled and disabled and, when they are
enabled, they can either declare the device to be healthy or they can declare
it to have failed. The algorithm which is used to declare the device healthy
or failed is, however, specific to each FD Check. The application is therefore
organized as follows:

• A base state machine is defined to model the behaviour which is shared
by all FD Checks

• For each FD Check, a state machine is derived which overrides the algo-
rithm to check the health of the device

The pseudo-code in listing 7 offers a concrete example of creation and configu-
ration of a derived state machine. The state machine of Figure 4 acts as base
state machine and it is extended to create a new state machine (the derived
state machine) as shown in Figure 5. The derived state machine has overridden
the entry action of the two states and the guard on the transition from the
choice pseudo-state to state S2. Note that it would not have been possible to
override only the entry action of state S1. The entry actions of the two states
S1 and S2 have been defined to be identical and are implemented by the same
function incrCnt1By1 (see configuration examples in the previous sections) and
can therefore only be overridden together.

In the example of listing 7, the descriptor of the derived state machine is created
dynamically by function FwSmCreateDer. For users who do not wish to rely on
dynamic memory allocation, an alternative approach is available which is illus-
trated in listing 8. Note that in listing 7 the first example variable smDescDer

is a pointer to the state machine descriptor whereas in listing 8 it is the state
machine descriptor itself.

Use of the derived state machine is done as in the case of non-derived state
machines and the examples of section 6.3 remain therefore applicable.

1 /* Create the derived state machine (smDesc is the pointer to the

SMD of the base SM) */

2 FwSmDesc_t smDescDer = FwSmCreateDer(smDesc);

3

4 /* Override Action incrCnt1By1 with action incrCnt1By8 */

5 FwSmOverrideAction(smDescDer , &incrCnt1By1 , &incrCnt1By8);

6

7 /* Override Guard retFlag1 with gurd retFlag3 */

c©2012 P&P Software GmbH. All Rights Reserved. 37

PP-UM-COR-0001 Revision 1.2.3

8 FwSmOverrideGuard(smDescDer , &retFlag1 , &retFlag3);

Listing 7: Dynamic Creation and Configuration of Derived State Machine

1 /* Instantiate derived SM with 2 states , 4 actions and 2 guards */

2 FW_SM_INST_DER(smDescDer , 2, 4, 2)

3

4 /* Create the derived state machine (smDesc is the pointer to the

SMD of the base SM) */

5 FwSmInitDer (&smDescDer , smDesc);

6

7 /* Override Action incrCnt1By1 with action incrCnt1By8 */

8 FwSmOverrideAction (&smDescDer , &incrCnt1By1 , &incrCnt1By8);

9

10 /* Override Guard retFlag1 with guard retFlag3 */

11 FwSmOverrideGuard (&smDescDer , &retFlag1 , &retFlag3);

Listing 8: Static Creation and Configuration of Derived State Machine

c©2012 P&P Software GmbH. All Rights Reserved. 38

PP-UM-COR-0001 Revision 1.2.3

7 Procedure Usage

The basic mode of use of a procedure in the C1 Implementation is as follows:

• The procedure descriptor (PRD) is created

• The procedure descriptor is configured

• The procedure is executed

Examples of creation and configuration of a procedure can be found in the
FwPrMake* functions of the FwPrMakeTest.h module in the Test Suite. Exam-
ples of procedure execution can be found in the FwPrTestCases.c module in
the Test Suite and in the Demo Application.

The pseudo-code examples in this section refer to the test procedure PR2 which
is shown in Figure 6. This test procedure is built by function FwPrMakeTestPR2

in the Test Suite and it is used in a number of test cases in the test suite.

Fig. 6: Test procedure PR2

c©2012 P&P Software GmbH. All Rights Reserved. 39

PP-UM-COR-0001 Revision 1.2.3

7.1 Procedure Descriptor Creation

In the procedure creation process, a procedure descriptor together with all its
internal data structures is instantiated and initialized.

A procedure descriptor can be created in one of three alternative ways as de-
scribed in Table 7. The last column in the table gives a pointer to one or more
functions in the Test Suite where each creation method is demonstrated.

Table 7: Methods to Create a Procedure
Method Description Proc. Example

Dynamic
Creation

Creation is done through the
FwPrDCreate function. The caller
specifies the size of the procedure and
the function allocates the memory
for the PRD and its internal data
structures and returns a pointer to
the PRD. This creation interface is
simple but requires dynamic memory
allocation (malloc). Release of the
memory allocated at creation can be
done with function FwPrRelease.

MakeTestPR1,
MakeTestPR2

Static
Creation

Creation is done in two steps. First, the
PRD and its internal data structures
are instantiated using either macro
FW PR INST (if the procedure has at
least one decision node) or macro
FW PR INST NODEC (if the procedure has
no decision nodes), and then the PRD
and its internal data structures are ini-
tialized using the FwPrInit function.
No dynamic memory allocation is used.

MakeTestPR1Static,
MakeTestPR2Static

Direct
Creation

The application directly instanti-
ates the internal data structures of
the procedure descriptor. Memory
footprint is reduced because neither
the FwPrDCreate function nor the
FwPrInit function is needed but users
must understand the internal structure
of a PRD (this is defined in header file
FwPrPrivate.h).

MakeTestPR2Dir

c©2012 P&P Software GmbH. All Rights Reserved. 40

PP-UM-COR-0001 Revision 1.2.3

The examples of listing 9 to 11 illustrate the three ways to create a PRD for
the case of the test procedure PR2 (see Figure 6). The characteristics of the
procedure are: 3 action nodes, 2 decision nodes, 9 control flows, 1 action (used
in several actions nodes), and 8 guards. With reference to the number of actions
and of guards, it is recalled that actions and guards which appear more than once
are counted only once (in procedure PR2, the action to increment Counter 1

by 1 occurs three times). Note that, in listing 9 (dynamic creation case), the
variable prDesc holds a pointer to the PRD whereas in listings 10 and 11 (static
and direct creation), it holds the PRD itself.

Most users should use either the approach of listing 9 or that of llisting 10.
The approach of listing 11 requires a detailed understanding of the internal
organization of a PRD and should only be used in applications where memory
requirements are so tight that it is desirable to drop the PRD creation functions
provided by the C1 Implementation.

1 /* Create and initialize the procedure descriptor */

2 FwPrDesc_t prDesc = FwPrCreate (3, 2, 9, 1, 8);

Listing 9: Dynamic Creation of Test Procedure PR2

1 /* Instantiate data structures for procedure descriptor */

2 FW_PR_INST(prDesc , 3, 2, 9, 1, 8)

3

4 /* Initialize data structures for procedure descriptor */

5 FwPrInit (& prDesc);

Listing 10: Static Creation of Test Procedure PR2

1 /* Instantiate data structures for procedure descriptor */

2 static PrANode_t aNodes [3];

3 static PrDNode_t dNodes [2];

4 static PrFlow_t flows [9];

5 static FwPrAction_t actions [1];

6 static FwPrGuard_t guards [9];

7 static PrBaseDesc_t prBase;

8 static struct FwPrDesc prDesc;

9

10 /* Initialize procedure descriptor */

11 prBase.aNodes = aNodes;

12 prBase.dNodes = dNodes;

13 prBase.flows = flows;

14 prBase.nOfANodes = 3;

15 prBase.nOfDNodes = 2;

16 prBase.nOfFlows = 9;

17 prDesc.curNode = 0;

18 prDesc.errCode = prSuccess;

19 prDesc.flowCnt = 0;

20 prDesc.nOfActions = 1;

21 prDesc.nOfGuards = 9;

22 prDesc.prActions = actions;

23 prDesc.prBase = prBase;

24 prDesc.prData = prData;

25 prDesc.prGuards = guards;

26 prDesc.prData = NULL;

Listing 11: Direct Creation of Test Procedure PR2

c©2012 P&P Software GmbH. All Rights Reserved. 41

PP-UM-COR-0001 Revision 1.2.3

7.2 Procedure Descriptor Configuration

After being created, a PRD is initialized but is not yet configured. Configuration
is done using the functions defined in header file FwPrConfig.h. Configuration
is done in steps as follows:

1. The action nodes of the procedure are defined with the FwPrAddAction-

Node function.

2. The decision nodes of the procedure are defined with the FwPrAddDeci-

sionNode function.

3. The control flows of the procedures are defined with the FwPrAddFlow*

functions (there are several of these functions, one for each type of control
flow source and destination).

4. The pointer to the procedure data in the procedure descriptor is set with
the FwPrSetData function.

5. The consistency and completeness of the procedure configuration may be
verified with function FwPrCheck.

The only constraint on the order in which these steps are performed is that a
control flow can only be defined after its source node has been defined.

Configuration of a procedure can only be done once: a procedure which has
already been configured cannot be configured again.

Listing 12 shows configuration steps 1 to 3 for the case of the test procedure
PR2 (see Figure 6). In the pseudo-code, the variable incrCnt1By1 (”incre-
ment counter 1 by 1”) is the function representing the actions in the procedure
and the variables with names like retFlag1 (”return Flag 1”)are the functions
representing the guards in the procedure.

Users who are severely constrained in memory can avoid linking the configura-
tion functions by directly configuring a PRD and its internal data structures.
This, however, requires an understanding of the internal structure of a PRD
(this is defined in header file FwPrPrivate.h). An example of direct PRD con-
figuration can be found in function FwPrMakeTestPR2Dir in the Test Suite. The
memory saving of taking this approach is about 2 kBytes (this is the memory
footprint of the FwPrConfig.h module, see Section 9.2). Listing 13 re-casts the
example of listing 12 to perform a direct configuration of test procedure PR2
(see Figure 6).

1 /* Configure the action nodes */

2 FwPrAddActionNode(prDesc , N1, &incrCnt1By1);

3 FwPrAddActionNode(prDesc , N2, &incrCnt1By1);

4 FwPrAddActionNode(prDesc , N3, &incrCnt1By1);

5

6 /* Configure the decision nodes */

7 FwPrAddDecisionNode(prDesc , D1, 3);

8 FwPrAddDecisionNode(prDesc , D2, 2);

9

10 /* Configure the control flows */

11 FwPrAddFlowIniToAct(prDesc , N1, &retFlag1);

12 FwPrAddFlowActToAct(prDesc , N1, N2, &retFlag2);

13 FwPrAddFlowActToDec(prDesc , N2, D1, NULL);

c©2012 P&P Software GmbH. All Rights Reserved. 42

PP-UM-COR-0001 Revision 1.2.3

14 FwPrAddFlowDecToFin(prDesc , D1, &retFlag3);

15 FwPrAddFlowDecToDec(prDesc , D1, D2, &retFlag4);

16 FwPrAddFlowDecToAct(prDesc , D1, N3, &retFlag5);

17 FwPrAddFlowActToAct(prDesc , N3, N2, &retFlag6);

18 FwPrAddFlowDecToAct(prDesc , D2, N3, &returnCounter1SmallerThan6);

19 FwPrAddFlowDecToFin(prDesc , D2, &returnCounter1GreaterThan5);

Listing 12: Configuration of Test Procedure PR2

1 /* Configure the array of procedure actions */

2 actions [0] = &incrCnt1By1;

3

4 /* Configure the array of procedure guards */

5 guards [0] = &PrDummyGuard;

6 guards [1] = &retFlag1;

7 guards [2] = &retFlag2;

8 guards [3] = &retFlag3;

9 guards [4] = &retFlag4;

10 guards [5] = &retFlag5;

11 guards [6] = &retFlag6;

12 guards [7] = &returnCounter1GreaterThan5;

13 guards [8] = &returnCounter1SmallerThan6;

14

15 /* Configure the array of action nodes */

16 aNodes [0]. iAction = 0;

17 aNodes [0]. iFlow = 1;

18 aNodes [1]. iAction = 0;

19 aNodes [1]. iFlow = 2;

20 aNodes [2]. iAction = 0;

21 aNodes [2]. iFlow = 3;

22

23 /* Configure the array of decision nodes */

24 dNodes [0]. nOfOutTrans = 3;

25 dNodes [0]. outFlowIndex = 4;

26 dNodes [1]. nOfOutTrans = 2;

27 dNodes [1]. outFlowIndex = 7;

28

29 /* Configure the array of control flows */

30 flows [0]. dest = 1;

31 flows [0]. iGuard = 1;

32 flows [1]. dest = 2;

33 flows [1]. iGuard = 2;

34 flows [2]. dest = -1;

35 flows [2]. iGuard = 0;

36 flows [3]. dest = 2;

37 flows [3]. iGuard = 6;

38 flows [4]. dest = 3;

39 flows [4]. iGuard = 5;

40 flows [5]. dest = -2;

41 flows [5]. iGuard = 4;

42 flows [6]. dest = 0;

43 flows [6]. iGuard = 3;

44 flows [7]. dest = 3;

45 flows [7]. iGuard = 8;

46 flows [8]. dest = 0;

47 flows [8]. iGuard = 7;

Listing 13: Direct Configuration of Test Procedure PR2

c©2012 P&P Software GmbH. All Rights Reserved. 43

PP-UM-COR-0001 Revision 1.2.3

7.3 Procedure Execution

In accordance with the FW Profile, before being executed, a procedure must
be started. This is done with the FwPrStart function. Applications can check
whether a procedure has already been started with function FwPrIsStarted.

After a procedure has been started, it will respond to execution requests (but
note that sending such a request to a procedure which has not been started is
not an error - the execution request is simply ignored). An execution request is
sent to a procedure by means of function FwPrExecute.

A procedure is stopped with function FwPrStop. Procedures can be started and
stopped as many times as desired.

Listing 14 shows a short commanding sequence for the PR2 procedure. In the
pseudo-code, variable prDesc holds the pointer to the PRD (i.e. variable prDesc
is of type FwPrDesc t). The procedure is first started. It is then executed twice
and it is finally stopped. The response of the procedure to these commands
depends on the values of the flags Flag 1 and Flag 2. If, for instance, Flag 1 is
true and Flag 2 is false, then the first execution command brings the procedure
to N1 (causing its action to be executed) and the second one has no effect.

1 /* Start the procedure */

2 FwPrStart(prDesc);

3

4 /* Send first execution command to the procedure */

5 FwPrExecute(prDesc);

6

7 /* Send second execution command to the procedure */

8 FwPrExecute(prDesc);

9

10 /* Stop the procedure */

11 FwPrStop(prDesc);

Listing 14: Commanding Sequence for Test Procedure PR2

7.4 Procedure Extension

The C1 Implementation supports an extension mechanism for procedures which
is similar to the inheritance-based extension mechanism of object-oriented lan-
guages. The extension mechanism is optional : there is no requirement that all
applications using the C1 Implementation also use the extension mechanism.

A procedure (the base procedure) can be extended to create a new procedure
(the derived procedure). A derived procedure can either be created dynamically
with the FwPrDCreateDer function or else it can be instantiated statically with
macro FW PR INST DER and initialized with function FwPrInitDer.

After being created, a derived procedure is a clone of its base. It can then be
configured by performing one or more of the following operations:

• Overriding its actions (through function FwPrOverrideAction)

• Overriding its guards (through function FwPrOverrideGuard)

c©2012 P&P Software GmbH. All Rights Reserved. 44

PP-UM-COR-0001 Revision 1.2.3

The internal structure of the PRD is designed to minimize the memory require-
ments of derived procedures (see Figure 2). A PRD is split into two parts: the
Base Descriptor and the Extension Descriptor. The Base Descriptor holds the
information about the procedure topology (its nodes and the control flows con-
necting them) whereas the Extension Descriptor holds the information about
the procedure actions and guards and the procedure state. During the ex-
tension process, only the Extension Descriptor is duplicated whereas the Base
Descriptor is shared between a procedure and its children (see Figure 7. This
significantly reduces memory occupation in a situation where a large number of
procedures are derived from the same base procedure.

Fig. 7: Extension Mechanism for Procedure Descriptors

The extension mechanism is useful where there is a need to define a large number
of procedures which share the same topology (same set of action nodes, of
decision nodes, and of control flows) but differ either in their actions or in their
guards.

As an example, consider an application which manages a set of hardware de-
vices all of which must be initialized by performing a sequence of elementary
operations and suppose that all devices share the same logical sequence of ini-
tialization operations (e.g. power-on, switch-on, self-test command, and then,
depending on the outcome of the self-test, either a power-off or a command
to enter normal operational state). Suppose, however, that the self-tests differ
across devices. In this case, it is convenient to proceed as follows:

• A base procedure is defined to model the behaviour which is shared by all

c©2012 P&P Software GmbH. All Rights Reserved. 45

PP-UM-COR-0001 Revision 1.2.3

devices.

• For each device, a procedure is derived which overrides the action nodes
corresponding to the execution of the self-test and the guard which eval-
uates its outcome.

The pseudo-code of listing 15 offers a concrete example of creation and configu-
ration of a derived procedure. The procedure of Figure 6 acts as base procedure
and it is extended to create a new procedure (the derived procedure). The de-
rived procedure differs from the base procedure in that it has a different action
(incrCnt1By8 instead of incrCnt1By1) in its three nodes N1, N2 and N3. Note
that it would not have been possible to override only the action of state N1. The
actions of the three nodes N1 to N3 have been defined to be identical and are
implemented by the same function incrCnt1By1 (see configuration examples in
the previous section) and can therefore only be overridden together.

In listing 15, the descriptor of the derived procedure is created dynamically by
function FwPrCreateDer. For users who do not wish to rely on dynamic memory
allocation, an alternative approach is available which is illustrated in listing
16. Note that in listing 15 variable prDescDer is a pointer to the procedure
descriptor whereas in listing 16 it is the procedure descriptor itself.

Use of the derived procedure is done as in the case of non-derived procedures
and the examples of section 7.3 remain therefore applicable.

1 /* Create the derived procedure (psDesc is the pointer to the PRD

of the base SM) */

2 FwPrDesc_t prDescDer = FwPrCreateDer(prDesc);

3

4 /* Override Action incrCnt1By1 with action incrCnt1By8 */

5 FwPrOverrideAction(prDescDer , &incrCnt1By1 , &incrCnt1By8);

Listing 15: Dynamic Creation and Configuration of Derived Procedure

1 /* Instantiate the derived PR with 1 actions and 8 guards */

2 FW_PR_INST_DER(prDescDer , 1, 8)

3

4 /* Initialize the derived procedure (prDesc is the pointer to the

PRD of the base SM) */

5 FwPrInitDer (&prDescDer , prDesc);

6

7 /* Override Action incrCnt1By1 with action incrCnt1By8 */

8 FwPrOverrideAction (&prDescDer , &incrCnt1By1 , &incrCnt1By8);

Listing 16: Static Creation and Configuration of Derived Procedure

c©2012 P&P Software GmbH. All Rights Reserved. 46

PP-UM-COR-0001 Revision 1.2.3

8 RT Container Usage

The basic mode of use of a RT Container in the C1 Implementation is as follows:

• The RT Container Descriptor (RTD) is created

• The RT Container Descriptor is configured

• The RT Container is sent notification requests

• The RT Container is shut down

Examples of creation and configuration of a RT Container can be found in the
FwRtMake* functions of the FwRtMakeTest.h module in the Test Suite. Exam-
ples of notifications of RT Containers can be found in the FwRtTestCases.c

module in the Test Suite.

The pseudo-code examples in this section refer to a simple test container which,
every time it receives a notification, writes a message to standard output. The
full code for the example is defined in the ”RT Container Coding Example 1”
(file FwProfile RtExample1.c in the delivery file of the C1 Implementation).

8.1 RT Container Descriptor Creation

A RT Container Descriptor (RTD) is a variable of type struct FwRtDesc. A
container instance is created as in listing 17. Note that instantiation of the RTD
also instantiates the POSIX thread which implements the Activation Thread
and the POSIX mutex and POSIX condition variable which support its use.

1 /* Instantiate a RT Container Descriptor */

2 struct FwRtDesc rtDesc;

Listing 17: Creation of a RT Container Instance

8.2 RT Container Descriptor Configuration

After being created, an RTD must be configured. Configuration is done using
the functions defined in header file FwRtConfig.h. Configuration is done in
steps as follows:

1. The RTD is reset.

2. The attributes of the POSIX objects encapsulated in the RTD are set.

3. The functions implementing the actions of the container’s Activation Pro-
cedure and Notification Procedure are set.

4. The container data are set.

5. The RTD is initialized.

The reset operation must be done first and the initialization operation must be
done last. The other three operations may be done in any order. A container
may be configured multiple times but configuration may only be done when the
container is in state rtContUninitialized, i.e. before it has been initialized or
after it has been shut down (see section 5.5).

c©2012 P&P Software GmbH. All Rights Reserved. 47

PP-UM-COR-0001 Revision 1.2.3

The RTD is reset through function FwRtReset. Execution of this function ini-
tializes all fields of the RTD to dummy but valid values (the full list of the
initialization values can be found in the Doxygen documentation). Thus, after
being reset, the RTD is ready to be initialized (but, after being initialized, will
not be able to do anything meaningful). Reset of the test container is done at
line 17 in listing 18.

A RT Container uses three POSIX objects: a POSIX thread, a POSIX mu-
tex, and a POSIX condition variable. By default, all three objects are created
with the POSIX-defined default values for their attributes. If a user wishes to
configure any of these objects with non-default attribute values, he should:

1. Instantiate an attribute object of the appropriate type (for instance, of
type pthread attr t for the POSIX thread attributes).

2. Configure the attribute object as desired using the functions defined by
POSIX.

3. Load the configured attribute object into the RTD by means of function
FwRtSetPosixAttr.

In the test container, default values are used and hence none of the above steps
is executed.

By default, the functions implementing the actions of the container’s Acti-
vation Procedure and Notification Procedure are initialized to dummy func-
tions which do nothing and always return 1. For each such function, the
FwRtConfig.h module offers a setter and a getter function which can be used to
set and read the corresponding procedure function. Thus, for instance, functions
FwRtSetInitializeActivPr and FwRtGetInitializeActivPr can be used to
set and get the the function which implements the initialization action for the
Activation Procedure.

At a minimum, the user should load a non-trivial Functional Behaviour through
function FwRtSetExecFuncBehaviour. The function thus loaded defines the be-
haviour executed by the Activation Thread when it is notified. In the case of the
test container considered in this section, function UserFunctionalBehaviour

in listing 18 represents the user-defined functional behaviour which is exe-
cuted when the container is notified. This behaviour is encapsulated in a
function whose pointer is passed to the container through the call to function
FwRtSetExecFuncBehaviour in the last line of listing 18.

Other aspects of a container’s behaviour (e.g. the behaviour it should execute
when it is initialized or when it is shut down) can be defined in a similar way
by first defining a function ecapsulating the desired behaviour and by then
loading a pointer to that function into the container using the appropriate setter
function (e.g. the initialization function for the Activation Thread is loaded
using function FwRtSetInitializeActivPr).

The final step in the configuration process of a RT Container is the definition
of the container data (see section 5.6). This is only needed in the case where
either data must be passed to the container when it is notified or some of the
container functions must exchange data with each other. The container data

c©2012 P&P Software GmbH. All Rights Reserved. 48

PP-UM-COR-0001 Revision 1.2.3

are loaded into the container using function FwRtSetData. In the case of the
test container, no container data are needed and this function is therefore not
used.

1 /**

2 * Function implementing the user’s functional behaviour.

3 * In this example , this function prints a message and returns zero

.

4 * @param rtDesc the RT Container descriptor

5 * @return always return zero

6 */

7 FwRtOutcome_t UserFunctionalBehaviour(FwRtDesc_t rtDesc) {

8 static int i = 1;

9 printf("Activation Thread: Notification %i has been received !\n",

i);

10 i++;

11 return 0;

12 }

13

14 . . .

15

16 /* Reset the RT Container */

17 FwRtReset (& rtDesc);

18

19 /* Attach functional behaviour to RT Container */

20 FwRtSetExecFuncBehaviour (&rtDesc ,& UserFunctionalBehaviour);

21

22 /* Initialize the RT Container */

23 FwRtInit (& rtDesc);

Listing 18: Configuration of a RT Container Instance

8.3 RT Container Descriptor Notification

In accordance with the FW Profile, before being able to process notification
requests, a RT Container must be started. This is done with the FwRtStart

function. Applications can check whether a RT Container has already been
started with function FwRtGetContState which returns the container’s state.

After a RT Container has been started, it will respond to notification requests
(but note that sending such a request to a container which has not been started
is not an error - it simply means that the notification request is ignored). A
notification request is sent to a RT container by means of function FwRtNotify.

A RT Container is stopped with function FwRtStop. After being stopped, the
container terminates the Activation Thread and no longer processes notification
requests but it may still hold some system resources. If it is desired to ensure
that all such resources are released, the container must be shut down by means
of function FwRtShutdown. This function destroys the POSIX objects used by
the container and releases any system resources they may have claimed.

After a RT Container has been stopped, it can be re-started. The start-stop
cycle can be executed as many times as desired. After it has been shut down,
the container must be re-configured anew before it can again be used.

When a RT Container is stopped (or when it terminates autonomously because

c©2012 P&P Software GmbH. All Rights Reserved. 49

PP-UM-COR-0001 Revision 1.2.3

its functional behaviour has terminated execution), its Activation Thread is
terminated. A RT Container should only be shut down or re-started after the
Activation Thread has terminated. As a convenience, the RT Container pro-
vides function FwRtWaitForTermination to wait until the Activation Thread
has terminated. This function is implemented using POSIX’s pthread join

system call.

Listing 19 shows a sequence of ten notifications separated by waits of 10 millisec-
onds for the test container. After the notifications have been sent, the container
is stopped and (after its Activation Thread has terminated execution), it is
shutdown.

1 /* Start the RT Container and send a few notifications to it */

2 FwRtStart (& rtDesc);

3 for (i=0; i<10; i++) {

4 printf("Sending notification %i to container ...\n",i+1);

5 FwRtNotify (& rtDesc);

6 nanosleep (&ten_ms ,NULL); /* wait ten ms */

7 }

8

9 /* Stop the RT Container */

10 FwRtStop (& rtDesc);

11

12 /* To ensure orderly shutdown: wait until container thread has

terminated */

13 FwRtWaitForTermination (& rtDesc);

14

15 /* Shutdown the RT Container */

16 FwRtShutdown (& rtDesc);

Listing 19: Notification of a RT Container Instance

c©2012 P&P Software GmbH. All Rights Reserved. 50

PP-UM-COR-0001 Revision 1.2.3

9 Implementation Issues

This section discusses the implementation aspects which have a direct relevance
to users of the C1 Implementation.

9.1 Memory Management

The C1 Implementation allocates memory both on the heap and on the stack.
The C1 Implementation does not use any global variables.

For the state machine and procedure modules, allocation on the heap (through
calls to malloc) is done when a new state machine descriptor (SMD) is created
using function FwSmCreate or when a new procedure descriptor (PRD) is created
using function FwPrCreate. Both in the case of state machines and procedures,
an alternative approach is available to create a state machine instance or a
procedure instance without using dynamic memory allocation (see table 6 for
the state machines and table 7 for the procedures).

No dynamic memory allocation operations are performed when a state machine
or a procedure is configured or executed. Thus, dynamic memory allocation is
only used when a state machine or a procedure is created. An application that
does not wish to use dynamic memory allocation during real-time operation can
instantiate all its state machines and procedures in the initialization part (when
real-time constraints are normally not applicable).

The memory allocated on the heap is the memory required to store an SMD or
a PRD. The amount of heap memory required by a C1 Implementation is thus
proportional to the number of state machines and procedures instantiated by
the user.

Operations are provided to release the heap memory allocated when a state
machine or a procedure is created (operations FwSmRelease, FwSmReleaseRec
and FwPrRelease). Memory is released through calls to free.

The RT container module does not directly use dynamic memory allocation
(it never calls malloc). However, when a RT Container is initialized with
FwRtInit, its mutex and condition variable and their attribute objects are ini-
tialized through calls to the POSIX functions pthread * init. Depending on
how these POSIX functions are implemented, this may involve the allocation of
heap memory. Similarly, when the container is started with FwRtStart, its Ac-
tivation Thread is created with a POSIX system call and this, too, may involve
allocation of heap memory.

If these POSIX system calls allocate heap memory and if it is desired to avoid
dynamic memory allocation during real-time operation, an application should
initialize and start all its RT containers in its initialization part.

Any heap allocation which is done by the POSIX functions would be undone
when the thread terminates (either autonomously or as a result of a call to
FwRtStop) and when the container is shut down through a call to FwRtShutdown.
The latter function destroys the mutex and condition variable objects and their

c©2012 P&P Software GmbH. All Rights Reserved. 51

PP-UM-COR-0001 Revision 1.2.3

attribute objects by calling the appropriate pthread * destroy functions.

Most C1 Implementation functions allocate some memory on the stack but the
amount of memory involved is very limited. A precise assessment depends on
the characteristics of the compiler but it is expected to consist, at most, of a
handful of pointers and variables of primitive type. Note that the amount of
stack memory required by the C1 Implementation is independent of both the
number and size of the state machines, procedures, and RT containers created
by an application.

9.2 Memory Footprint

There are two aspects to the memory footprint of the C1 Implementation: the
memory requirements for the code (i.e. the memory requirements for the code
generated by compiling the files in the C1 Implementation modules of table
2) and the memory requirements for the state machine, procedure, and RT
container descriptors which applications instantiate. These two aspects are
considered separately in the following two sub-sections.

9.2.1 Code Memory Requirements

The C1 Implementation is designed to minimize memory footprint. The exact
memory requirements for its code depend on the choice of compiler and linker
but will typically be of the order of a few kBytes each for the state machine,
procedure and RT container modules. As an example, table 8 reports the mem-
ory requirements for the files in the state machine module (but the FwSmAux.h

functions are not included because they are normally not included in an end
application), in the procedure module and in the RT container module. The
figures in the table have been obtained with the gcc compiler configured to min-
imize memory occupation. The data in the table were derived from the linker
map. They correspond to the memory of type .text (i.e. the code segment
containing executable instructions) allocated to each module. The measure-
ments were made on release 1.2.0 of the C1 Implementation in the following
environment:

• compiler: gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5)

• target: i686-linux-gnu

• OS: Linux ubuntu 12.04 (32 bits)

• compiler options: -Os -Wall -c -fmessage-length=0

• linker options: -Wl,-Map=memory.map

Note that not all applications will need all the files in the table. In particular, the
functions in FwSmDCreate.h/FwPrDCreate.h and FwSmSCreate.h/FwPrSCreate.h
files will in most cases be alternative and mutually exclusive. Also, all files but
the FwSmCore.h/FwPrCore.h file could be dropped by using direct creation and
configuration of the state machine descriptor or procedure descriptor. This is
discussed in section 6.2 (for state machines) and 7.2 (for procedures).

c©2012 P&P Software GmbH. All Rights Reserved. 52

PP-UM-COR-0001 Revision 1.2.3

Table 8: Code Memory Footprint for C1 Implementation Modules
Module Memory Size Header File

State Machine 1101 bytes FwSmDCreate.h

State Machine 326 bytes FwSmSCreate.h

State Machine 1737 bytes FwSmConfig.h

State Machine 765 bytes FwSmCore.h

Procedure 342 bytes FwPrDCreate.h

Procedure 103 bytes FwPrSCreate.h

Procedure 1413 bytes FwPrConfig.h

Procedure 389 bytes FwPrCore.h

RT Container 884 bytes FwRtConfig.h

RT Container 857 bytes FwRtCore.h

9.2.2 Descriptor Requirements

Applications using the C1 Implementation must instantiate a state machine
descriptor (SMD) for each state machine instance they deploy, a procedure
descriptor (PRD) for each procedure instance they deploy, and a RT container
descriptor (RTD) for each RT container they deploy. The memory requirement
of an SMD will be considered first.

The memory requirement of an SMD is proportional to both the number of
states in the state machine and the number of transitions in the state machine.
An exact assessment depends on the characteristics of the compiler (in partic-
ular on memory alignment constraints). The minimal requirements (based on
the assumption of packed memory allocation with no gaps to satisfy alignment
constraints) can be computed as a function of the following parameters:

• NSTATES is the number of states in the state machine

• NCPS is the number of choice pseudo-states in the state machine

• NTRANS is the number of transitions in the state machine

• NACTIONS is the number of actions in the state machine (including both
state and transition actions; if the same action appears several times, it is
counted only once)

• NGUARDS is the number of guards in the state machine (if the same guard
appears several times, it is counted only once)

• MPNT is the size of a pointer

• MS1 is the size of the FwSmCounterS1 t type defined in FwSmConstants.h

• MU2 is the size of the FwSmCounterU2 t type defined in FwSmConstants.h

• MERR is the size of the FwSmErrCode t type defined in FwSmConstants.h

An SMD is split into two parts: the base descriptor and the extension descriptor
(see Section 3.1). Their memory requirements are:

MBASE−DESC = MPNT ∗ 3 + MS1 ∗ (5 ∗NSTATES + 2 ∗NCPS + 3 ∗NTRANS)

+(NTRANS ∗MU2)

MEXT−DESC = MPNT ∗ (4 + NACTIONS + NGUARDS + NSTATES)

c©2012 P&P Software GmbH. All Rights Reserved. 53

PP-UM-COR-0001 Revision 1.2.3

+4 ∗MS1 + 2 ∗MU3 + MERR

The memory requirement for a state machine descriptor of a non-derived state
machine (i.e. a state machine which is created from scratch as opposed to
being derived fro some other state machine) is equal to: (MBASE−DESC +
MEXT−DESC), whereas the memory requirement for a state machine descriptor
of a derived state machine is equal to: MEXT−DESC .

As an example, table 9 computes the SMD memory footprint in bytes for a
medium-sized state machine.

Table 9: SM Descriptor Memory Footprint (Bytes) Example
State Machine Characteristics Size

Number of States 5
Number of Choice Pseudo-States 3
Number of Transitions 10
Number of Actions 10
Number of Guards 5
Size in bytes of FwSmCounterS1 t 1
Size in bytes of FwSmCounterU2 t 1
Size in bytes of FwSmErrCode t 1
Size in bytes of Pointer 4
Memory Footprint in bytes of SMD of Non-Derived SM 195
Memory Footprint in bytes of SMD of Derived SM 109

Consider next the case of a procedure descriptor. The memory requirement
of a PRD is proportional to both the number of nodes and the number of
control flows in a procedure. An exact assessment depends on the characteristics
of the compiler but the minimal requirements (based on the assumption of
packed memory allocation with no gaps to satisfy alignment constraints) can be
computed as a function of the following parameters:

• NANODES is the number of action nodes in the procedure

• NDNODES is the number of decision nodes in the procedure

• NCF is the number of transitions in the procedure

• NACTIONS is the number of actions in the procedure (if the same action
appears several times, it is counted only once)

• NGUARDS is the number of guards in the state machine (if the same guard
appears several times, it is counted only once)

• MPNT is the size of a pointer

• MS1 is the size of the FwPrCounterS1 t type defined in FwPrConstants.h

• MU2 is the size of the FwPrCounterU2 t type defined in FwPrConstants.h

• MU3 is the size of the FwPrCounterU3 t type defined in FwPrConstants.h

• MERR is the size of the FwPrErrCode t type defined in FwPrConstants.h

A PRD is split into two parts: the base descriptor and the extension descriptor

c©2012 P&P Software GmbH. All Rights Reserved. 54

PP-UM-COR-0001 Revision 1.2.3

(see Section 4.1). Their memory requirements are:

MBASE−DESC = MS1 ∗ (2 ∗NANODES + 2 ∗NDNODES + 2 ∗NCF)

+3 ∗MS1

MEXT−DESC = MPNT ∗ (2 + NACTIONS + NGUARDS)

+4 ∗MS1 + 2 ∗MU3 + MERR

The memory requirement for a PRD of a non-derived procedure (i.e. a proce-
dure which is created from scratch as opposed to being derived fro some other
procedure) is equal to: (MBASE−DESC + MEXT−DESC), whereas the memory
requirement for a PRD of a derived procedure is equal to: MEXT−DESC .

As an example, table 10 computes the PRD memory footprint for a medium-
sized state machine.

Table 10: Procedure Descriptor Memory Footprint (Bytes) Example
Procedure Characteristics Size

Number of Action Nodes 5
Number of Decision Nodes 3
Number of Control Flows 10
Number of Actions 3
Number of Guards 8
Size in bytes of FwPrCounterS1 t 1
Size in bytes of FwPrCounterU2 t 1
Size in bytes of FwPrCounterU3 t 4
Size in bytes of FwPrErrCode t 1
Size in bytes of Pointer 4
Memory Footprint of PRD of Non-Derived Procedure 104
Memory Footprint of PRD for Derived Procedure 65

Consider finally RT container descriptors. RTDs have a fixed structure. Hence,
their memory footprint is independent of how a container is configured and is a
function of the following parameters:

• MTHREAD is the memory occupation of an instance of pthread t (a
POSIX thread)

• MMUTEX is the memory occupation of an instance of pthread mutex t

(a POSIX mutex)

• MCOND is the memory occupation of an instance of pthread cond t (a
POSIX condition variable)

• MPNT is the size of a pointer

• MU2 is the size of the FwRtCounterU2 t type defined in FwRtConstants.h

• MINT is the size of the int type

• MBOOL is the size of the FwRtBool t type defined in FwRtConstants.h

• MSTATE is the size of the FwRtState t type defined in FwRtConstants.h

c©2012 P&P Software GmbH. All Rights Reserved. 55

PP-UM-COR-0001 Revision 1.2.3

The memory requirement of an RTD is given by:

MRTD = MTHREAD + MMUTEX + MCOND + 12 ∗MPNT + 2 ∗MBOOL +

MU2 + MINT + MSTATE

Evaluation of this formula depends on the memory occupation of three POSIX
data structures. This will normally vary across systems. In the case of the
system used in section 9.2.1 for the code footprint measurement, the size of the
three POSIX data structures as reported by the sizeof operator is: 4 bytes for
pthread t, 24 bytes for pthread mutex t, and 48 bytes for pthread cond t.
Also, the size of the data types from which RTDs are instantiated (struct
FwRtDesc) is 144 bytes. These figures do not include the memory requirements
of additional data structures which may be created on the heap when the POSIX
objects are initialized but they serve to give an idea of the typical memory
requirement of an RTD instance.

Note finally that users have some control over the memory requirements of a
state machine descriptor because they can override the default definition of the
following types: FwSmCounterU1 t, FwSmCounterU2 t, FwSmCounterU3 t and
FwSmCounterS1 t. The override can be done in file FwSmConstants.h. A sim-
ilar consideration applies to the memory requirement of a procedure and RT
container descriptor.

9.3 CPU Requirements

CPU requirements depend on the execution platform and no guarantees about
absolute CPU demands can be given by the C1 Implementation. The C1 Im-
plementation is, however, designed to give some guarantees of scalability. The
term scalability is used here to designate the dependency of the CPU resources
required by the C1 Implementation on the size and number of state machines
and procedures instantiated by a user.

For state machines, the following considerations apply to the CPU required to
process a transition request made to a state machine:

• There is no dependency on the number of state machine instances in the
application. This is because the C1 Implementation operates on individual
state machines in isolation from each other.

• There is no dependency on the number of states in the state machine. This
is because for each state, a list of its out-going transitions is maintained.

• The CPU time required to perform a transition is proportional to the
number of out-going transitions from a state. This is because, when eval-
uating a transition request from a certain state, all out-going transitions
from that state are evaluated in sequence.

For procedures, the following considerations apply to the CPU required to pro-
cess an execution request made to a procedure:

• There is no dependency on the number of procedure instances in the ap-
plication. This is because the C1 Implementation operates on individual

c©2012 P&P Software GmbH. All Rights Reserved. 56

PP-UM-COR-0001 Revision 1.2.3

procedures in isolation from each other.

• There is no dependency on the number of nodes in the procedure. This is
because for each node, a list of its out-going control flows is maintained.

• The CPU time required to process the transition through an action node
is fixed and independent of the size of a procedure. This is because an
action node can only have one single outgoing transition.

• The CPU time required to process the transition through a decision node
is proportional to the number of outgoing control flows from that decision
node. This is because, when evaluating a transition through a decision
node, all out-going control flows from that decision node are evaluated in
sequence.

RT Containers have fixed structures and therefore no scalability considerations
apply to them.

9.4 Concurrency

The operations defined by the State Machine and Procedure modules of the
C1 Implementation are passive (they do not use any internal threads) and they
operate exclusively on stack variables and on the parameters passed to them
by the caller. They are therefore intrinsically thread-safe in the sense that
different threads can use them on different descriptors without fear of mutual
interference. Hence no locks or other synchronization mechanisms are defined
for these modules.

Synchronization mechanisms become necessary when different threads operate
on the same state machine or procedure descriptor. In this case, the synchro-
nization mechanisms must be provided by the user application.

The operations defined by the RT Container module are similar to those defined
by the State Machine and Procedure modules in the sense that they, too, operate
exclusively on stack variables and on caller parameters. However, containers
have an internal thread (the Activation Thread) which may compete for access
to the RTD with the external user thread which stops/starts a container or
which sends notifications to it. Conflicts between the Activation Thread and
the extenal threads which call the container operations are avoided through a
combination of built-in exclusion mechanisms and constraints to be enforced by
the caller as follows:

• The configuration functions defined in FwRtConfig.h are not thread-safe
and, additionally, may only be used before the Activation Thread has been
created or after it has terminated.

• Functions RtFwStop, RtFwStart, and RtFwNotify are protected by the
container mutex which ensures that they are only accessed in mutual ex-
clusion.

• Functions FwRtStart and FwRtShutdown may only be used before the
Activation Thread has been created or after it has terminated.

As a convenience for applications, the RT Container module offers function

c©2012 P&P Software GmbH. All Rights Reserved. 57

PP-UM-COR-0001 Revision 1.2.3

FwRtWaitForTermination which can be used to wait for the termination of the
Activation Thread and can therefore help to enforce some of the constraints
listed above.

9.5 Recursion

No recursion is used in the Procedure and RT Container modules of the C1
Implementation.

Use of recursion is inevitable in the State Machine Module of the C1 Implemen-
tation because recursion is intrinsic to the execution model of state machines: a
state machine may (recursively) contain other state machines embedded in one
of its states and transition requests are propagated (recursively) to the embed-
ded state machines. The depth of recursion is equal to the depth of nesting of
state machines.

The FwSmMakeTrans and FwSmExecute functions which implement the process-
ing of transition requests for state machines are therefore implemented recur-
sively.

The function FwSmReleaseRec which releases the memory allocated to a state
machine also uses recursion because it releases the memory allocated to a state
machine and to all its embedded state machines. In this case, however, a non-
recursive version of the function is available: function FwSmRelease only releases
the memory allocated to a state machine without releasing the memory allocated
to its embedded state machines (which must be released with separate calls to
FwSmRelease).

Applications which do not wish to use recursion should avoid defining state
machines embedded in other state machines.

9.6 Order of Execution

The FW Profile stipulates that if a state or choice pseudo-state in a state ma-
chine has two or more out-going transitions with a guard which evaluates to
true, the transition which will be taken is the one whose guard is evaluated
first. The order of evaluation of the guards is, however, left undefined by the
FW Profile.

The C1 Implementation has made the following choice: out-going transitions
from a state or choice pseudo-state are evaluated in the order in which they
were added to the state machine (transitions are added to a state machine
using the FwSmAddTrans* functions in module FwSmConfig.h).

Similarly, the FW Profile specifies that if a decision node has two or more out-
going control flows with a guard which evaluates to true, the control flow which
will be taken is the one whose guard is evaluated first. The order of evaluation
of the guards is, however, left undefined by the FW Profile.

The C1 Implementation has made the following choice: out-going control flows
from a decision node are evaluated in the order in which they were added to

c©2012 P&P Software GmbH. All Rights Reserved. 58

PP-UM-COR-0001 Revision 1.2.3

the procedure (control flows are added to a procedure using the FwPrAddFlow*

functions in module FwPrConfig.h).

9.7 User Overridable Types

with one exception, the C1 Implementation does not use any primitive types.
Instead, typedef are used which are defined in FwSmConstants.h (for state
machines), FwPrConstants.h (for procedures) and FwRtConstants.h (for RT
containers). Applications can override the definition of any of these types. Nor-
mally,the default definitions of these types will be adequate except in cases
where an application uses state machines with a very large number of states
(more than 128) or procedures with a very large number of nodes (more than
128).

The exception to the rule of always using typedef types is the error code in
the RT Container module (see section 5.7. The error code is used to store the
return value of a POSIX system call. This return value is of type int. The
error code has therefore been declared to be of the same type.

9.8 Counter Overflow

The only counters which might overflow during procedure or state machine
execution (i.e. after all procedures and state machines have been instantiated
and created) are the execution counters associated to each state machine and
procedure instance.

The state machine and procedure execution counters are defined as instances
of types FwSmCounterU3 t (for state machines) and FwPrCounterU3 t (for pro-
cedures). The implementation does not provide any protection against wrap
around for these counters. It is the responsibility of each application to verify
whether the default definition of FwSmCounterU3 t and FwPrCounterU3 t is ad-
equate and to update it where necessary (or to accept the possibility of a wrap
around in the counter values).

For RT Containers, the only counter which might overflow is the notification
counter. This counter is defined as a variable of type FwRtCounterU2 t. The
implementation does not provide any protection against wrap around for this
counter. It is the responsibility of each application to verify whether the default
definition of FwRtCounterU2 t is adequate and to update it where necessary (or
to accept the possibility of a wrap around in the counter value).

c©2012 P&P Software GmbH. All Rights Reserved. 59

PP-UM-COR-0001 Revision 1.2.3

A State Machine Model of the FW Profile

The C1 Implementation implements the state machine model of the FW Profile.
The FW Profile is defined in reference [1]. For convenience, this section reports
an excerpt of reference [1] defining the semantics of state machines.

A.1 Definition of State Machines

A state machine in the FW Profile consists of the following elements:

• One initial pseudo-state

• One or more states

• One or more state transitions

• Zero or more choice pseudo-states

• Zero or more final pseudo-states

• Two execution counters

The initial pseudo-state is characterized by one transition which has the initial
pseudo-state as its source and has either a state or a choice pseudo-state as its
target.

A state is characterized by the following elements:

• Zero or more entry actions

• Zero or more do actions

• Zero or more exit actions

• Zero or one embedded state machine

• One or more incoming transitions

• Zero or more outgoing transitions

The state actions represent behaviour which is not decomposed further within
the state machine. Actions’ behaviour can be defined using natural language
or some formalism (e.g. an action language). An embedded state machine is
a state machine that is embedded within the state. Embedded state machines
are defined in the same way and have the same behaviour as other FW Profile
state machines. An incoming transition is a state transition that has the state
as its target. An outgoing transition is a state transition that has the state as
its source.

A state transition is characterized by the following elements:

• One transition source

• One transition target (or transition destination)

• Zero or one transition trigger (or transition command)

• Zero or one transition guard

• Zero or more transition actions

The transition source and the transition target are either a state or a pseudo-

c©2012 P&P Software GmbH. All Rights Reserved. 60

PP-UM-COR-0001 Revision 1.2.3

state. The transition trigger is the command that triggers the execution of the
transition. A transition guard is a specification that evaluates either to TRUE
or to FALSE and has no side effects. Absence of a guard is equivalent to a
guard which always evaluates to TRUE. A transition action represents behaviour
which is not decomposed further within the state machine. A transition action
behaviour can be defined using natural language or some formalism (e.g. an
action language). Transition commands may carry parameters and may return
values. The parameters and return values are not defined further by the FW
Profile. They represent parameters that are passed to the actions and values
which are returned by them.

A choice pseudo-state is characterized by the following elements:

• One or more incoming transitions

• One or more outgoing transitions

An incoming transition is a state transition that has the choice pseudo-state
as its target. An outgoing transition is a state transition that has the choice
pseudo-state as its source.

The final pseudo-state is characterized by one or more incoming transitions
(namely state transitions that have the final pseudo-state as their target). Note
that all final pseudo-states are equivalent and therefore it would be legitimate
to allow only one single final pseudo-state. The option to have more than one
is introduced as a matter of convenience.

The execution counters are unsigned integers which are characterized by their
value. The first execution counter is called the State Machine Execution Counter
and the second one is called the State Execution Counter.

The following syntactical constraints apply to the definition of the state machine
elements:

• C1: The same pseudo-state cannot be both source and target for a tran-
sition;

• C2: The source and target of a transition cannot both be choice pseudo-
states;

• C3: The transition that has the initial pseudo-state as source can have
neither a guard nor a trigger;

• C4: This constraint has been deleted;

• C5: Transitions that have a choice pseudo-state as source cannot have a
transition trigger;

• C6: This constraint has been deleted;

• C7: Transitions that have a state as a source must have a transition
command;

• C8: Transitions can only link states and/or pseudo-states that belong to
the same state machine.

The last constraint implies that transitions from an outer state machines to an
embedded state machines or vice-versa are not allowed. Note, however, that

c©2012 P&P Software GmbH. All Rights Reserved. 61

PP-UM-COR-0001 Revision 1.2.3

the same transition command may trigger a transition both in an outer state
machine and in one of its embedded state machine.

The following dynamical constraints must be satisfied when a state transition
is executed:

• D1: Among the outgoing transitions from a choice pseudo-state, at least
one must have a guard that evaluates to true.

• D2: Transition guards must be free of side effects: their evaluation cannot
change the state of the host application.

• D3. The state actions (entry, do, and exit actions) and the transition
actions and guards must execute in zero logical execution time (i.e. on
an infinitely fast processor and in the absence of pre-emption or blocking,
they must execute in zero time).

The last constraint implies that the behaviour encapsulated by actions and
guards is constrained to be purely functional. In practice, this means that
actions and guards cannot include time-dependent behaviour or behaviour that
depends on synchronization with other flows of executions.

One type of transition command the Execute command has a special status in
that it triggers the execution of the current state’s do-action. The Execute com-
mand models the situation (common in embedded control systems) of a cyclical
scheduler periodically triggering an application and advancing its execution.

As a matter of terminology, when a state machine is sent the Execute command,
the state machine is said to be executed.

The execution counters of a state machine count the number of times the state
machine has been executed (one counts the number of times the state machine
has been executed since it was started and the other counts the number of times
the state machine has been executed since its current state was entered). Since
state machines will often be executed periodically, the execution counters can
serve as proxies for measuring the elapsing of time.

A.2 State Machine Behaviour

Three operations may be performed on a state machine: (a) the state machine
may be started ; (b) the state machine may be sent a transition command ; or
(c) the state machine may be stopped. State machines are purely reactive: they
wait for one of these three operations to be performed upon them and they only
execute some behaviour in response to one of these operations.

A state machine can be either in a defined state or in an undefined state. A
state machine is in a defined state from the time it has completed the transition
out of its initial pseudo-state to the time it has either completed the transition
into one of its final pseudo-states or has been stopped.

When a state machine is in a defined state, it has a current state. The current
state is one of the states of the state machine.

c©2012 P&P Software GmbH. All Rights Reserved. 62

PP-UM-COR-0001 Revision 1.2.3

When a state machine is started, the following behaviour is executed:

1. If the state machine is in a defined state, then no further action is taken.

2. If the state machine is in an undefined state, then its execution coun-
ters are reset and the action associated to the transition out of its initial
pseudo-state is executed. If several transition actions are present, they are
executed in the order in which they are listed.

3. If the destination of the transition out of the initial pseudo-state is a choice
pseudo- state, then the guards of the outgoing transitions from the choice
pseudo-state are evaluated and the actions associated to the transition
with a guard evaluating to true is executed. If several transition actions
are present, they are executed in the order in which they are listed.

4. If the destination of the transition out of the initial pseudo-state is a state,
then the current state of the state machine is set equal to that state.

5. If the destination of the transition out of the initial pseudo-state is a choice
pseudo- state and if the selected transition out of the choice pseudo-state
has a state as a target, then the current state of the state machine is set
equal to that target state.

6. The entry action of the current state is executed. If several entry actions
are present, they are executed in the order in which they are listed.

7. If the current state has an embedded state machine, then the embedded
state machine is started.

8. If the destination of the transition out of the initial pseudo-state is a choice
pseudo- state and if the selected transition out of the choice pseudo-state
has the final pseudo- state as a target, then the state machine remains in
an undefined state.

With reference to point 3, it is noted that at least one of the guards on the
outgoing transitions from a choice pseudo-state is guaranteed to be true because
of constraint D1 in the previous section.

When a state machine is stopped, the following behaviour is executed:

1. If the state machine is in an undefined state, no further action is taken.

2. If the state machine is in a defined state and its current state has an
embedded state machine, the embedded state machine is stopped.

3. The exit action of the current state is executed. If several exit actions are
present, they are executed in the order in which they are listed.

4. The state machine is set to an undefined state.

The logic of the start and stop commands for state machines is shown in Figure
8 as two activity diagrams.

When a transition command T is sent to a state machine S, then the following
behaviour is executed:

1. If S is in an undefined state, then no further action is taken.

2. If T is the Execute command, then the execution counters of the state
machine are incremented and the do-action associated to the current state

c©2012 P&P Software GmbH. All Rights Reserved. 63

PP-UM-COR-0001 Revision 1.2.3

Fig. 8: Logic for the Start and Stop Commands to a State Machine

of S is executed. If several do-actions are present, they are executed in
the order in which they are listed.

3. If S is in a defined state and the current state of S has an embedded state
machine SE, then the transition command T is propagated to SE.

4. If there are no transitions from the current state of S that have T as their
trigger, then no further action is taken.

5. If there are one or more transitions from the current state of S that have
T as their trigger, then their guards are evaluated in sequence. The order
of the evaluation is undefined. The absence of a guard is equivalent to a
guard that returns TRUE.

6. When the first transition is found whose guard evaluates to TRUE, then
that transition is executed.

The logic that governs the processing of a transition command by a state ma-
chine is shown in Figure 9 as an activity diagram. Note that this logic merely
describes the circumstances under which a transition within a state machine is
executed but it does not define the logic according to which the transition is
executed. This is done below (see also Figure 10).

When a transition is executed, then the following behaviour is executed:

1. If the source state of the transition is a state and that state has an em-
bedded state machine, then the embedded state machine is stopped.

2. If the source state of the transition is a state, then the exit action asso-

c©2012 P&P Software GmbH. All Rights Reserved. 64

PP-UM-COR-0001 Revision 1.2.3

Fig. 9: Logic for Processing Transition Commands by a State Machine

ciated to the source state is executed. If several exit actions are present,
they are executed in the order in which they are listed.

3. The transition action associated to the transition is executed. If several
transition actions are present, they are executed in the order in which they
are listed.

4. If the target of the transition is a choice pseudo-state, then the guards
of the out-going transitions from the choice pseudo-state are evaluated in
sequence until one is found that evaluates to true and that transition is
executed.

5. If the target of the transition is a final pseudo-state, then the state machine
is set to an undefined state and no further action is taken.

6. If the target state of the transition is a state, then the current state of the
state machine is updated to be equal to the target state of the transition
and the state execution counter is reset.

7. If the target state of the transition is a state, then the entry action of
the target state is executed. If several entry actions are present, they are

c©2012 P&P Software GmbH. All Rights Reserved. 65

PP-UM-COR-0001 Revision 1.2.3

executed in the order in which they are listed.

8. If the target state of the transition is a state and that state has an em-
bedded state machine, then the embedded state machine is started.

With reference to point 4, it is noted that at least one of the guards on the out-
going transitions from a choice pseudo-state is guaranteed to be true because of
constraint D1 in the previous section. The logic according to which a transition
is executed is shown as an activity diagram in Figure 10. Note that this logic
is called up by the logic shown in the activity diagram of Figure 9.

Fig. 10: Logic for Executing Transitions in a State Machine

Transition commands may carry parameters. These parameters may be passed
to any of the state or transition actions that are executed as part of the pro-
cessing of the transition command.

The execution of the various actions associated to the three state machine op-
erations is performed in sequence: an action is executed only when the previous
one has completed. Note that, since state and transition actions are constrained
to execute in zero logical execution time, the execution of a state machine op-
eration will also execute in zero logical execution time.

Transition commands arrive and are processed in sequence. A new command
can only arrive and be processed by a state machine when the previous one
has been fully processed. State machines have no queues to buffer incoming
transition commands.

The above rule in particular implies that transition commands cannot be nested,

c©2012 P&P Software GmbH. All Rights Reserved. 66

PP-UM-COR-0001 Revision 1.2.3

namely the processing of a transition command by a state machine cannot result
in a new command being sent to the same state machine (nesting rule).

As an example where the nesting rule would be violated, consider the following
situation. A first transition command is sent to state machine A that triggers
a transition from state A1 to state A2. The entry action of state A2 sends a
second transition command to state machine A.

As a second example of violation of the nesting rule, consider a transition com-
mand that is sent to state machine A that triggers a transition from state A1
to state A2. The entry action of state A2 sends a new transition command to
state machine B. State machine B, as part of its processing of this command,
sends a new transition command to state machine A.

Forwarding of transition commands from one state machine A to another state
machine B is instead allowed provided that neither of the two state machines is
embedded in the other one.

Forwarding of transition commands from an embedded state machine to its
embedding state machine or vice-versa is forbidden. This restriction helps to
avoid the ambiguities that would arise when, for instance, the entry action of
a state in an embedded state machine triggers a transition in the embedding
state machine.

A.3 UML 2 Compliance

The state machine model offered by the FW Profile complies with the UML 2
state machine model in the sense that the elements of the state machine concept
of the FW Profile and their semantics can be mapped in an obvious way to a
subset of the elements of the state machine concept of UML 2 with the following
provisos:

• The semantics of choice pseudo-states in the FW Profiles subsumes that of
junction pseudo-states in UML2. Thus, in the FW Profile, choice pseudo-
states can also be used to join together incoming transition flows.

• The execution counters are specific to the FW Profile. They have been
introduced as a substitute for the concept of time (which does not exist
in the FW Profile State Machines) in the sense that, if state machines
are executed periodically, then the value of their execution counters is
proportional to the time elapsed since the state machine was started (State
Machine Execution Counter) or since the current state was entered (State
Execution Counter).

It should be emphasized that the state machine model proposed by the FW
Profile is far more restrictive than that supported by UML 2. This is because the
FW Profile uses state machines to model purely functional (non-time-related)
behaviour.

c©2012 P&P Software GmbH. All Rights Reserved. 67

PP-UM-COR-0001 Revision 1.2.3

B Procedure Model of the FW Profile

The C1 Implementation implements the procedure model of the FW Profile.
The FW Profile is defined in reference [1]. For convenience, this section reports
an excerpt of reference [1] defining the semantics of procedures.

B.1 Definition of Procedures

A procedure in the FW Profile consists of the following elements:

• One initial node

• One or more actions nodes (or actions)

• One or more control flows

• Zero or more decision nodes

• Zero or more final nodes

• Two execution counters

The initial node is characterized by one control flow which has the initial node
as its source and has either an action node or a decision node as its target.

An action node (or action) is characterized by the following elements:

• One or more incoming control flows

• One outgoing control flow

• The behaviour associated to the action

The incoming control flows are control flows which have the action as its target.
The outgoing control flow is a control flow which has the action as its source.

An action represents a single step within a procedure. It encapsulates behaviour
that is not decomposed further within the procedure. The action’s behaviour can
be defined using natural language or some formalism (e.g. an äction language)̈.

A control flow is characterized by the following elements:

• One source

• One target (or destination)

• Zero or one guards

The source and the target are either action nodes or decision nodes. Addition-
ally, the initial node can be the source of a control flow and the final node can
be the destination of one or more control flows.

The guard is a specification which evaluates either to TRUE or FALSE and
which has no side effects. Absence of a guard is equivalent to a guard which
always evaluates to TRUE.

A decision node is characterized by the following elements:

• One or more incoming control flows

c©2012 P&P Software GmbH. All Rights Reserved. 68

PP-UM-COR-0001 Revision 1.2.3

• Two or more outgoing control flows

The incoming control flows are control flows that have the decision node as its
target. The outgoing control flow are control flows that have the decision node
as their source.

For control flows issuing from a decision node, the pre-defined Else guard is
available. This guard returns TRUE if and only if all the other guards attached
to control flows issuing from the same decision node return FALSE.

The final node is characterized by one or more incoming control flows (namely
control flows that have the final node as their target). Note that all final nodes
are equivalent and therefore it would be legitimate to allow only one single
final node. The option to have more than one is introduced as a matter of
convenience.

The execution counters are unsigned integers which are exclusively characterized
by their value. The first execution counter is called the Procedure Execution
Counter and the second one is called the Node Execution Counter.

The following syntactical constraints apply to the definition of the procedure
elements:

• C1. The control flows out of a decision node must have a guard.

The following dynamical constraints must be satisfied when a procedure is exe-
cuted:

• D1. Among the outgoing control flows from a decision node, at least one
must have a guard which evaluates to true;

• D2. The evaluation of the guards of a control flow must be free of side-
effects;

• D3. The procedure actions and guards must execute in zero logical ex-
ecution time (i.e. on an infinitely fast processor and in the absence of
pre-emption or blocking, they must execute in zero time).

The last constraint implies that the behaviour encapsulated by the actions and
by the guards must be purely functional. In practice, this means that actions
and guards cannot include time- dependent behaviour or behaviour that depends
on synchronization with other flows of executions.

The execution counters of a procedure count the number of times the procedure
has been executed (one counts the number of times the procedure has been
executed since it was started and the other counts the number of times the pro-
cedure has been executed since its current node was entered). Since procedures
will often be executed periodically, the execution counters can serve as proxies
for measuring the elapsing of time.

B.2 Procedure Behaviour

Four operations may be performed on a procedure: (a) the procedure may be
started ; (b) the procedure may be executed ; (c) the procedure may be stopped ;

c©2012 P&P Software GmbH. All Rights Reserved. 69

PP-UM-COR-0001 Revision 1.2.3

or (d) the procedure may be run.

Procedures are purely reactive: they wait for one of these four operations to be
performed upon them and they only execute a behaviour in response to one of
these operations.

Operations are performed in response to commands: the command Start triggers
the start operation; the command Execute triggers the execute operation; the
command Stop triggers the stop operation; and the command Run triggers the
run operation.

A procedure may be in two states: STOPPED or STARTED. Initially, by de-
fault, the procedure is in state STOPPED. When the procedure is in state
STARTED, it has a current node. The current node is either the procedure’s
initial node or one of its action nodes.

When a procedure is started, the following behaviour is executed:

1. If the procedure is in state STARTED, then no further action is performed;

2. If the procedure is in state STOPPED, then it is put in state STARTED,
its current node is set equal to its initial node and its execution counters
are reset.

When a procedure is stopped, the following behaviour is executed:

1. If the procedure is in state STOPPED, then no further action is performed;

2. If the procedure is in state STARTED, then it is put in state STOPPED
and its current node is set to an invalid value.

Thus, the Stop and Start commands toggle the state of a procedure and update
its current node. This is shown in the state diagram of figure 11.

Fig. 11: Procedure Start/Stop Commands

When a procedure is executed, the following behaviour is executed:

1. If the procedure is in state STOPPED, then no further action is performed;

2. If the procedure is in state STARTED, then its execution counters are
incremented by 1 and the guard attached to the outgoing control flow of
the current node is evaluated;

c©2012 P&P Software GmbH. All Rights Reserved. 70

PP-UM-COR-0001 Revision 1.2.3

3. If the guard evaluates to FALSE, then no further action is performed;

4. If the guard evaluates to TRUE and the target of the outgoing control flow
attached to the current node is an action node T, then: (a) the current
node is set equal to T, (b) the node execution counter is reset, (c) the
behaviour associated to T is executed, (d) the guard on the out-going
control flow of T is evaluated and steps 3 and 4 are (recusively) repeated;

5. If the guard evaluates to TRUE and the target of the outgoing control
flow attached to the current node is a decision node, then: (a) the guards
of the outgoing control flows attached to the decision node are evaluated;
(b) if the target of the outgoing control flow whose guard evaluates to
TRUE is another decision node, then steps (a) to (d) are performed upon
it; (c) if the target of the outgoing control flow whose guard evaluates to
TRUE is an action node T, then the current node is set equal to T, the
behaviour associated to T is executed, the guard on the out-going control
flow of T is evaluated and steps 3 and 4 are (recusively) repeated; (d) if
the target of the outgoing control flow whose guard evaluates to TRUE
is a final node, the state of the procedure is set to STOPPED and the
current node is set equal to an invalid value.

6. If the guard evaluates to TRUE and the target of the outgoing control
flow attached to the current node is a final node, then the state of the
procedure is set to STOPPED, and the current node is set equal to an
invalid value.

Thus, in summary, when a procedure is executed, it tries to traverse the control
flow issuing form the current node. If this can be done (i.e. if the guard
associated to the control flow evaluates to true), then it advances the execution
of the procedure until it finds a guard that evaluates to false or until it finds
a final node. Whenever an action node is traversed, its associated behaviour is
executed.

The Execute command may carry parameters. These parameters may be passed
to any of the actions that are executed as part of the processing of the Execute
command.

Note that, at any given time, only one flow of control may be traversing a
procedure. This flow of control is advanced every time that the procedure is
executed.

The behaviour associated to the execution of a procedure is shown as an activity
diagram in figure 12.

Finally, when a procedure is run, the following behaviour is executed:

1. The procedure is started;

2. The procedure is executed;

3. The procedure is stopped.

Thus, the Run operation is defined in terms of the previous three operations.
The Run operation may take parameters which are passed to the Execute op-
eration which is performed as part of the Run operation (step 2 above).

c©2012 P&P Software GmbH. All Rights Reserved. 71

PP-UM-COR-0001 Revision 1.2.3

The Run operation is only useful for procedures which execute in one single
cycle. It is typically used to perform the actions associated to a state in a state
machine.

The execution of the various actions associated to the four procedure operations
(Start, Execute, Stop, and Run) is performed in sequence: an action is executed
only when the previous one has completed. Note that, since actions are con-
strained to execute in zero logical time, the execution of a procedure operation
will also execute in zero logical time.

Requests to perform an operation upon a procedure are executed in sequence.
A new request can only be processed by a procedure when the previous one has
been fully processed. Procedures have no queues to buffer incoming operation
requests.

Note that the procedure operations do not return any values.

Fig. 12: Procedure Execution Logic

B.3 UML 2 Compliance

The procedure model offered by the FW Profile complies with the UML 2 ac-
tivity model in the sense that the elements of the procedure concept of the FW
Profile and their semantics can be mapped in an obvious way to a subset of the
elements of the activity concept of UML 2.

The execution counters are specific to the FW Profile. They have been intro-
duced as a substitute for the concept of time (which does not exist in the FW
Profile Procedures) in the sense that, if procedures are executed periodically,
then the value of their execution counters is proportional to the time elapsed

c©2012 P&P Software GmbH. All Rights Reserved. 72

PP-UM-COR-0001 Revision 1.2.3

since the procedure was started (Procedure Execution Counter) or since the
current node was entered (Node Execution Counter).

c©2012 P&P Software GmbH. All Rights Reserved. 73

PP-UM-COR-0001 Revision 1.2.3

C RT Container Model of the FW Profile

The C1 Implementation implements the RT Container model of the FW Profile.
The FW Profile is defined in reference [1]. For convenience, this section reports
an excerpt of reference [1] defining the RT Container model of the FW Profile.

C.1 Role of RT Containers

State Machines and Procedures allow all functional aspects of a software appli-
cation to be modelled. RT Containers complement them by offering a means to
capture one aspect of the time-related behaviour of an application.

It is important to stress that full modelling of an application’s timing behaviour
is beyond the scope of the FW Profile. This is because the FW Profile is
aimed at modelling individual applications. Applications normally run on a
software/hardware platform which they share with other applications. Timing
behaviour is a system-level aspect (it depends, for instance, on the relative
priorities of the threads allocated to the various applications in a system) and
cannot therefore be fully captured at application level.

RT Containers provide a way to encapsulate the activation logic for a functional
behaviour. More specifically, a RT Container can be seen as a representation
of a thread that controls the execution of some functional behaviour. The RT
Container model defined by the FW Profile allows the conditions under which
the thread is released to be specified.

Conceptually, a RT Container can be seen as a software structure that encapsu-
lates some functional code and endows it with certain timing properties. Thus,
RT Containers are a means of separating the specification of the timing aspects
of an application from its functional aspects.

There is a difference between procedures and state machines on the one hand,
and RT Containers on the other hand. All three concepts are offered as means to
express the behaviour of a software application but they exist at different levels
of abstraction: state machines and procedures constitute a generic modelling
language for the functional part of an application; RT Containers allow the
timing behaviour of a software application to be modelled but they presuppose
the use of certain design patterns for handling the activation of functional code.
The RT Container concept is thus less generic than the state machine and
procedure concepts.

The design pattern behind the concept of RT Containers is a notification-based
model of thread activation where the notification can be either time-triggered
or sporadic (event-driven notification).

C.2 Definition of RT Container

A RT Container is defined by the following elements:

• One Activation Procedure

c©2012 P&P Software GmbH. All Rights Reserved. 74

PP-UM-COR-0001 Revision 1.2.3

• One Activation Thread
• One Notification Procedure

The Activation Procedure is a FW Profile Procedure which executes the func-
tional behaviour encapsulated by the RT Container.

The Activation Thread is the thread responsible for executing the Activation
Procedure (and hence for executing the functional behaviour encapsulated by
the RT Container).

The Notification Procedure is a FW Profile Procedure which encapsulates the
logic for notifying the Activation Thread.

C.3 RT Container Behaviour

Three operations may be performed on a RT Container: (a) the RT Container
may be started ; (b) the RT Container may be stopped ; and (c) the RT Container
may be notified.

A RT Container may be in two states: STOPPED or STARTED. Initially, by
default, the container is in state STOPPED. When a RT Container is started,
the behaviour shown in the activity diagram in the left-hand side of figure 13
is executed. The Start operation only has an effect if the container is in state
STOPPED when the operation causes the Activation and Notification Proce-
dures to be started and executed once and the Activation Thread to be created
and released. The Notification and Activation Procedures are started ”atom-
ically” in the sense that neither procedure can be executed or stopped before
both have been started. Reference to figure 14 shows that the first execution of
the Activation and Notification Procedures results in their initialization actions
being executed and, in the case of the Activation Procedure, in the first Set-Up
Notification action being executed.

Fig. 13: Start and Stop Operations for RT Containers

c©2012 P&P Software GmbH. All Rights Reserved. 75

PP-UM-COR-0001 Revision 1.2.3

When a RT Container is stopped, the behaviour shown in the activity diagram in
the right-hand side of figure 13 is executed. The Stop operation only has an effect
if the container is in state STARTED when the operation causes the container to
be placed in state STOPPED and the Notification Counter to be incremented.
The latter results in one last notification being sent to the Activation Thread.
This notification is necessary to ensure an orderly termination of the thread and
of the Activation and Notification Procedures.

When a RT Container is notified, the following behaviour is executed:

1. If the RT Container is in state STOPPED, then no further action is per-
formed;

2. If the RT Container is in state STARTED, then its Notification Procedure
is executed.

The behaviour of the Activation Thread is expressed by the following pseudo-
code:

1 while true do {

2 wait until Notification Counter is greater than 0;

3 decrement Notification Counter;

4 execute Activation Procedure;

5

6 if (Activation Procedure has terminated) then {

7 put RT Container in STOPPED state;

8 execute Notification Procedure;

9 break;

10 }

11

12 if (RT Container is in state STOPPED) then {

13 execute Activation Procedure;

14 execute Notification Procedure;

15 break;

16 }

17 }

Listing 20: Pseudo-code of Activation Thread

The thread executes a loop which starts with a check on whether there are any
pending notifications (the Notification Counter holds the number of pending
notifications). If there is a pending notification (i.e. if the Notification Counter
is greater than zero), the thread decrements the Notification Counter and then
executes the Activation Procedure (which causes the container’s functional be-
haviour to be executed). The thread terminates when the Activation Procedure
has terminated or when the RT container has been stopped. In the former case
(Activation Procedure has autonomously terminated), the RT Container is put
in the STOPPED state and the Notification Procedure is executed one last time
before the thread exits; in the latter case (RT Container has been stopped), both
procedures are executed one last time. This last execution is intended to give
the procedures a chance to perform their finalization behaviour.

The behaviour of the Activation Procedure and of the Notification Procedure is
shown in the activity diagrams in Figure 14. The definition of the two procedures
makes use of the “adaptation point” stereotype to identify the parts of the
container behaviour which are application-specific. Applications are therefore

c©2012 P&P Software GmbH. All Rights Reserved. 76

PP-UM-COR-0001 Revision 1.2.3

Fig. 14: RT Container Procedures

expected to extend the two procedures by inserting their own application-specific
behaviour (by contrast, the behaviour of the Activation Thread is invariant and
is fully defined at FW Profile level).

When the Activation Procedure is executed for the first time (i.e. after the
Activation Thread has been started), it initializes itself and sets up the first no-
tification of the Activation Thread. The form of the notification is application-
specific. Typically, the setting up of a notification may consist of one of the
following:

1. A request that the Activation Thread be notified at some time in the
future;

2. A call-back registration to request to be notified when a certain software
condition arises (e.g. a variable changes value, a message arrives, etc);

3. A request to be notified when a hardware interrupt is asserted.

Note that the notification may only need to be set up once when the Activation
Procedure is initialized or it may need to be set up at every execution cycle.
Note also that the same RT Container may set up different notification requests
in the same execution cycle or it may set up notification requests of different
kinds at different execution cycles. For this reason, the ”Set-Up Notification”
in the Activation Procedure is placed both at the beginning of the procedure
(to be executed once at initialization time) and inside the loop (to be executed
after each execution of the functional behaviour).

When a notification arrives (i.e. when the user of the container executes the
Notification Procedure and this increments the Notification Counter), the Ac-
tivation Thread is woken up and it executes the Activation Procedure. The

c©2012 P&P Software GmbH. All Rights Reserved. 77

PP-UM-COR-0001 Revision 1.2.3

procedure checks whether the RT Container has been stopped. If this is the
case, the procedure performs its finalization action and then terminates. Other-
wise, the procedure checks whether the functional behaviour should be executed
(this is done by the ”Implement Activation Logic” action) and, if so, it executes
it. Afterwards, the procedure sets up the next notification (if one is needed)
and then checks whether the execution of the functional behaviour has been
completed. If this is so, the procedure terminates. Otherwise it waits for the
next notification.

The procedure initialization and finalization actions are adaptation points which
are defined at application level. Similarly, the action to set up the notification
for the Activation Thread and to implement the activation logic must also be
defined at application level. The latter could, for instance, be used to implement
a filter which decides which notifications to process and which ones to ignore.

The Notification Procedure acts as an intermediary between the source of the
notification event and the notification trigger to the Activation Thread. Such
an intermediary may be useful to: (a) filter notification events, or (b) buffer
notification requests so as to allow the Activation Procedure to handle bursts of
notifications. With reference to the activity diagram in Figure 14, the filtering
and buffering of notification requests is done in the (application-specific) action
“Implement Notification Logic”.

As already noted, the Notification Procedure runs on a thread that is external
to the RT Container: the Notification Procedure is executed by an external
thread when the notification event has occurred. Thus, the logic leading to the
notification of the Activation Thread is as follows:

1. The Activation Procedure makes a request to be notified when a certain
event occurs (this could, for instance, be done by registering with an
external component to be notified when a certain condition occurs);

2. When the event occurs, the Notification Procedure is executed by the
source of the event;

3. The Notification Procedure evaluates the event and may decide to notify
the Activation Thread;

4. The Notification Procedure notifies the Activation Thread by increment-
ing the Notification Counter;

5. In response to the notification, the Activation Thread executes the Activa-
tion Procedure which may execute the functional behaviour encapsulated
by the RT Container;

6. The Activation Procedure sets up the next notification request.

This cycle is broken when either the Activation Procedure decides that the
execution of the functional behaviour has been completed or when the RT Con-
tainer is stopped. Either of these events results in the RT Container and its two
procedures terminating.

The Notification Procedure may be executed both by the Activation Thread
and by an external thread. For this reason, in many cases, it will be necessary
to ensure that it is executed in mutual exclusion.

c©2012 P&P Software GmbH. All Rights Reserved. 78

PP-UM-COR-0001 Revision 1.2.3

Note finally that, in this section, the term ”event” encompasses both asyn-
chronous occurrences (such as the arrival of hardware interrupts from an exter-
nal source) or synchronous occurrences (such as periodic signals generated by
an operating system).

C.4 RT Container Properties and Usage Constraints

The RT Container logic defined in the previous section guarantees that certain
properties (the RT Container Properties) are satisfied when the usage of the
RT Container complies with certain constraints (the RT Container Usage Con-
straints). The properties are listed in table 11 in rows P-3 to P-7. The usage
constraints are listed in the same table in rows C-1 to C-3.

Table 11: RT Container Properties and Usage Constraints
N RT Container Properties and Usage Constraint

P-3 The Activation Thread shall never deadlock.
P-4 If the RT Container is stopped after the Activation Thread has been

released, then, at some later time, the Activation Procedure shall
terminate.

P-5 If the Activation Procedure stops or terminates (it enters the
STOPPED state), then, at some later time, the RT Container shall
be stopped.

P-6 If the Activation Procedure stops or terminates (it enters the
STOPPED state), then, at some later time, the Notification Proce-
dure shall terminate.

P-7 Whenever the Activation Procedure is running (it is in state
STARTED), then the Notification Procedure shall be running, too
(it shall be in state STARTED).

P-8 If notifications cease but the RT Container and the Activation Pro-
cedure continue to run, then, at some later time, the Activation
Thread shall consume all pending notifications (the Notification
Counter will become equal to zero).

C-1 If the RT Container is started and then, at some later time, it is
stopped, then it can be re-started only after its Activation and Noti-
fication Procedures have terminated execution and after its Activa-
tion Thread has terminated (i.e. the user of a RT Container cannot
re-start it before it has completed its orderly shutdown)

C-2 The Activation Procedure is started, stopped and executed exclu-
sively by the RT Container (i.e. the user of the container has no
access to the Activation Procedure)

C-3 The Notification Procedure is started and stopped exclusively by
the RT Container itself (i.e. the user of the RT Container can
execute the Notification Procedure through the Notify operation
but it cannot start or stop it)

The usage constraints define the conditions for the legal use of a RT Container.
If these constraints are satisfied, then the user can assume that the RT Con-
tainer will comply with its properties. Note that the container’s properties hold

c©2012 P&P Software GmbH. All Rights Reserved. 79

PP-UM-COR-0001 Revision 1.2.3

under all circumstances, irrespective of the scheduling and notification/trigger-
ing policies adopted for the Activation Thread and for the thread controlling
the Notification Procedure and irrespective of the way in which the adaptation
points in the container’s procedure are filled.

Properties P-4 and P-5 guarantee that, if the RT Container is stopped or the
Activation Procedure terminates, then the entire container will terminate in the
sense that the container itself and its two procedures will all enter the STOPPED
state. Property P-8 ensures that, if thread scheduling is fair and the rate at
which notifications are generated is compatible with the rate at which they are
processed, then no backlog of unprocessed notifications will build up.

Some notifications may instead remain unprocessed if either the Activation
Thread autonomously terminates or the RT Container is stopped by the user.
Thus, in informal language, the semantics of the Stop operation on the RT
Container is not: ”Process all pending notifications and then terminate”; but
rather: ”Discard any pending notifications and then terminate”.

Note that the container’s procedures can only terminate execution “naturally”
(as opposed to being forcefully stopped). This is because the RT Container
logic never stops them and usage constraints C-2 and C-3 ensure that they are
not stopped by any external agent. This is important because it means that the
procedure will always execute their finalization behaviour before terminating.

Constraint C-1 states that a RT Container can only be re-started after it has
completed its shutdown. This is a legitimate constraint because properties P-4
and P-6 guarantee that, if the container is stopped, then its two procedures will
eventually terminate. This means that the user of a RT Container can always
rely on the container completing its shutdown in a finite amount of time.

c©2012 P&P Software GmbH. All Rights Reserved. 80

PP-UM-COR-0001 Revision 1.2.3

References

[1] Alessandro Pasetti, Vaclav Cechticky: The FW Profile. PP-DF-COR-00001,
Revision 1.3.0, P&P Software GmbH, Switzerland, 2013

[2] Alessandro Pasetti, Vaclav Cechticky: The Framework Profile - C1 Im-
plementation User Requirements. PP-SP-COR-00001, Revision 1.2.2, P&P
Software GmbH, Switzerland, 2013

c©2012 P&P Software GmbH. All Rights Reserved. 81

	Introduction
	Installation & Content Overview
	Dependency on External Libraries
	Support Documentation
	Software Source Code
	Doxygen Documentation
	Test Suite
	Demo Application
	Coding Examples
	Acceptance Test Procedure and Test Reports
	Support Scripts
	Naming Conventions

	State Machine Representation
	State Machine Descriptor
	State Machine Module
	State Machine Actions and Guards
	State Machine Data
	Error Checking
	Else Guards
	Compliance with UML State Machine Model

	Procedure Representation
	Procedure Descriptor
	Procedure Module
	Procedure Actions and Guards
	Procedure Data
	Error Checking
	Else Guards
	Compliance with UML Activity Diagram Model

	RT Container Representation
	RT Container Descriptor
	The Activation Thread
	RT Container Procedures
	Notification Mechanism
	RT Container State
	Container Data
	Error Checking

	State Machine Usage
	State Machine Descriptor Creation
	State Machine Descriptor Configuration
	State Machine Execution
	State Machine Extension

	Procedure Usage
	Procedure Descriptor Creation
	Procedure Descriptor Configuration
	Procedure Execution
	Procedure Extension

	RT Container Usage
	RT Container Descriptor Creation
	RT Container Descriptor Configuration
	RT Container Descriptor Notification

	Implementation Issues
	Memory Management
	Memory Footprint
	Code Memory Requirements
	Descriptor Requirements

	CPU Requirements
	Concurrency
	Recursion
	Order of Execution
	User Overridable Types
	Counter Overflow

	State Machine Model of the FW Profile
	Definition of State Machines
	State Machine Behaviour
	UML 2 Compliance

	Procedure Model of the FW Profile
	Definition of Procedures
	Procedure Behaviour
	UML 2 Compliance

	RT Container Model of the FW Profile
	Role of RT Containers
	Definition of RT Container
	RT Container Behaviour
	RT Container Properties and Usage Constraints

