
The Framework Profile

C1 Implementation

- USER REQUIREMENTS -

Alessandro Pasetti & Vaclav Cechticky

13 October 2016

Revision 1.2.2
PP-SP-COR-0001

P&P Software GmbH
High Tech Center 1

8274 Tägerwilen
Switzerland

Web site: www.pnp-software.com
E-mail: pnp-software@pnp-software.com

Abstract

This document defines, justifies, and verifies the User Requirements
for the C1 Implementation of the FW Profile. The FW Profile is a
specification-level modelling language defined as a restriction of UML. The
core modelling constructs offered by the FW Profile are State Machines,
Procedures (equivalent to UML’s Activity Diagrams), and RT Containers
(encapsulations of threads).

The FW Profile is implementation-independent. The C1 Implementa-
tion is a C language implementation of the modelling concepts of the FW
Profile. The main features of the C1 Implementation are: small memory
footprint, small CPU demands, scalability, and high reliability.

The C1 Implementation is provided with a Qualification Data Package
which can be used to support the certification of applications built using
its components.

1

www.pnp-software.com
mailto:pnp-software@pnp-software.com

PP-SP-COR-0001 Revision 1.2.2

Contents

1 Change History 7

2 Introduction 12
2.1 Intended Use of C1 Implementation 12
2.2 Requirement Definition . 12

2.2.1 Requirement Justification 13
2.2.2 Requirement Implementation 13
2.2.3 Requirement Verification 13

3 State Machine - Functional Requirements 14
3.1 State Machine Descriptor (SMD) Requirements 15
3.2 Creation Requirements . 16
3.3 Configuration Requirements . 18
3.4 Start and Stop Requirements . 22
3.5 Transition Command Requirements 24
3.6 Error Handling Requirements . 29
3.7 Derived State Machine Creation Requirements 30
3.8 Derived State Machine Configuration Requirements 35

4 Procedure - Functional Requirements 38
4.1 Procedure Descriptor (PRD) Requirements 39
4.2 Creation Requirements . 40
4.3 Configuration Requirements . 42
4.4 Start and Stop Requirements . 45
4.5 Execution Requirements . 46
4.6 Error Handling Requirements . 50
4.7 Derived Procedure Creation Requirements 51
4.8 Derived Procedure Configuration Requirements 55

5 RT Containers - Functional Requirements 58
5.1 RT Container Descriptor (RTD) Requirements 59
5.2 Creation Requirements . 60
5.3 Configuration Requirements . 61
5.4 Start and Stop Requirements . 63
5.5 Notification Requirements . 64
5.6 Access Requirements . 68
5.7 Error Handling Requirements . 70

6 Non-Functional Requirements 71
6.1 Coding Requirements . 71
6.2 Use Requirements . 72
6.3 Resource Requirements . 74
6.4 Concurrency Requirements . 79
6.5 Verification Requirements . 81
6.6 Dependency Requirements . 83

A Implementation of FW Profile Concepts 84
A.1 State Machine Concept . 84

c©2012 P&P Software GmbH. All Rights Reserved. 2

PP-SP-COR-0001 Revision 1.2.2

A.2 Procedure Concept . 86
A.3 RT Container Concept . 87

B Error Checks 88

C Verification of Start/Stop Behaviour 95
C.1 State Machines . 95
C.2 Procedures . 96
C.3 RT Containers . 96

D Verification of Execution Behaviour 97
D.1 State Machine Transition Commanding 97
D.2 Procedure Execution . 100

E Verification of Notification Behaviour 101

c©2012 P&P Software GmbH. All Rights Reserved. 3

PP-SP-COR-0001 Revision 1.2.2

List of Figures

1 State Machine Start/Stop Behaviour 23
2 Logic for Processing Transition Commands by a State Machine . 25
3 Logic for Executing Transitions in a State Machine 26
4 Procedure Start/Stop Behaviour 45
5 Procedure Execution Logic . 47
6 RT Container Start/Stop Behaviour 64
7 Notification and Activation Procedures 67

c©2012 P&P Software GmbH. All Rights Reserved. 4

PP-SP-COR-0001 Revision 1.2.2

List of Tables
1 Changes introduced in Revision 1.2.2 7
2 Changes introduced in Revision 1.2.1 7
3 Changes introduced in Revision 1.2.0 8
4 Changes introduced in Revision 1.1.0 11
1 Mapping of SM Elements to Data Structures in the SMD 84
2 Mapping of SM Operations to Functions in FwSmCore.h 85
3 Mapping of Procedure Elements to Data Structures in the PRD . 86
4 Mapping of Procedure Operations to Functions in FwPrCore.h . 86
5 Mapping of RT Container Elements to Functions 87
6 Mapping of RT Container Operations to Functions in FwRtCore.h 87
7 Verification of Configuration Errors Detected in FwSmConfig.h . 88
8 Verification of Configuration Errors Detected in FwPrConfig.h . 91
9 Verification of Dynamic State Machine and Procedure Errors . . 94
10 Verification of Start Behaviour for a State Machine 95
11 Verification of Stop Behaviour for a State Machine 95
12 Verification of Start and Stop Behaviour of a Procedure 96
13 Verification of Start and Stop Behaviour of a RT Container . . . 96
14 Verification of Transition Command Behaviour of Figure 2 97
15 Verification of Transition Command Behaviour of Figure 3 98
16 Verification of Execution Behaviour of Figure 5 100
17 Verification of Notification Procedure of Figure 7 101
18 Verification of Activation Procedure of Figure 7 101
19 Verification of Activation Thread of Listing 1 102

c©2012 P&P Software GmbH. All Rights Reserved. 5

PP-SP-COR-0001 Revision 1.2.2

Listings
1 Pseudo-code of Activation Thread 66

c©2012 P&P Software GmbH. All Rights Reserved. 6

PP-SP-COR-0001 Revision 1.2.2

No part of this publication may be reproduced, transmitted, transcribed,
stored in any retrieval system, or translated into any language by any means

without express prior written permission of P&P Software GmbH.

Copyright c©2012 P&P Software GmbH. All Rights Reserved.

c©2012 P&P Software GmbH. All Rights Reserved. 7

PP-SP-COR-0001 Revision 1.2.2

1 Change History

This section lists the changes made in successive revisions of this document.
Changes are classified according to their type. The change type is identified in
the second column in the table according to the following convention:

• ”E”: Editorial or stylistic change
• ”L”: Clarification of existing text
• ”D”: A requirement or part of a requirement which was present in the

previous revision has been deleted
• ”C”: A requirement or part of a requirement which was presented in the

previous revision has been changed
• ”N”: A new requirement has been introduced

Table 1: Changes introduced in Revision 1.2.2

Section Type Description

n.a. E Corrected reference number in [2]

Table 2: Changes introduced in Revision 1.2.1

Section Type Description

n.a. E Corrected error in document reference number in
page headers

c©2012 P&P Software GmbH. All Rights Reserved. 8

PP-SP-COR-0001 Revision 1.2.2

Table 3: Changes introduced in Revision 1.2.0

Section Type Description

n.a. L Clarified formulation of abstract

n.a. L Added list of code listings to the table of contents

2 L Extended introduction to cover RT Containers

2.1 E Minor editorial corrections

3.3 E Minor editorial change in verification part of require-
ment FW-3.3.2; in requirement FW-3.3.3, corrected
reference to: ”FwSmTestCaseCheck7”, to reference
to: ”FwSmTestCaseCheck6”; in requirement FW-
3.3.5: corrected reference to section 5.2 to reference
to section 4.2

3.3 N Added a note to requirement FW-3.3.2 to clarify the
definition of ”configuration” and modified require-
ment justification to reflect this definition

3.4 E In requirement FW-3.4.3: changed ”FwSmStart” to
”FwSmStop”

3.4 E Minor editorial change in implementation part of re-
quirement FW-3.4.2

3.5 E Minor editorial correction in justification part of
requirement FW-3.5.2; in requirement FW-3.5.5:
changed reference to section 5.2, to reference to sec-
tion 4.2; fixed typo in verification part of requirement
FW-3.5.6

3.7 E Minor editorial change in justification part of re-
quirement FW-3.7.5

3.7 C Expanded the set of test case which verify require-
ment FW-3.7.5

4.1 C Changed verification method of requirement FW-
4.1.2 from ’A’ to ’R’

4.3 E Fixed typos in requirement FW-4.3.1

4.3 N Added a note to requirement FW-4.3.2 to clarify the
definition of ”configuration” and modified require-
ment justification to reflect this definition

4.4 L Fixed typos and improved formulation of require-
ment FW-4.4.2

4.5 L Minor clarification in formulation of requirement
FW-4.5.2

c©2012 P&P Software GmbH. All Rights Reserved. 9

PP-SP-COR-0001 Revision 1.2.2

Section Type Description

5 N New section on functional requirements of RT Con-
tainers

6.1 C Changed verification method of requirement FW-
6.1.1 from ’T’ to ’R’

6.2 C Changed verification method of requirements in this
section from ’T’ to ’R’

6.2 N Added requirement FW-6.2.3 on RTD Internal
Structure

6.2 E Minor editorial changes to requirements FW-6.2.1
and FW-6.2.2

6.3 C Extended requirement FW-6.3.1 on code memory
footprint to also cover RT container; changed ver-
ification method for all requirements in this section
from ”Testing” to ”Review”

6.3 N Renumbered requirements FW-6.3.4 (State Machine
Execution Time) and FW-6.3.5 (Procedure Execu-
tion Time) to, respectively, FW-6.3.5 and FW-6.3.6
and added a new requirement FW-6.3.4 cover mem-
ory footprint of RTDs

6.3 E Fixed typo in references to user manual

6.4 C Modified requirement FW-6.4.1 on concurrent envi-
ronment to apply only to state machine and proce-
dure parts of the C1 Implementation and changed its
verification method from ’T’ to ’R’

6.4 N Added requirement FW-6.4.2 to cover concurrent use
of RT containers

6.5 C Modified formulation of requirement FW-6.5.1 on
Test Coverage to refer to ”system calls” rather than
just ”calls to malloc function”

6.5 N New requirement FW-6.5.2 on stress testing of RT
containers

6.6 C Restricted requirement FW-6.6.1 on external li-
braries to state machine and procedure part of the
C1 Implementation; changed verification method for
this requirement from ’T’ to ’R’

6.6 N Added new requirement FW-6.6.2 on use of POSIX-
compliant library

6.6 E Removed erroenous reference to appendix E from re-
quirement FW-6.6.1

c©2012 P&P Software GmbH. All Rights Reserved. 10

PP-SP-COR-0001 Revision 1.2.2

Section Type Description

A N Added section A.3 on implementation of RT Con-
tainer Concept

A.2 E Fixed typo in introductory text of this section

B E In table 7: fixed typo in test case for smNullCState
and in description of smUndefinedTransSrc;
in table 8: changed smUnreachablePNode to
smUnreachableDNode; in table 9: changed
FwSmTestCaseCheck4 to FwPrTestCaseCheck4

and deleted entry for FwSmTestCaseTransErr2 from
bottom row of table

B D Deleted FwPrTestCaseCheck3 from verification of
prTooManyActions; deleted FwPrTestCaseCheck7

from verification of prIllNOfOutFlows

C N Added section C.3 on verification Start/Stop be-
haviour of RT Containers

C.2 E Fixed typos in introductory text of this section and
in first column of table 12

D.1 E Deleted duplicated entry for FwSmTestCaseExecute3
from table 14

D.1 D Deleted entry for FwSmTestTrans3 from table 15

D.2 D Deleted entry for FwPrTestCaseExecute5 from first
line of table 16

E N New appendix section on verification of notification
behaviour of RT Containers

c©2012 P&P Software GmbH. All Rights Reserved. 11

PP-SP-COR-0001 Revision 1.2.2

Table 4: Changes introduced in Revision 1.1.0

Section Type Description

3.2 L Replaced reference to Acceptance Test Procedure
document with reference to User Manual in verifi-
cation part of requirement FW-3.2.2

3.5 E Fixed typo in requirement FW-3.5.2

3.5 N Added new requirement FW-3.5.3 on the order of
evaluation of guards

3.7 L Replaced reference to Acceptance Test Procedure
document with reference to User Manual in verifi-
cation part of requirement FW-3.7.3

4.2 L Replaced reference to Acceptance Test Procedure
document with reference to User Manual in verifi-
cation part of requirement FW-4.2.3

4.5 N Added new requirement FW-4.5.3 on the order of
evaluation of guards

4.7 L Replaced reference to Acceptance Test Procedure
document with reference to User Manual in verifi-
cation part of requirement FW-4.7.3

6.1 L Replaced reference to Acceptance Test Procedure
document with reference to User Manual in verifi-
cation part of requirement FW-6.1.2

6.5 L Replaced reference to Acceptance Test Procedure
document with reference to User Manual in verifi-
cation part of requirement FW-6.5.1

B N Added test cases to verify presence of unreachable
states and unreachable pseudo-states in a SMD;
Added test cases to verify presence of unreachable
nodes in a PRD

c©2012 P&P Software GmbH. All Rights Reserved. 12

PP-SP-COR-0001 Revision 1.2.2

2 Introduction

This document defines, justifies and verifies the user requirements for the C1
Implementation. The C1 Implementation is a C-language implementation of the
State Machine Concept, of the Procedure Concept, and of the RT Container
Concept of the Framework (FW) Profile. The FW Profile is a specification-
level modelling language defined as a restriction of UML. The state machine
concept of the FW Profile is modelled on the state machine concept of UML
and the procedure concept of the FW Profile is modelled on the activity diagram
concept of UML. The RT container concept is specific to the FW Profile. The
FW Profile is defined in [1].

2.1 Intended Use of C1 Implementation

Although the C1 Implementation can be used wherever there is a need to im-
plement a state machine or procedure concept or a threading model with a
clear semantics, the high reliability of the implementation, the emphasis placed
on formally specifying and verifying its expected behaviour, and the small de-
mands on memory and processing resources mean that the C1 Implementation
is especially well-suited for mission-critical embedded applications.

Thus, the intended use of the C1 Implementation is to support the implemen-
tation of the state machine, procedure, and RT container concepts of the FW
Profile for mission-critical embedded applications.

2.2 Requirement Definition

Requirements are defined in tables with the following format:

FW-’x’/’V’ 〈Requirement Title〉

Requirement 〈Formulation of requirement〉

Note 〈Explicatory notes for requirement〉

Justification 〈Justification of requirement〉

Implementation 〈Dscription of how requirement is implemented〉

Verification 〈Dscription of how requirement is verified〉

Here, the suffix ’x’ is a numerical identifier which uniquely identifies the require-
ment within this document. The suffix ’V’ identifies the verification method for
the requirement according to the convention presented in section 2.2.3.

The explicatory notes are appended to the definition of the requirements where
there is a need to clarify the terms which are used in their formulation.

In addition to their definition, this document also provides the following infor-
mation for each requirement: a justification of the requirement; a description of
how the requirement is implemented; and a description of how the requirement
is verified.

c©2012 P&P Software GmbH. All Rights Reserved. 13

PP-SP-COR-0001 Revision 1.2.2

2.2.1 Requirement Justification

For each requirement, a justification is provided which validates the require-
ment. Requirements are justified with respect to the intended use of the C1
Implementation. The intended use of the C1 Implementation is to support the
implementation of the State Machine, Procedure and RT Container concepts
of the FW Profile for mission-critical embedded applications (see section 2.1).
Hence, a requirement is justified in proportion to its ability to further the ade-
quacy of the C1 Implementation to support the implementation of the FW Pro-
file in an environment where memory and processing resources are constrained
and where reliability is of paramount importance.

2.2.2 Requirement Implementation

For each requirement, the function or data structure or other code-level con-
struct in the source code which implements it is identified.

2.2.3 Requirement Verification

Verification information is provided for each requirement to demonstrate the
correct implementation of the requirement. The following verification methods
are possible:

• Verification by Review (’R’): the requirement is verified by inspecting the
code or its documentation.

• Verification by Analysis (’A’): the requirement is verified by analysing the
code, possibly with the help of a tool.

• Verification by Test (’T’): the requirement is verified by one or more test
cases in the Test Suite.

One single verification method is defined for each requirement. This is identified
as part of the requirement definition (see the description of the requirement
format in section 2.2).

The Test Suite which is used for the verification by test is a complete application
which demonstrates all aspects of the behaviour of the state machine, proce-
dure, and RT container implementation. It consists of a sequence of Test Cases
which are independent of each other. Each Test Case focuses on one particular
functional aspect of the C1 Implementation. The Test Suite is distributed with
the C1 Implementation. It is documented as part of the Doxygen documenta-
tion for the C1 Implementation and is described in the C1 Implementation User
Manual (see reference [2]).

c©2012 P&P Software GmbH. All Rights Reserved. 14

PP-SP-COR-0001 Revision 1.2.2

3 State Machine - Functional Requirements

This section defines the functional requirements for the State Machine part of
the C1 Implementation. The functional requirements are those which define the
functional behaviour of the state machines in the C1 Implementation.

FW-3.0.1/R Implementation of State Machine Concept

Requirement The C1 Implementation shall implement the state ma-
chine concept of the FW Profile of [1].

Justification The intended use of the C1 Implementation is to support
the implementation of the state machine concept of the
FW Profile.

Implementation The state machine behaviour specified by the FW Profile
is implemented by the FwSmCore.h interface of the C1
Implementation.

Verification The FW Profile defines state machines in terms of their
elements and of their behaviour. The state machine
behaviour is in turn defined in terms of three opera-
tions which can be performed upon a state machine
(start, stop, and command transition). Appendix A.1
shows how each state machine element is mapped to a
data structure in the C1 Implementation and how each
state machine operation is mapped to a function in the
FwSmCore.h interface of the C1 Implementation.

c©2012 P&P Software GmbH. All Rights Reserved. 15

PP-SP-COR-0001 Revision 1.2.2

3.1 State Machine Descriptor (SMD) Requirements

FW-3.1.1/R State Machine Descriptor (SMD)

Requirement It shall be possible to address and to manipulate a state
machine as a single entity (the State Machine Descriptor
or SMD).

Justification The intended use of the C1 Implementation is to provide
modules which can be deployed within another applica-
tion. The definition of the SMD simplifies the interface
between the modules of the C1 Implementation and the
user application.

Implementation The SMD is manipulated as an instance of type
FwSmDesc t.

Verification A state machine is represented by an instance of type
struct FwSmDesc and is manipulated as an instance of
type FwSmDesc t (a pointer to struct FwSmDesc). All
functions which operate on a state machine take an in-
stance of this type as their argument.

FW-3.1.2/R SMD Encapsulation

Requirement The SMD shall encapsulate all the information defin-
ing the configuration and the current state of its state
machine.

Justification The intended use of the C1 Implementation is to provide
modules which can be deployed within another applica-
tion. The encapsulation of all information related to a
state machine in a single data structure simplifies the in-
terface between the modules of the C1 Implementation
and the user application.

Implementation The SMD is defined as an instance of type struct

FwSmDesc.

Verification The SMD models all the elements of a state machine
(see section A.1) which define its configuration. It
models the current state of a state machine in field
curState.

c©2012 P&P Software GmbH. All Rights Reserved. 16

PP-SP-COR-0001 Revision 1.2.2

3.2 Creation Requirements

FW-3.2.1/T Creation Interface

Requirement The C1 Implementation shall provide an interface
through which a new SMD can be created.

Justification Applications which wish to manipulate a state machine
must first create the SMD which represents it.

Implementation The state machine creation interface is implemented in
FwSmDCreate.h and FwSmSCreate.h.

Verification In the test suite, test state machines are used. The
test state machines are created in functions with names
like: FwSmMakeTest<SM Name>. These make functions
exercise all SMD creation functions offered by the C1
Implementation.

FW-3.2.2/T Dynamic and Static Creation

Requirement It shall be possible to create a new SMD either statically
or dynamically.

Note The term static refers to an instantiation process which
does not rely on dynamic memory allocation.

Justification Dynamic creation of state machine is convenient but
may be forbidden in mission-critical applications.

Implementation Dynamic state machine creation is implemented in
FwSmDCreate.h. Static state machine creation is im-
plemented in FwSmSCreate.h.

Verification In the test suite, test state machines are used.
By default, the test state machines are cre-
ated dynamically in functions with names like:
FwSmMakeTest<SM Name>. Static creation of state
machines is demonstrated in make functions with
names like: FwSmMakeTest<SM Name>Static.

FW-3.2.3/T Release of SMD

Requirement If an SMD is created dynamically, then it shall also be
possible to destroy it dynamically by releasing the mem-
ory that was allocated to it.

Justification The target applications for the C1 Implementation are
mission-critical applications. In this domain, dynamic
memory allocation is only allowed if the means are
available to reclaim the dynamically allocated mem-
ory.

c©2012 P&P Software GmbH. All Rights Reserved. 17

PP-SP-COR-0001 Revision 1.2.2

Implementation Functions FwSmRelease and FwSmReleaseRec are pro-
vided in FwSmDCreate.h to release the memory allo-
cated when a new SMD is created dynamically.

Verification In most Test Cases in the Test Suite application, SMDs
are created dynamically and the memory they use is
then released before the end of the test. In the Accep-
tance Test for the C1 Implementation (see [2]), the Test
Suite is run with the Valgrind tool and it is verified that
no memory leaks occur and that all memory allocated
dynamically is then released in an orderly way.

c©2012 P&P Software GmbH. All Rights Reserved. 18

PP-SP-COR-0001 Revision 1.2.2

3.3 Configuration Requirements

FW-3.3.1/T Configuration Interface

Requirement The C1 Implementation shall provide an interface
through which an SMD can be configured and made
to match the characteristics of a certain state ma-
chine.

Justification Applications which wish to manipulate a state machine
must configure it before they can send transition com-
mands to it.

Implementation The state machine configuration interface is imple-
mented in FwSmConfig.h.

Verification In the test suite, test state machines are configured.
The Test Suite exercises all configuration functions in
FwSmConfig.h.

FW-3.3.2/T Reconfiguration of an SMD

Requirement It shall not be possible to re-configure an SMD which
has already been configured.

Note The term configuration refers to the operations which
must be performed on a newly-created SMD before it
can be started.

Justification The C1 Implementation targets mission-critical applica-
tions. In this domain, dynamic reconfiguration of state
machines would be regarded as unsafe because it makes
it harder to determine behaviour through static analy-
sis.

c©2012 P&P Software GmbH. All Rights Reserved. 19

PP-SP-COR-0001 Revision 1.2.2

Implementation The size of a state machine (the number of states, of
choice pseudo-states, of transitions, of actions, and of
guards) can only be set when its SMD is created and
cannot therefore be changed after creation.

After creation, three configuration operations must be
performed on an SMD: (a) definition of taddhe states
specified when the SMD was created (with function
FwSmAddState); (b) definition of the choice pseudo-
states specified when the SMD was created (with func-
tion FwSmAddChoicePseudoState); (c) definition of the
transitions specified when the SMD was created (with
functions with names like: FwSmAddTrans*). All of these
operations add an item to an SMD (either a state, or
a choice pseudo-state, or a transition). The SMD uses
data structures with a fixed size. The configuration op-
erations check whether there is space for the new item.
If this is not the case, they return with an error. Since
no functions are available for removing items from an
SMD, it follows that, once an SMD has been config-
ured, any attempt to execute a configuration function
will fail with an error.

Verification Test Case FwSmTestCaseConfigErr2 verifies that at-
tempts to reconfigure a state machine which has already
been configured result in errors. More specifically, the
test case creates and configures a state machine and then
verifies that the following operations fail: (a) adding a
new state; (b) re-defining an existing state; (c) adding
a new choice pseudo-state; (d) re-defining an existing
choice pseudo-state; (e) adding a new transition; (f) re-
defining an existing transition.

FW-3.3.3/T Configuration Check

Requirement It shall be possible to check the completeness and cor-
rectness of the configuration of an SMD (Configuration
Check).

Justification The C1 Implementation targets mission-critical appli-
cations. In this domain, it is important to be able to
periodically check the integrity of an application.

c©2012 P&P Software GmbH. All Rights Reserved. 20

PP-SP-COR-0001 Revision 1.2.2

Implementation The Configuration Check is implemented in functions
FwSmCheck and FwSmCheckRec. These functions ver-
ify the completeness of the state machine configuration
by checking that all states, choice pseudo-states, and
transitions of a state machine have been defined. The
correctness of the configuration of the state machine is
checked indirectly as follows. The configuration func-
tions in FwSmConfig.h perform a correctness check be-
fore executing a configuration request. If a violation
of correctness is detected, it is reported by setting the
error code field of the SMD. The Configuration Check
verifies that the error code is set to ”success”. This
value implies that no configuration errors have been de-
tected and that therefore the configuration of the SMD
is correct.

Verification The ability of the Configuration Check to report an
incomplete configuration is verified in the test cases:
FwSmTestCaseCheck1 to FwSmTestCaseCheck6. The
test cases which verify the ability of the Configura-
tion Check to detect incorrect configuration requests are
identified in Appendix B.

FW-3.3.4/T Configuration Status Print

Requirement It shall be possible to extract and print the configuration
information of an SMD.

Justification This capability is useful during debugging.

Implementation The configuration print service is implemented in func-
tion FwSmPrintConfig.

Verification The configuration print service is veri-
fied in test cases FwSmTestCasePrint1 and
FwSmTestCasePrint2.

FW-3.3.5/R Configuration Constraints

Requirement The SMD configuration interface shall enforce the syn-
tactical constraints C1 to C8 defined in section 4.2 of
the FW Profile Definition in [1].

Justification The C1 Implementation is intended to support the state
machine concept of the FW Profile. Enforcement of
these constraints is part of the support of the FW Profile
model of a state machine.

Implementation Enforcement of the constraints is achieved by the way
the FwSmAddTrans* functions in FwSmConfig.h are de-
fined: their interfaces make definition of a transition
which violates a constraint impossible.

c©2012 P&P Software GmbH. All Rights Reserved. 21

PP-SP-COR-0001 Revision 1.2.2

Verification Constraint C1 (”The same pseudo-state cannot be
both source and target for a transition”) is enforced
because the only FwSmAddTrans* functions which allow
definition of a transition between two pseudo-states are
FwSmAddTransIpsToCps and FwSmAddTransCpsToFps

and these functions guarantee that source and destina-
tion are different.

Constraint C2 (”The source and target of a transition
cannot both be choice pseudo-states”) is enforced be-
cause there is no FwSmAddTrans* function which allows
definition of a transition with a choice pseudo-state at
both ends.

Constraint C3 (”The transition that has the initial
pseudo-state as source can have neither a guard nor
a trigger”) is enforced because the transition out of
the initial pseudo-state is defined through functions
FwSmAddTransIps* and these functions allow neither a
guard nor a trigger to be defined.

Constraint C4 has been deleted.

Constraint C5 (”Transitions that have a choice
pseudo-state as source cannot have a transition trig-
ger”) is enforced because the transitions out of a
choice pseudo-state are defined through functions
FwSmAddTransCps* and these functions do not allow a
trigger to be attached to the transition.

Constraint C6 has been deleted.

Constraint C7 (”Transitions that have a state as a
source must have a transition command”) is enforced
because the transitions out of a state are defined through
functions FwSmAddTransSta* and these functions re-
quire definition of a transition command.

Constraint C8 (”Transitions can only link states
and/or pseudo-states that belong to the same state ma-
chine”) is enforced because no functions are provided to
let states or pseudo-states of different state machines be
linked together through a transition.

c©2012 P&P Software GmbH. All Rights Reserved. 22

PP-SP-COR-0001 Revision 1.2.2

3.4 Start and Stop Requirements

FW-3.4.1/T Start and Stop Interface

Requirement The C1 Implementation shall provide an interface
through which the state machine represented by an SMD
can be started, stopped and queried for its present Start-
ed/Stopped status.

Justification The Start/Stop operations are defined by the FW Pro-
file. The intended use of the C1 Implementation is to
support the implementation of the state machine con-
cept of the FW Profile.

Implementation The Start/Stop operations are implemented in
FwSmCore.h by functions FwSmStart and FwSmStop.
The status query operation is implemented by function
FwSmIsStarted.

Verification The Test Cases in the Test Suite start, stop and query
state machines through the functions of FwSmCore.h

and this interface has 100% coverage of its implementa-
tion.

FW-3.4.2/T Start Behaviour

Requirement The Start interface shall implement the behaviour de-
fined in the activity diagram on the left-hand side of
Figure 1.

Justification The activity diagram of Figure 1 is the same as in the
FW Profile definition of [1].

Implementation The Start interface is implemented in function
FwSmStart.

Verification The verification of this requirement is done in Appendix
C.1 where it is shown that all branches of the activity
diagrams of 1 are covered by at least one Test Case in
the Test Suite.

FW-3.4.3/T Stop Behaviour

Requirement The Stop interface shall implement the behaviour de-
fined in the activity diagram on the right-hand side of
Figure 1.

Justification The activity diagram of Figure 1 is the same as in the
FW Profile Definition Document of [1].

Implementation The Stop interface is implemented in the function
FwSmStop.

c©2012 P&P Software GmbH. All Rights Reserved. 23

PP-SP-COR-0001 Revision 1.2.2

Verification The verification of this requirement is done in Appendix
C.1 where it is shown that all branches of the activity
diagrams of 1 are covered by at least one Test Case in
the Test Suite.

Fig. 1: State Machine Start/Stop Behaviour

c©2012 P&P Software GmbH. All Rights Reserved. 24

PP-SP-COR-0001 Revision 1.2.2

3.5 Transition Command Requirements

FW-3.5.1/T Transition Command Interface

Requirement The C1 Implementation shall provide an interface
through which Transition Commands can be sent to a
state machine.

Note A Transition Command is a command sent to a State
Machine requesting it to perform a certain state transi-
tion.

Justification The commanding of a state machine through transition
commands is defined by the FW Profile. The intended
use of the C1 Implementation is to support the imple-
mentation of the state machine concept of the FW Pro-
file.

Implementation The Transition Command operations are implemented
in FwSmCore.h by functions FwSmMakeTrans and
FwSmExecute.

Verification The Test Cases in the Test Suite send transition com-
mands to state machines through the functions of
FwSmCore.h and this interface has 100% coverage of its
implementation.

FW-3.5.2/T Transition Command Behaviour

Requirement The C1 Implementation shall implement the Transition
Command behaviour defined in the activity diagrams of
Figures 2 and 3.

Justification The activity diagrams of Figures 2 and 3 are the same
as the activity diagrams in reference [1] which define
the handling of transition commands in the FW Pro-
file.

Implementation The Transition Command behaviour is implemented in
functions FwSmMakeTrans and (only for the ”Execute”
Transition Command) FwSmExecute.

Verification The verification of this requirement is done in Appendix
D.1 where it is shown that every branch of the activity
diagrams of Figures 2 and 3 is covered by at least one
Test Case in the Test Suite.

c©2012 P&P Software GmbH. All Rights Reserved. 25

PP-SP-COR-0001 Revision 1.2.2

Fig. 2: Logic for Processing Transition Commands by a State Machine

c©2012 P&P Software GmbH. All Rights Reserved. 26

PP-SP-COR-0001 Revision 1.2.2

Fig. 3: Logic for Executing Transitions in a State Machine

FW-3.5.3/T Order of Evaluation of Guards

Requirement If processing of a transition command requires evalua-
tion of several transition guards associated to different
transitions out of the same state or choice pseudo-state,
then the transition guards shall be evaluated in the or-
der in which their transitions have been added to the
state machine during the state machine configuration
process.

Note Transitions are ”added” to a state machine during the
state machine configuration process. This requirement
assumes that they are added in sequence and one by
one.

Justification In principle, if the guards out of a state or choice pseudo-
state are mutually exclusive and do not have side effects,
their order of evaluation is irrelevant. For this reason,
the FW Profile of [1] does not specify the order of eval-
uation of transition guards. However, in embedded ap-
plications with constrained CPU and memory resources,
determinism in the order of evaluation may be exploited
to improve run-time efficiency (for instance, by ensuring
that the guard which is most likely to be true is evalu-
ated first) and to implement ”else” clauses in an efficient
manner (see section 3.6 of [2]).

c©2012 P&P Software GmbH. All Rights Reserved. 27

PP-SP-COR-0001 Revision 1.2.2

Implementation The evaluation of the guards on the transitions out of
a state is done in function FwSmMakeTrans. The eval-
uation of the guards on the transitions out of a choice
pseudo-state is done in function FwSmExecute.

Verification The order of evaluation is verified in test case
FwSmTestCaseTrans7 for transitions out of a state and
in test case FwSmTestCaseTrans8 for transitions out of
a choice pseudo-state.

FW-3.5.4/A Commanding Interface

Requirement After having been completely and successfully config-
ured, a state machine shall only ever change its internal
state either in response to a Start/Stop command or in
response to a Transition Command.

Justification The state machine model of the FW Profile stipulates
that the internal state of a state machine can only
change in response to a Start/Stop command or in re-
sponse to a Transition Command.

Implementation The only functions in FwSmCore.h which can change
the current state of a state machine are: FwSmStart,
FwSmStop, FwSmMakeTrans, and FwSmExecute. These
are precisely the functions which implement the
Start/Stop behaviour and the response to a Transition
Command.

Verification A search for curState (the field of the SMD which
holds the current state) in the FwSmCore.c file shows
that this attribute is assigned to in only the follow-
ing functions: FwSmStart, FwSmStop, ExecTrans. The
last function is used by both FwSmMakeTrans and by
FwSmExecute.

FW-3.5.5/T Dynamical Constraint

Requirement The C1 Implementation shall check compliance with the
dynamical constraint D1 defined in section 5.2 of the
FW Profile Definition in [1].

Justification The D1 constraint represents a non-nominal situation
which can only be recognized dynamically. The C1 Im-
plementation targets mission critical applications where
the ability to detect non-nominal situations is important
to guarantee the integrity of a system.

Implementation The check for the D1 condition is implemented in the
FwSmExecTrans function. Its detection results in error
smTransErr.

c©2012 P&P Software GmbH. All Rights Reserved. 28

PP-SP-COR-0001 Revision 1.2.2

Verification Test Cases FwSmTestCaseTransErr1 and
FwSmTestCaseTransErr2 simulate situations where
error smTransErr is reported because execution of a
state transition encounters a choice pseudo-state which
has no out-going transitions with a guard evaluating to
true.

FW-3.5.6/T State Machine Data

Requirement As part of the processing of a Transition Command to a
state machine, it shall be possible to exchange data with
the actions and guards of the state machine.

Justification The FW Profile stipulates that transition commands
may carry data.

Implementation Functions FwSmMakeTrans and ExecTrans in
FwSmCore.h implement the execution of transition
commands. Execution of transition commands is the
only way to trigger the execution of the actions of a
state machine or the evaluation of its guards. These two
functions pass the SMD to the functions implementing
the state machine actions and state machine guards. In
the SMD, field smData is reserved to hold a pointer to a
generic data structure. This data structure is intended
to hold the data which are exchanged with the actions
and guards of a state machine.

Verification The Test State Machines used in the Test Cases
use an instance of struct TestSmData as the means
to exchange data with the actions and guards of
a state machine. For example, the Test Cases
FwSmTestCaseExecute* use this data structure to keep
track of which actions are executed during a test.

FW-3.5.7/T State Machine State

Requirement It shall be possible to read the current state of a state
machine.

Justification Applications need to be able to check the current state
of a state machine.

Implementation Read-only access to the state of a state machine
is provided by function FwSmGetCurState. Function
FwSmIsStarted checks whether a state machine has
been started.

Verification Function FwSmGetCurState is used in virtually
all Test Cases of the Test Suite. Function
FwSmIsStarted is used in, for instance, Test Case
FwSmTestCaseStart1.

c©2012 P&P Software GmbH. All Rights Reserved. 29

PP-SP-COR-0001 Revision 1.2.2

3.6 Error Handling Requirements

FW-3.6.1/T Error Code

Requirement The SMD shall store the code of the last error encoun-
tered during the SMD configuration process or during
the processing of transition commands.

Justification The C1 Implementation targets embedded mission-
critical applications where there normally is a need to
periodically monitor the integrity of an application. The
embedded character of the application, however, also
means that memory resources are often limited and it
may consequently not be possible to maintain a log of
all errors. This requirement represents a compromise
between these two needs in the sense that it allows an
application to check whether an error has occured with
only minimal storage requirements.

Implementation The error code is stored in field errCode of the
SMD.

Verification The Test Cases with names like FwSmTestCaseCheck*

and FwSmTestCase*Err test various error conditions
and verify that the most recent error condition is cor-
rectly stored in the error code of an SMD. Appendix B
lists the configuration and dynamic errors which may be
reported in the error code of an SMD and, for each er-
ror, it identifies a Test Case where that error is reported
and verified.

FW-3.6.2/T Access to Error Code

Requirement The SMD shall provide read-only access to the error
code.

Justification See the justification of the previous requirement.

Implementation The value of the error code can be read with function
FwSmGetErrCode.

Verification See verification of the previous requirement.

c©2012 P&P Software GmbH. All Rights Reserved. 30

PP-SP-COR-0001 Revision 1.2.2

3.7 Derived State Machine Creation Requirements

FW-3.7.1/T State Machine Extension Interface

Requirement The C1 Implementation shall provide an interface
through which the SMD of a derived state machine can
be created from the SMD of a base state machine.

Justification The FW Profile defines an adaptation mechanism
through which a new state machine can be built from
an existing state machine by selectively modifying some
of its elements. The extension mechanism of the C1 Im-
plementation is an implementation of this adaptation
mechanism.

Implementation The state machine extension interface is implemented
alongside the state machine creation interface in
FwSmDCreate.h and FwSmSCreate.h.

Verification In the test suite, derived state machines are
used. The derived state machines are cre-
ated in functions FwSmMakeTestSMDer1 and
FwSmMakeTestSMDer1Static. These make func-
tions exercise all derived SMD creation functions
offered by the C1 Implementation.

FW-3.7.2/T Dynamic and Static Creation of Derived SMD

Requirement It shall be possible to create the SMD of a new derived
state machine either statically or dynamically.

Note The term static refers to an instantiation process which
does not rely on dynamic memory allocation.

Justification Dynamic creation of a derived state machine is conve-
nient, but may be forbidden in mission-critical applica-
tions.

Implementation Dynamic creation of a derived state machine is im-
plemented in FwSmDCreate.h. Static creation of
a derived state machine creation is implemented in
FwSmSCreate.h.

Verification In the test suite, derived state machines are used. A
derived state machine is created dynamically in func-
tion FwSmMakeTestSMDer1 and statically in function
FwSmMakeTestSMDer1Static.

c©2012 P&P Software GmbH. All Rights Reserved. 31

PP-SP-COR-0001 Revision 1.2.2

FW-3.7.3/A Release of Derived SMD

Requirement If the SMD of a derived state machine is created dy-
namically, then it shall also be possible to destroy it dy-
namically by releasing the memory that was allocated
to it.

Justification The target applications for the C1 Implementation are
mission-critical applications. In this domain, dynamic
memory allocation is only allowed if the means are
available to reclaim the dynamically allocated mem-
ory.

Implementation Function FwSmReleaseDer is provided in
FwSmDCreate.h to release the memory allocated
when a new derived SMD is created dynamically.

Verification Test Cases FwSmTestCaseDer1, FwSmTestCaseDer3,
FwSmTestCaseDerConfigErr1 and
FwSmTestCaseDerEmbed1 manipulate derived state
machines whose SMD is created dynamically. The
memory used by these SMDs is released before the end
of the test. As part of the Acceptance Test Procedure
for the C1 Implementation (see [2]) the Test Suite
is run with the Valgrind tool to check that there
are no memory leaks and that all memory allocated
dynamically is then released in an orderly way.

FW-3.7.4/T Time of Derived SMD Creation

Requirement It shall be possible to create a derived state ma-
chine from a base state machine at any time after the
base state machine has been fully and correctly config-
ured.

Note This requirement in particular implies that state ma-
chine extension can be done on state machines which
have already been started.

Justification This requirement complements the requirement allowing
dynamic creation of derived state machines: the inten-
tion behind both requirements is to allow an application
to create a new derived state machine at any time and
under any circumstances.

Implementation Function FwSmCreateDer which creates the SMD for
a new derived state machine performs no check on
the state of the base state machine (but, if the base
state machine is not fully and correctly configured,
the behaviour of the derived state machine is unde-
fined).

c©2012 P&P Software GmbH. All Rights Reserved. 32

PP-SP-COR-0001 Revision 1.2.2

Verification Test Cases FwSmTestCaseDer1, FwSmTestCaseDer3,
FwSmTestCaseDerConfigErr1 and
FwSmTestCaseDerEmbed1 manipulate derived state ma-
chines whose SMD is created dynamically. Test Cases
FwSmTestCaseDer1, FwSmTestCaseDerConfigErr1

and FwSmTestCaseDerEmbed1 derive the new SMD
from a base state machine which has not yet been
started whereas Test Case FwSmTestCaseDer3 derives
it from a base state machine which has already been
started.

FW-3.7.5/T Configuration of Derived SMD at Creation

Requirement After successful creation, the SMD of a derived state
machine shall be a structural clone of the SMD of the
base state machine.

Note The expression structural clone must be understood as
follows. State machine B is a structural clone of state
machine A if the following conditions are satisfied: A
has the same states with the same actions as B; A has
the same choice pseudo-states as B; A has the same
transitions between the same states or choice pseudo-
states and with the same actions and guards as B; if
state S1 of A has an embedded state machine A1, then
state S1 of B has an embedded state machine which is
a structural clone of A1.

Justification The state machine extension mechanism is intended to
represent the state machine adaptation mechanism of
the FW Profile. The adaptation mechanism of FW Pro-
file is implemented in the C1 Implementation through
a 2-step process: first, a clone of the base state ma-
chine is obtained by extending the base state machine
and then selected elements of the derived state machine
are overridden. This implementation of the adaptation
mechanism therefore requires that a newly derived state
machine be a clone of its base state machine.

c©2012 P&P Software GmbH. All Rights Reserved. 33

PP-SP-COR-0001 Revision 1.2.2

Implementation The SMD (i.e. the struct FwSmDesc) is internally split
into two parts: the extension descriptor and the base
descriptor. The base descriptor holds the information
about the topology of a state machine (its states and
choice pseudo-states and their inter-connections). The
extension descriptor holds the information about the ac-
tions, guards, and embedded state machines. The base
descriptor is shared between a base state machine and
its derived state machines. Hence, a derived state ma-
chine is guaranteed by design to have the same topol-
ogy as its base state machine. The equality of the
guards and actions and the fact that embedded state
machines of homologous states are structural clones is
implemented in the FwSmCreateDer function (for the
case of dynamic state machine extension) and in the
FwSmInitDer function (for the case of static state ma-
chine extension).

Verification Test Cases FwSmTestCaseDerConfig1 and
FwSmTestCaseDerConfig2 verify that a derived
state machine and its base state machine have the
same actions and guards for the case of, respectively,
dynamic and static state machine extension. Test cases
FwSmTestCaseDer3 and FwSmTestCaseDer3 verify that
a derived state machine and its base have the same
behaviour for the case of, respectively, dynamic and
static state machine extension.

FW-3.7.6/T State of Derived SMD at Creation

Requirement After successful creation, the SMD of a derived state
machine shall be in the Stopped state.

Justification This requirement enhances determinism of behaviour
and determinism of behaviour is important in mission-
critical applications.

Implementation The initial state of a derived state machine is set in the
FwSmCreateDer function (for the case of dynamic state
machine extension) and in the FwSmInitDer function
(for the case of static state machine extension).

Verification Test Cases FwSmTestCaseDerConfig1 and
FwSmTestCaseDerConfig2 verify that a derived
state machine is in the Stopped state at creation for the
case of, respectively, dynamic and static state machine
extension.

FW-3.7.7/T Error Code of Derived SMD at Creation

c©2012 P&P Software GmbH. All Rights Reserved. 34

PP-SP-COR-0001 Revision 1.2.2

Requirement After successful creation, the error code of a derived
state machine shall be the same as the error code of the
base state machine.

Justification Extension of a state machine should only be done if
the base state machine is correctly and fully config-
ured (namely if no errors are reported by its error
code). If this constraint is not satisfied, then the de-
rived state machine cannot be assumed to be properly
configured. The fact that its error code is the same as
the (non-nominal) error code of its base state machine
makes it easier for an application to detect a situation
where a state machine has been derived from a base
state machine which was not correctly configured (and
which therefore had its error code set to a non-nominal
value).

Implementation The initial value of the error code of a derived state
machine is set in the FwSmCreateDer function (for the
case of dynamic state machine extension) and in the
FwSmInitDer function (for the case of static state ma-
chine extension).

Verification Test Cases FwSmTestCaseDerConfig1 and
FwSmTestCaseDerConfig2 verify that a derived
state machine has the same error code as its base state
machine for the case of, respectively, dynamic and
static state machine extension.

c©2012 P&P Software GmbH. All Rights Reserved. 35

PP-SP-COR-0001 Revision 1.2.2

3.8 Derived State Machine Configuration Requirements

FW-3.8.1/T Action Override

Requirement After a derived state machine has been successfully cre-
ated, it shall be possible to override one or more of
its actions with a new action (action override opera-
tion).

Justification The overriding of an action is one of the adaptation
mechanisms mandated by the FW Profile.

Implementation The action override operation is implemented by func-
tion FwSmOverrideAction in FwSmConfig.h.

Verification The action override mechanism is used in the
Test State Machine SM1Der created by func-
tion FwSmMakeTestSMDer1 (dynamic creation)
and FwSmMakeTestSMDer1Static (static creation).
This Test State Machine is used in Test Cases
FwSmTestCaseDer2 and FwSmTestCaseDer5.

FW-3.8.2/R Overridden Action

Requirement The execution of the action override operation (see pre-
vious requirement) shall require knowledge of the iden-
tity of the overridden action.

Note This requirement implies that it must not be possible
to specify that a derived SMD overrides, say, the en-
try action of a certain state in the base state machine.
This must only be possible if the name of the overridden
action is known.

Justification Ideally, it would be desirable to have a mechanism
through which a base state machine can declare that
certain actions are ”final” and cannot therefore be over-
ridden. Implementation of such a mechanism is judged
too onerous in terms of memory and CPU requirements
and is therefore regarded as unsuitable for an implemen-
tation aimed at embedded applications (which are often
memory- and CPU-constrained). This requirement im-
plies a more limited mechanism through which a base
state machine can protect its actions from being over-
ridden by keeping their identity private.

Implementation Function FwSmOverrideAction requires as an argument
the name of the function which implements the action
to be overridden.

c©2012 P&P Software GmbH. All Rights Reserved. 36

PP-SP-COR-0001 Revision 1.2.2

Verification Function FwSmOverrideAction requires as an argument
the name of the function which implements the actions
to be overridden. Hence, an action can be overridden
only if the name of the function implementing it is in
scope. A base state machine can therefore prevent one
of its actions from being overridden by keeping the func-
tion that implements it hidden (for instance, by declar-
ing it as a static function).

FW-3.8.3/T Guard Override

Requirement After a derived state machine has been successfully cre-
ated, it shall be possible to override one or more of
its guards with a new guard (guard override opera-
tion).

Justification The overriding of a guard is one of the adaptation mech-
anisms mandated by the FW Profile.

Implementation The guard override operation is implemented by func-
tion FwSmOverrideGuard in FwSmConfig.h.

Verification The guard override mechanism is used in the
Test State Machine SM1Der created by func-
tion FwSmMakeTestSMDer1 (dynamic creation)
and FwSmMakeTestSMDer1Static (static creation).
This Test State Machine is used in Test Cases
FwSmTestCaseDer2 and FwSmTestCaseDer5.

FW-3.8.4/T Overridden Guard

Requirement The execution of the guard override operation (see previ-
ous requirement) shall require knowledge of the identity
of the overridden guard.

Note This requirement implies that it must not be possible
to specify that a derived SMD overrides, say, the guard
of a certain state transition in the base state machine.
This must only be possible if the name of the overridden
guard is known.

Justification Ideally, it would be desirable to have a mechanism
through which a base state machine can declare that
certain guards are ”final” and cannot therefore be over-
ridden. Implementation of such a mechanism is judged
too onerous in terms of memory and CPU requirements
and is therefore regarded as unsuitable for an implemen-
tation aimed at embedded applications (which are often
memory- and CPU-constrained). This requirement im-
plies a more limited mechanism through which a base
state machine can protect its guards from being over-
ridden by keeping their identity private.

c©2012 P&P Software GmbH. All Rights Reserved. 37

PP-SP-COR-0001 Revision 1.2.2

Implementation Function FwSmOverrideGuard requires as an argument
the name of the function which implements the guard
to be overridden.

Verification Function FwSmOverrideGuard requires as an argument
the name of the function which implements the guards
to be overridden. Hence, a guard can be overridden only
if the name of the function implementing it is in scope.
A base state machine can therefore prevent one of its
guards from being overridden by keeping the function
that implements it hidden (for instance, by declaring it
as a static function).

FW-3.8.5/T Embedding of State Machines

Requirement After a derived state machine has been successfully
created, it shall be possible to embed a state ma-
chine within an ”empty” state of the derived state ma-
chine.

Note In the context of this requirement, a state is ”empty”
if it does not already hold an embedded state ma-
chine.

Justification The embedding of a state machine into an ”empty” state
is one of the adaptation mechanisms mandated by the
FW Profile.

Implementation Function FwSmEmbed in FwSmConfig.h implements the
state machine embedding mechanism. The function
checks that the state within which the state machine
must be embedded is empty and sets the error code if
this is not the case.

Verification Test Case FwSmTestCaseDerEmbed1 verifies the embed-
ding of a state machine with function FwSmEmbed. This
Test Case also verifies that the embedding is only carried
out if the target state is empty.

c©2012 P&P Software GmbH. All Rights Reserved. 38

PP-SP-COR-0001 Revision 1.2.2

4 Procedure - Functional Requirements

This section defines the functional requirements of the Procedure part of the
C1 Implementation. The functional requirements are those which define the
functional behaviour of procedures in the C1 Implementation. It is recalled
that the Procedures are loosely modelled on UML’s Activity Diagrams.

FW-4.0.1/R Implementation of Procedure Concept

Requirement The C1 Implementation shall implement the procedure
concept of the FW Profile of [1].

Justification The intended use of the C1 Implementation is to support
the implementation of the procedure concept of the FW
Profile.

Implementation The procedure behaviour specified by the FW Profile
is implemented by the FwPrCore.h interface of the C1
Implementation.

Verification The FW Profile defines procedures in terms of their ele-
ments and of their behaviour. The procedure behaviour
is in turn defined in terms of three operations which can
be performed upon a procedure. Appendix A.2 shows
how each procedure element is mapped to a data struc-
ture in the C1 Implementation and how each procedure
operation is mapped to a function in the FwPrCore.h

interface of the C1 Implementation.

c©2012 P&P Software GmbH. All Rights Reserved. 39

PP-SP-COR-0001 Revision 1.2.2

4.1 Procedure Descriptor (PRD) Requirements

FW-4.1.1/R Procedure Descriptor (PRD)

Requirement It shall be possible to address and to manipulate a pro-
cedure as a single entity (the Procedure Descriptor or
PRD).

Justification The intended use of the C1 Implementation is to provide
modules which can be deployed within another applica-
tion. The definition of the PRD simplifies the interface
between the modules of the C1 Implementation and the
user application.

Implementation The PRD is defined by type FwPrDesc t.

Verification A procedure is represented by an instance of type
struct FwPrDesc and is manipulated as an instance
of type FwPrDesc t. All functions which operate on a
procedure take an instance of this type as their argu-
ment.

FW-4.1.2/R PRD Encapsulation

Requirement The PRD shall encapsulate all the information defin-
ing the configuration and the current state of its proce-
dure.

Justification The intended use of the C1 Implementation is to provide
modules which can be deployed within another applica-
tion. The encapsulation of all information related to a
procedure in a single data structure simplifies the inter-
face between the modules of the C1 Implementation and
the user application.

Implementation The PRD is defined as an instance of type struct

FwPrDesc.

Verification The PRD models all the elements of a procedure which
define its configuration (see Appendix A.2). The state
of a procedure is defined by its current node. The
PRD models the current node of a procedure in field
curNode.

c©2012 P&P Software GmbH. All Rights Reserved. 40

PP-SP-COR-0001 Revision 1.2.2

4.2 Creation Requirements

FW-4.2.1/T Creation Interface

Requirement The C1 Implementation shall provide an interface
through which a new PRD can be created.

Justification Applications which wish to manipulate a procedure
must first create the PRD which represents it.

Implementation The procedure creation interface is implemented in
FwPrDCreate.h and FwPrSCreate.h.

Verification In the test suite, test procedures are used. The test
procedures are created in functions with names like:
FwPrMakeTest<PR Name>. These make functions exer-
cise all PRD creation functions offered by the C1 Imple-
mentation.

FW-4.2.2/T Dynamic and Static Creation

Requirement It shall be possible to create a new PRD either statically
or dynamically.

Note The term static refers to an instantiation process which
does not rely on dynamic memory allocation.

Justification Dynamic creation of procedure is convenient but may
be forbidden in mission-critical applications.

Implementation Dynamic procedure creation is provided by interface
FwPrDCreate.h. Static procedure creation is provided
by interface FwPrSCreate.h.

Verification In the test suite, test procedures are used.
By default, the test procedures are created
dynamically in functions with names like:
FwPrMakeTest<PR Name>. Static creation of proce-
dures is demonstrated in make functions with names
like: FwPrMakeTest<PR Name>Static.

FW-4.2.3/T Release of PRD

Requirement If a PRD is created dynamically, then it shall also be
possible to destroy it dynamically by releasing the mem-
ory that was allocated to it.

Justification The target applications for the C1 Implementation are
mission-critical applications. In this domain, dynamic
memory allocation is only allowed if the means are
available to reclaim the dynamically allocated mem-
ory.

c©2012 P&P Software GmbH. All Rights Reserved. 41

PP-SP-COR-0001 Revision 1.2.2

Implementation Functions FwPrRelease and FwPrReleaseRec are pro-
vided in FwPrDCreate.h to release the memory allo-
cated when a new PRD is created dynamically.

Verification In most Test Cases in the Test Suite application, PRDs
are created dynamically and the memory they use is
then released before the end of the test. In the Accep-
tance Test for the C1 Implementation (see [2], the Test
Suite is run with the Valgrind tool and it is verified that
no memory leaks occur and that all memory allocated
dynamically is then released in an orderly way.

c©2012 P&P Software GmbH. All Rights Reserved. 42

PP-SP-COR-0001 Revision 1.2.2

4.3 Configuration Requirements

FW-4.3.1/T Configuration Interface

Requirement The C1 Implementation shall provide an interface
through which a PRD can be configured and made to
match the characteristics of a certain procedure.

Justification Applications which wish to manipulate a procedure
must configure it before they can send execution re-
quests to it.

Implementation The procedure configuration interface is implemented in
FwPrConfig.h.

Verification In the test suite, test procedures are configured.
The Test Suite exercises all configuration functions in
FwPrConfig.h (it has 100% statement coverage of the
implementation of this interface).

FW-4.3.2/T Reconfiguration of a PRD

Requirement It shall not be possible to re-configure a PRD which has
already been configured.

Note The term configuration refers to the operations which
must be performed on a newly created PRD before it
can be started.

Justification The C1 Implementation targets mission-critical applica-
tions. In this domain, dynamic reconfiguration of pro-
cedures would be regarded as unsafe because it makes
it harder to determine behaviour through static analy-
sis.

c©2012 P&P Software GmbH. All Rights Reserved. 43

PP-SP-COR-0001 Revision 1.2.2

Implementation The size of a procedure (the number of nodes and of
control flows) can only be set when its PRD is created.
It therefore cannot be modified after the PRD has been
created.

After creation, three configuration operations must be
performed on a PRD: (a) definition of the action nodes
specified when the PRD was created (with function
FwPrAddActionNode); (b) definition of the decision
nodes specified when the PRD was created (with func-
tion FwPrAddDecisionNode); (c) definition of the con-
trol flows specified when the PRD was created (with
functions with names like: FwPrAddFlow*). All of these
operations add an item to a PRD (either a node or a
control flow). The PRD uses data structures with a
fixed size. The configuration operations check whether
there is space for the new item. If this is not the case,
they return with an error. Since no functions are avail-
able for removing items from a PRD, it follows that,
once the configuration of a PRD has been completed,
any attempt to execute a configuration function will fail
with an error.

Verification Test Case FwPrTestCaseCheck3 verifies that the follow-
ing operations result in an error: (a) redefine an existing
action node; (b) redefine an existing decision node; (c)
add a new action node to a PRD which is already con-
figured; (d) add a new decision node to a PRD which
is already configured. Test Case FwPrTestCaseCheck5

verifies that attempts to redefine a control flow or to
add a new control flow to a procedure which is already
configured result in an error.

FW-4.3.3/T Configuration Check

Requirement It shall be possible to check the completeness and cor-
rectness of the configuration of a PRD (Configuration
Check).

Justification The C1 Implementation targets mission-critical appli-
cations. In this domain, it is important to be able to
periodically check the integrity of an application. The
configuration check serves this purpose.

c©2012 P&P Software GmbH. All Rights Reserved. 44

PP-SP-COR-0001 Revision 1.2.2

Implementation The Configuration Check is implemented in function
FwPrCheck. This function verifies the completeness
of the procedure configuration by checking that all
nodes and control flows of the procedure have been de-
fined.

The correctness of the configuration of the procedure is
checked indirectly as follows. The configuration func-
tions in FwPrConfig.h perform a correctness check be-
fore executing a configuration request. If a violation
of correctness is detected, it is reported by setting the
error code field of the PRD. The Configuration Check
verifies that the error code is set to ”success”. This
value implies that no configuration errors have been de-
tected and that therefore the configuration of the PRD
is correct.

Verification The ability of the Configuration Check to report an
incomplete configuration is verified in the test cases:
FwPrTestCaseCheck1 to FwPrTestCaseCheck7. The
test cases which verify the ability of the Configura-
tion Check to detect incorrect configuration requests are
identified in appendix B.

c©2012 P&P Software GmbH. All Rights Reserved. 45

PP-SP-COR-0001 Revision 1.2.2

4.4 Start and Stop Requirements

FW-4.4.1/T Start and Stop Interface

Requirement The C1 Implementation shall provide an interface
through which the procedure represented by a PRD can
be started, stopped and queried for its current Start-
ed/Stoped status.

Justification The Start/Stop operations are defined by the FW Pro-
file. The intended use of the C1 Implementation is to
support the implementation of the procedure concept of
the FW Profile.

Implementation The Start/Stop operations are implemented in
FwPrCore.h by functions FwPrStart and FwPrStop.
The status query operation is implemented by function
FwPrIsStarted.

Verification The Test Cases in the Test Suite start and stop proce-
dures through the functions of the FwPrCore.h module
and this module has 100% coverage.

FW-4.4.2/T Start and Stop Behaviour

Requirement The Start and Stop interface shall implement the
behaviour defined in the activity diagram of Figure
4.

Justification The activity diagram of Figure 4 is the same as in the
FW Profile definition of [1].

Implementation The Start interface is implemented by function
FwPrStart. The Stop interface is implemented by func-
tion FwPrStop.

Verification The verification of this requirement is done in section
C.2.

Fig. 4: Procedure Start/Stop Behaviour

c©2012 P&P Software GmbH. All Rights Reserved. 46

PP-SP-COR-0001 Revision 1.2.2

4.5 Execution Requirements

FW-4.5.1/T Execution Interface

Requirement The C1 Implementation shall provide an interface
through which a procedure can be executed.

Note A procedure is executed by sending an ”Execute” com-
mand to it.

Justification The executability of a procedure is defined by the FW
Profile. The intended use of the C1 Implementation is
to support the implementation of the procedure concept
of the FW Profile.

Implementation The execution interface is implemented in FwPrCore.h

by function FwPrExecute.

Verification The Test Cases in the Test Suite send execution com-
mands to procedures through the functions of the
FwPrCore.h module and this module has 100% cover-
age.

FW-4.5.2/T Execution Behaviour

Requirement The C1 Implementation shall implement the execution
behaviour defined in the activity diagram of Figure
5.

Justification The activity diagram of Figure 5 is the same as the
activity diagram which defines the execution behaviour
in the FW Profile definition of [1].

Implementation The execution behaviour is implemented in function
FwPrExecute.

Verification The verification of this requirement is done in appendix
D.2 where it is shown that every branch of the activity
diagram of Figure 5 is covered by at least one Test Case
in the Test Suite.

c©2012 P&P Software GmbH. All Rights Reserved. 47

PP-SP-COR-0001 Revision 1.2.2

Fig. 5: Procedure Execution Logic

FW-4.5.3/T Order of Evaluation of Guards

Requirement If processing of an execution request requires evaluation
of several control flow guards associated to different con-
trol flows out of the same decision node, then the control
flow guards shall be evaluated in the order in which their
control flows have been added to the procedure during
the procedure configuration process.

Note Control flows are ”added” to a procedure during the pro-
cedure configuration process. This requirement assumes
that they are added in sequence and one by one.

Justification In principle, if the guards on the control flows out of a
decision node are mutually exclusive and do not have
side effects, their order of evaluation is irrelevant. For
this reason, the FW Profile of [1] does not specify the
order of evaluation of control flow guards. However,
in embedded applications with constrained CPU and
memory resources, determinism in the order of evalu-
ation may be exploited to improve run-time efficiency
(for instance, by ensuring that the guard which is most
likely to be true is evaluated first) and to implement
”else” clauses in an efficient manner (see section 4.6 of
[2]).

Implementation The evaluation of the guards on the control flows out of
a decision node is done in function FwPrExecute.

c©2012 P&P Software GmbH. All Rights Reserved. 48

PP-SP-COR-0001 Revision 1.2.2

Verification The order of evaluation of control flow guards is verified
in test case FwPrTestCaseExecute9.

FW-4.5.4/T Change of Internal State

Requirement After having been completely and successfully config-
ured, a procedure shall only ever change its internal
state either in response to a Start/Stop command or
in response to an Execute Command.

Justification The procedure model of the FW Profile stipulates that
the internal state of a procedure can only change in re-
sponse to a Start/Stop command or in response to an
Execute Command.

Implementation The current state of a procedure is the node at which the
procedure is waiting. The only functions in FwPrCore.h

which can change the current state of a procedure are:
FwPrStart, FwPrStop, and FwPrExecute. These are
precisely the functions which implement the Start/Stop
behaviour and the response to a Transition Com-
mand.

Verification A search for curNode (the field of the PRD which holds
the current node) in the FwPrCore.c file shows that this
attribute is assigned to in only the following functions:
FwPrStart, FwPrStop, and FwPrExecute.

FW-4.5.5/T Dynamical Constraint

Requirement The C1 Implementation shall check compliance with the
dynamical constraint D1 defined in section 4.2 of the
FW Profile Definition in [1].

Justification The D1 constraint represents a non-nominal situation
which cannot be detected statically. The C1 Implemen-
tation targets mission critical applications where the
ability to detect non- nominal situations is important
to guarantee the integrity of a system.

Implementation The check for the D1 condition is implemented in the
FwPrExecute function. Its detection results in error
prFlowErr.

Verification Test Case FwPrTestCaseCheck4 simulates a situation
where error prFlowErr is reported because execution
of a transition through a decision node finds that all
out-going control flows have guards which evaluate to
false.

FW-4.5.6/T Procedure Data

c©2012 P&P Software GmbH. All Rights Reserved. 49

PP-SP-COR-0001 Revision 1.2.2

Requirement As part of the processing of an execution request to a
procedure, it shall be possible to exchange data with the
actions and guards of the procedure.

Justification The FW Profile stipulates that execution commands
may carry data.

Implementation Function FwPrExecute in FwPrCore.h implements the
code through which the actions of a procedure are ex-
ecuted and its guards are evaluated. These functions
pass the PRD to the functions implementing the proce-
dure actions and procedure guards. In the PRD, field
prData is reserved to hold a pointer to a generic data
structure. This data structure is intended to hold the
data which are exchanged with the actions and guards
of a procedure.

Verification The Test Procedures used in the Test Cases use an in-
stance of struct TestPrData as the means to exchange
data with the actions and guards of a procedures. For
example, the Test Cases FwPrTestCaseExecute* use
this data structure to keep track of which actions are
executed during a test.

FW-4.5.7/T Procedure State

Requirement It shall be possible to read the current state of a proce-
dure.

Justification Applications need to be able to check the state of a
procedure.

Implementation The state of a procedure is determined by its Stopped/S-
tarted state and by its current node. Read-only access
to the current node of a procedure is provided by func-
tion FwPrGetCurNode. Function FwPrIsStarted checks
whether a procedure has been started.

Verification Function FwPrGetCurNode is used in virtually
all Test Cases of the Test Suite. Function
FwPrIsStarted is used in, for instance, Test Case
FwPrTestCaseExecute8.

c©2012 P&P Software GmbH. All Rights Reserved. 50

PP-SP-COR-0001 Revision 1.2.2

4.6 Error Handling Requirements

FW-4.6.1/T Error Code

Requirement The PRD shall store the code of the last error encoun-
tered during the PRD configuration process or during
the processing of execution requests.

Justification The C1 Implementation targets embedded mission-
critical applications where there normally is a need to
periodically monitor the integrity of an application. The
embedded character of the application, however, also
means that memory resources are often limited and it
may consequently not be possible to maintain a log of
all errors. This requirement represents a compromise
between these two needs in the sense that it allows an
application to check whether an error has occured with
only minimal storage requirements.

Implementation The error code is stored in field errCode of the
PRD.

Verification The Test Cases with names like FwPrTestCaseCheck*

test various error conditions and verify that the most
recent error condition is correctly stored in the error
code of an PRD. Appendix B lists the configuration and
dynamic errors which may be reported in the error code
of a PRD and, for each error, it identifies a Test Case
where that error is reported and verified.

FW-4.6.2/T Access to Error Code

Requirement The PRD shall provide read-only access to the error
code.

Justification See the justification of the previous requirement.

Implementation The value of the error code can be read with function
FwPrGetErrCode.

Verification See verification of the previous requirement.

c©2012 P&P Software GmbH. All Rights Reserved. 51

PP-SP-COR-0001 Revision 1.2.2

4.7 Derived Procedure Creation Requirements

FW-4.7.1/T Extension Interface

Requirement The C1 Implementation shall provide an interface
through which the PRD of a derived procedure can be
created from the PRD of a base procedure.

Justification The FW Profile defines an adaptation mechanism
through which a new procedure can be built from an ex-
isting procedure by selectively modifying some of its el-
ements. The extension mechanism of the C1 Implemen-
tation is an implementation of this adaptation mecha-
nism.

Implementation The procedure extension interface is implemented
alongside the procedure creation interface in modules
FwPrDCreate.h and FwPrSCreate.h.

Verification In the test suite, derived procedures are
used. The derived procedures are cre-
ated in functions FwPrMakeTestPRDer1 and
FwPrMakeTestPRDer1Static. These make func-
tions exercise all derived PRD creation functions
offered by the C1 Implementation.

FW-4.7.2/T Dynamic and Static Derived PRD Creation

Requirement It shall be possible to create the PRD of a derived pro-
cedure either statically or dynamically.

Note The term static refers to an instantiation process which
does not rely on dynamic memory allocation.

Justification Dynamic creation of a derived procedure is conve-
nient, but may be forbidden in mission-critical appli-
cations.

Implementation Dynamic creation of a derived procedure is defined in
FwPrDCreate.h. Static creation of a derived procedure
creation is defined in FwPrSCreate.h.

Verification In the Test Suite, derived procedures are used. A
derived procedure is created dynamically in func-
tion FwPrMakeTestPRDer1 and statically in function
FwPrMakeTestPRDer1Static.

FW-4.7.3/T Release of Derived PRD

Requirement If the PRD of a derived procedure is created dynam-
ically, then it shall also be possible to destroy it dy-
namically by releasing the memory that was allocated
to it.

c©2012 P&P Software GmbH. All Rights Reserved. 52

PP-SP-COR-0001 Revision 1.2.2

Justification The target applications for the C1 Implementation are
mission-critical applications. In this domain, dynamic
memory allocation is only allowed if the means are
available to reclaim the dynamically allocated mem-
ory.

Implementation Function FwPrReleaseDer is provided in
FwPrDCreate.h to release the memory allocated
when a new derived PRD is created dynamically.

Verification Test Cases FwPrTestCaseDer1 and FwPrTestCaseDer2,
manipulate derived procedures whose PRD is created
dynamically. The memory used by these PRDs is re-
leased before the end of the test. In the Acceptance
Test for the C1 Implementation (see [2], the Test Suite
is run with the Valgrind tool and it is verified that no
memory leaks occur and that all memory allocated dy-
namically is then released in an orderly way.

FW-4.7.4/T Time of Derived PRD Creation

Requirement It shall be possible to create a derived procedure from
a base procedure at any time after the base procedure
has been fully and correctly configured.

Note This requirement in particular implies that procedure
extension can be done on procedures which have already
been started.

Justification This requirement complements the requirement allowing
dynamic creation of derived procedures: the intention
behind both requirements is to allow an application to
create a new derived procedure at any time and under
any circumstances.

Implementation Function FwPrCreateDer which creates the PRD for a
new derived procedure performs no check on the state
of the base procedure (but, if the base procedure is not
fully and correctly configured, the behaviour of the de-
rived procedure is undefined).

Verification Test Cases FwPrTestCaseDer1 and FwPrTestCaseDer2

manipulate derived procedures whose PRD is created
dynamically. Test Case FwPrTestCaseDer1 derives the
new PRD from a base procedure which has not yet been
started whereas Test Case FwPrTestCaseDer2 derives it
from a base procedure which has already been started
and executed.

FW-4.7.5/T Configuration of Derived PRD at Creation

c©2012 P&P Software GmbH. All Rights Reserved. 53

PP-SP-COR-0001 Revision 1.2.2

Requirement After successful creation, the PRD of a derived proce-
dure shall be a structural clone of the PRD of the base
procedure.

Note The expression structural clone must be understood as
follows. Procedure B is a structural clone of procedure
A if the following conditions are satisfied: A has the
same action nodes with the same actions as B; A has
the decision nodes as B; A has the same control flows
between the same nodes and with the same guards as
B.

Justification The procedure extension mechanism is intended to rep-
resent the procedure adaptation mechanism of the FW
Profile. The adaptation mechanism of FW Profile is im-
plemented in the C1 Implementation through a 2-step
process: first, a clone of the base procedure is obtained
by extending the base procedure and then selected el-
ements of the derived procedure are overridden. This
implementation of the adaptation mechanism therefore
requires that a newly derived procedure be a clone for
all its structural elements of the base procedure.

Implementation The PRD (i.e. the struct FwPrDesc) is internally split
into two parts: the extension descriptor and the base
descriptor. The base descriptor holds the information
about the topology of a procedure (its action nodes and
decision nodes and their inter-connections). The ex-
tension descriptor holds the information about the ac-
tions and guards. The base descriptor is shared between
a base procedure and its derived procedures. Hence,
a derived procedure is guaranteed by design to have
the same topology as its base procedure. The equal-
ity of the guards and actions is implemented in the
FwPrCreateDer function (for the case of dynamic pro-
cedure extension) and in the FwPrInitDer function (for
the case of static procedure extension).

Verification Test Case FwPrTestCaseDerCheck1 verifies that a de-
rived procedure and its base procedure are structural
clones of each other both for the case of dynamic and
for the case of static procedure extension.

FW-4.7.6/T State of Derived PRD at Creatio

Requirement After successful creation, the PRD of a derived proce-
dure shall be in the Stopped state.

Justification This requirement enhances determinism of behaviour
and determinism of behaviour is important in mission-
critical applications.

c©2012 P&P Software GmbH. All Rights Reserved. 54

PP-SP-COR-0001 Revision 1.2.2

Implementation The initial state of a derived procedure is set in the
FwPrCreateDer function (for the case of dynamic pro-
cedure extension) and in the FwPrInitDer function (for
the case of static procedure extension).

Verification Test Case FwPrTestCaseDerCheck3 verifies that a dy-
namically derived procedure is in the Stopped state at
creation. Test Case FwPrTestCaseDerCheck5 does the
same for a statically derived procedure.

FW-4.7.7/T Error Code of Derived PRD at Creation

Requirement After successful creation, the error code of a derived
procedure shall be the same as the error code of the
base procedure.

Justification Extension of a procedure should only be done if the base
procedure is correctly and fully configured (namely if no
errors are reported by its error code). If this constraint
is not satisfied, then the derived procedure cannot be
assumed to be properly configured. The fact that its
error code is the same as the (non-nominal) error code
of its base procedure makes it easier for an application
to detect the problem.

Implementation The initial value of the error code of a derived pro-
cedure is set in the FwPrCreateDer function (for
the case of dynamic procedure extension) and in the
FwPrInitDer function (for the case of static procedure
extension).

Verification Test Case FwPrTestCaseDerCheck3 verifies that a dy-
namically derived procedure has the same error code as
its base procedure. Test Case FwPrTestCaseDerCheck5

does the same for a statically derived procedure.

c©2012 P&P Software GmbH. All Rights Reserved. 55

PP-SP-COR-0001 Revision 1.2.2

4.8 Derived Procedure Configuration Requirements

FW-4.8.1/T Action Override

Requirement After a derived procedure has been successfully created,
it shall be possible to override one or more of its actions
with a new action (action override operation).

Justification The overriding of an action is one of the adaptation
mechanisms mandated by the FW Profile.

Implementation The action override operation is implemented by func-
tion FwPrOverrideAction in FwPrConfig.h.

Verification The action override mechanism is used in the
Test Procedure PR1Der created by function
FwPrMakeTestPRDer1 (dynamic creation) and
FwPrMakeTestPRDer1Static (static creation). This
Test Procedure is used in Test Cases FwPrTestCaseDer2
(dynamic creation) and FwPrTestCaseDer3 (static cre-
ation).

FW-4.8.2/T Overridden Action

Requirement The execution of the action override operation shall re-
quire knowledge of the identity of the overridden ac-
tion.

Note This requirement implies that it must not be possi-
ble to specify that a derived PRD overrides the action
of a certain node in the base procedure. This must
only be possible if the name of the overridden action
is known.

Justification Ideally, it would be desirable to have a mechanism
through which a base procedure can declare that cer-
tain actions are ”final” and cannot therefore be overrid-
den. Implementation of such a mechanism is judged too
onerous in terms of memory and CPU requirements and
is therefore regarded as unsuitable for an implementa-
tion aimed at embedded applications (which are often
memory- and CPU-constrained). This requirement im-
plies a more limited mechanism through which a base
procedure can protect its actions from being overridden
by keeping their identity private.

Implementation Function FwPrOverrideAction requires as an argument
the name of the function which implements the actions
to be overridden.

c©2012 P&P Software GmbH. All Rights Reserved. 56

PP-SP-COR-0001 Revision 1.2.2

Verification Function FwPrOverrideAction requires as an argument
the name of the function which implements the action
to be overridden. Hence, an action can be overridden
only if the name of the function implementing it is in
scope. A base procedure can therefore prevent one of its
actions from being overridden by keeping the function
that implements it hidden (for instance, by declaring it
as a static function).

FW-4.8.3/T Guard Override

Requirement After a derived procedure has been successfully created,
it shall be possible to override one or more of its guards
with a new guard (guard override operation).

Justification The overriding of a guard is one of the adaptation mech-
anisms mandated by the FW Profile.

Implementation The guard override operation is implemented by func-
tion FwPrOverrideGuard in FwPrConfig.h.

Verification The guard override mechanism is used in the Test Proce-
dure PR1Der created by function FwPrMakeTestPRDer1

(dynamic creation) and FwPrMakeTestPRDer1Static

(static creation). This Test Procedure is used in
Test Cases FwPrTestCaseDer2 (dynamic creation) and
FwPrTestCaseDer3 (static creation).

FW-4.8.4/T Overridden Guard

Requirement The execution of the guard override operation shall
require knowledge of the identity of the overridden
guard.

Note This requirement implies that it must not be possible to
specify that a derived PRD overrides, say, the guard of
a certain control flow in the base procedure. This must
only be possible if the name of the overridden guard is
known.

Justification Ideally, it would be desirable to have a mechanism
through which a base procedure can declare that cer-
tain guards are ”final” and cannot therefore be overrid-
den. Implementation of such a mechanism is judged too
onerous in terms of memory and CPU requirements and
is therefore regarded as unsuitable for an implementa-
tion aimed at embedded applications (which are often
memory- and CPU-constrained). This requirement im-
plies a more limited mechanism through which a base
procedure can protect its guards from being overridden
by keeping their identity private.

c©2012 P&P Software GmbH. All Rights Reserved. 57

PP-SP-COR-0001 Revision 1.2.2

Implementation Function FwPrOverrideGuard requires as an argument
the name of the function which implements the guards
to be overridden.

Verification Function FwPrOverrideGuard requires as an argument
the name of the function which implements the guards
to be overridden. Hence, a guard can be overridden
only if the name of the function implementing it is in
scope. A base procedure can therefore prevent one of its
guards from being overridden by keeping the function
that implements it hidden (for instance, by declaring it
as a static function).

c©2012 P&P Software GmbH. All Rights Reserved. 58

PP-SP-COR-0001 Revision 1.2.2

5 RT Containers - Functional Requirements

This section defines the functional requirements for the RT Container part of
the C1 Implementation. The functional requirements are those which define the
functional behaviour of the RT containers in the C1 Implementation.

FW-5.0.1/R Implementation of RT Container Concept

Requirement The C1 Implementation shall implement the RT con-
tainer concept of the FW Profile of [1].

Justification The intended use of the C1 Implementation is to support
the implementation of the RT container concept of the
FW Profile.

Implementation The RT container behaviour specified by the FW Profile
is implemented by the FwRtCore.h interface of the C1
Implementation.

Verification The FW Profile defines RT containers in terms of their
elements and of their behaviour. The container be-
haviour is in turn defined in terms of the behaviour
of two procedures, of one thread, and of the three
operations which can be performed upon a container
(Start, Stop, and Notify). Appendix A.3 shows how
the container elements and the container operations are
mapped to data structures and functions in the C1 Im-
plementation

c©2012 P&P Software GmbH. All Rights Reserved. 59

PP-SP-COR-0001 Revision 1.2.2

5.1 RT Container Descriptor (RTD) Requirements

FW-5.1.1/R RT Container Descriptor (RTD)

Requirement It shall be possible to address and to manipulate a RT
Container as a single entity (the RT Container Descrip-
tor or RTD).

Justification The intended use of the C1 Implementation is to provide
modules which can be deployed within another applica-
tion. The definition of the RTD simplifies the interface
between the modules of the C1 Implementation and the
user application.

Implementation The RTD is defined by type struct FwRtDesc.

Verification A RT container is represented by an instance of type
struct FwRtDesc and is manipulated as an instance of
type FwRtDesc t. All functions which operate on a RT
container take an instance of this type as their argu-
ment.

FW-5.1.2/R RTD Encapsulation

Requirement The RTD shall encapsulate all the information defin-
ing the configuration and the current state of its con-
tainer.

Justification The intended use of the C1 Implementation is to provide
modules which can be deployed within another applica-
tion. The encapsulation of all information related to a
RT container in a single data structure simplifies the in-
terface between the modules of the C1 Implementation
and the user application.

Implementation The RTD is defined as an instance of type struct

FwRtDesc.

Verification The configuration information for a container is defined
through the operations of FwRtConfig.h. These oper-
ation only manipulate the RTD. The state of a con-
tainer is defined by the value of its Notification Counter
and by the container state. These are mapped to fields
notifCounter and state in the RTD.

c©2012 P&P Software GmbH. All Rights Reserved. 60

PP-SP-COR-0001 Revision 1.2.2

5.2 Creation Requirements

FW-5.2.1/T Creation Interface

Requirement The C1 Implementation shall provide an interface
through which a new RTD can be created.

Justification Applications which wish to manipulate an RT container
must first create the RTD which represents it.

Implementation The RTD creation interface is trivial in the sense that
RTDs are created by instantiating a variable of type
struct FwRtDesc.

Verification In every RT container test case in the test suite, one or
more RTDs are created.

FW-5.2.2/T Dynamic and Static Creation

Requirement It shall be possible to create a new RTD either statically
or dynamically.

Note The term static refers to an instantiation process which
does not rely on dynamic memory allocation.

Justification Dynamic creation of containers is convenient but may
be forbidden in mission-critical applications.

Implementation RTDs are created by instantiating a variable of type
struct FwRtDesc. Applications are free to instanti-
ate this variable either statically (on the stack or as
a global variable) or dynamically (through a call to
malloc).

Verification In every RT container test case in the test suite,
one or more RTDs are created. In test case
FwRtTestCaseRunDefault1, the RTD is created dynam-
ically (using malloc); in all other test cases, the RTDs
are created statically.

c©2012 P&P Software GmbH. All Rights Reserved. 61

PP-SP-COR-0001 Revision 1.2.2

5.3 Configuration Requirements

FW-5.3.1/T Configuration Interface

Requirement The C1 Implementation shall provide an interface
through which an RTD can be configured and made
to match the characteristics of a certain RT Con-
tainer.

Justification Applications which wish to manipulate a RT Container
must configure it before they can send notification re-
quests to it.

Implementation The container configuration interface is implemented in
FwRtConfig.h.

Verification In the test suite, test RT containers are configured.
The Test Suite exercises all configuration functions in
FwRtConfig.h (it has 100% statement coverage of the
implementation of this interface with the exception
of code which is entered when a POSIX system call
fails).

FW-5.3.2/T Reconfiguration of an RTD

Requirement It shall not be possible to re-configure an RTD dynam-
ically while it is being used to process notification re-
quests.

Note The term configuration refers to the operations which
must be performed on a newly-created RTD before it
can be started.

Justification The C1 Implementation targets mission-critical appli-
cations. In this domain, dynamic reconfiguration of RT
containers would be regarded as unsafe because it makes
it harder to determine behaviour through static analy-
sis.

Implementation The RTD configuration functions (with the exception of
the FwRtReset function and of the FwRtSetData func-
tion) check the container state and are only effective if
the container is in state rtContUninitialized. In all
other cases (i.e. during the container’s operational use),
they cause an error state to be entered. No such check
is possible for the FwRtReset function because the pur-
pose of this function is precisely to initialize the RTD
and therefore no assumption can be made about the
RTD state at the time the function is called. No such
check is needed for the FwRtSetData function because
the purpose of this function is to load the container data
and this is an optional operation.

c©2012 P&P Software GmbH. All Rights Reserved. 62

PP-SP-COR-0001 Revision 1.2.2

Verification Test Case FwRtTestCaseSetAction1 verifies that at-
tempts to load a new container procedure action or
to re-initialize the container during the container’s
operational phase lead to an error. Test Case
FwRtTestCaseSetAttr1 verifies that attempts to load
a new POSIX attribute obect during the container’s op-
erational phase lead to an error.

FW-5.3.3/T Setting of POSIX Attributes

Requirement During the configuration process, it shall be possible to
set the attributes of any POSIX object used by a RT
container (see requirement FW-6.6.2).

Justification The C1 Implementation targets mission-critical applica-
tions. In this domain, it is often important to fine-tune
the real-time behaviour of threads. This requires access
to the attributes to the POSIX objects upon which the
real-time behaviour of a RT container is built.

Implementation Function FwRtSetMutexAttr allows the POSIX at-
tribute objects of a container’s thread, of its mutex and
of its condition variable to be set.

Verification Test Case FwRtTestCaseRunNonNullAttr1 verifies that
it is possible to load non-NULL attributes for the POSIX
thread, the POSIX mutex and the POSIX condition
variable associated to a RT container.

c©2012 P&P Software GmbH. All Rights Reserved. 63

PP-SP-COR-0001 Revision 1.2.2

5.4 Start and Stop Requirements

FW-5.4.1/T Start and Stop Interface

Requirement The C1 Implementation shall provide an interface
through which the RT Container represented by an RTD
can be started, stopped and queried for its current Start-
ed/Stopped status.

Justification The Start/Stop operations are defined by the FW Pro-
file. The intended use of the C1 Implementation is to
support the implementation of the RT container concept
of the FW Profile.

Implementation The Start/Stop operations are implemented in mod-
ule FwRtCore.h by functions FwRtStart and FwRtStop.
The status query operation is implemented by function
FwRtGetContState which returns the current state of a
container.

Verification The Test Cases in the Test Suite start and stop RT
containers and query them for their status through the
functions of the FwRtCore.h module and this module
has 100% coverage (except for branches entered in case
of POSIX system call errors).

FW-5.4.2/T Start and Stop Behaviour

Requirement The Start and Stop interface shall implement the be-
haviour defined in the activity diagrams of Figure
6.

Justification The activity diagrams of Figure 6 are the same as in the
FW Profile definition of [1].

Implementation The Start operation is implemented by function
FwRtStart. The Stop operation is implemented by func-
tion FwRtStop.

Verification The verification of this requirement is done in section
C.3.

c©2012 P&P Software GmbH. All Rights Reserved. 64

PP-SP-COR-0001 Revision 1.2.2

Fig. 6: RT Container Start/Stop Behaviour

5.5 Notification Requirements

FW-5.5.1/T Notification Interface

Requirement The C1 Implementation shall provide an interface
through which a RT Container can be notified.

Justification The ”Notify” operation is defined by the FW Profile.
The intended use of the C1 Implementation is to support
the implementation of the RT container concept of the
FW Profile.

Implementation The Notification interface is implemented in
FwRtCore.h by function FwRtNotify.

Verification The Test Cases in the Test Suite send notification com-
mands to RT Containers through the functions of the
FwRtCore.h module and this module has 100% coverage
(except for branches entered in case of POSIX system
call errors).

c©2012 P&P Software GmbH. All Rights Reserved. 65

PP-SP-COR-0001 Revision 1.2.2

FW-5.5.2/T Notification Behaviour

Requirement The C1 Implementation shall implement the ”notify”
operation to execute the Notification Procedure (see
next requirement).

Justification The ”notify” operation is one of the three operations
defined by the FW Profile. The intended use of the C1
Implementation is to support the implementation of the
RT container concept of the FW Profile.

Implementation The notification behaviour is implemented in function
FwRtNotify.

Verification Test Case FwRtTestCaseRunDefault1 in the Test Suite
verifies that execution of function FwRtNotify results in
the execution of the Notification Procedure.

FW-5.5.3/T Notification Procedure

Requirement The Notification Procedure of a RT Container shall im-
plement the behaviour shown in the activity diagram in
the left-hand side of figure 7.

Justification The activity diagram of figure 7 is the same as in the
FW Profile definition.

Implementation The implementation of the notification procedure is
split into two locations: (a) the initialization part (up
to the first decision node) is implemented in func-
tion FwRtStart where the procedure is started and
then executed for the first time; (b) the loop is im-
plemented in function ExecNotifProcedure in module
FwRtCore.c.

Verification Verification of this requirement is done in appendix E
where it is shown that every branch of the activity dia-
gram of figure 7 is covered by at least one Test Case in
the Test Suite.

FW-5.5.4/T Activation Procedure

Requirement A RT Container shall implement an Activation Proce-
dure with the behaviour shown in the activity diagram
in the right-hand side of figure 7.

Justification The activity diagram of figure 7 is the same as in the
FW Profile definition.

c©2012 P&P Software GmbH. All Rights Reserved. 66

PP-SP-COR-0001 Revision 1.2.2

Implementation The implementation of the activation procedure is split
into two locations: (a) the initialization part (up to
the first decision node) is implemented in function
FwRtStart where the procedure is started and then
executed for the first time; (b) the loop is imple-
mented in function ExecActivProcedure in module
FwRtCore.c.

Verification Verification of this requirement is done in appendix E
where it is shown that every branch of the activity dia-
gram of figure 7 is covered by at least one Test Case in
the Test Suite.

FW-5.5.5/T Activation Thread

Requirement A RT Container shall encapsulate a thread (the ”Activa-
tion Thread”) to execute the behaviour shown in listing
1.

Justification The behaviour shown in listing 1 is the same as the
behaviour defined in reference [1] for the Activation
Thread.

Implementation The Activation Thread behaviour is imple-
mented in function ExecActivThread in module
FwRtCore.c.

Verification Verification of this requirement is done in appendix E
where it is shown that every branch of the pseudo-code
in listing 1 is covered by at least one Test Case in the
Test Suite.

1 while true do {

2 wait until Notification Counter is greater than 0;

3 decrement Notification Counter;

4 execute Activation Procedure;

5

6 if (Activation Procedure has terminated) then {

7 put RT Container in STOPPED state;

8 execute Notification Procedure;

9 break;

10 }

11

12 if (RT Container is in state STOPPED) then {

13 execute Activation Procedure;

14 execute Notification Procedure;

15 break;

16 }

17 }

Listing 1: Pseudo-code of Activation Thread

c©2012 P&P Software GmbH. All Rights Reserved. 67

PP-SP-COR-0001 Revision 1.2.2

Fig. 7: Notification and Activation Procedures

FW-5.5.6/T Wait for Activation Thread Termination

Requirement The C1 Implementation shall offer a function to let a
user wait for the termination of a container’s Activation
Thread.

Justification One of the usage constraints of a RT Container (see list
in table of section 5.4 of reference [1]) requires that a
container only be re-started after its Activation Thread
has terminated. It is therefore convenient to have a
function which waits until the Activation Thread has
terminated execution.

Implementation Function FwRtWaitForTermination in module
FwRtCore.h implements a blocking wait for the
termination of the Activation Thread of a RT con-
tainer.

Verification Function FwRtWaitForTermination is verified
in, among others, the following Test Cases of
the Test Suite: FwRtTestCaseRunDefault1,
FwRtTestCaseRunNonNullAttr1, and
FwRtTestCaseStressRun1.

c©2012 P&P Software GmbH. All Rights Reserved. 68

PP-SP-COR-0001 Revision 1.2.2

5.6 Access Requirements

FW-5.6.1/R Access to Activation Procedure

Requirement A RT Container shall not allow its users to perform
start/stop/execute operations on its Activation Proce-
dure.

Justification The properties guaranteed by a RT Container (see list in
table of section 5.4 of reference [1]) are conditional upon
the container’s user not having access to the Activation
Procedure.

Implementation The FwRtCore.h module does not offer any wrapper
functions for starting, stopping, or executing the Ac-
tivation Procedure (but note that the user has access to
the procedure descriptor through the RTD).

Verification See requirement implementation.

FW-5.6.2/R Access to Notification Procedure Start/Stop

Requirement A RT Container shall not allow its users to per-
form start/stop operations on its Notification Proce-
dure.

Justification The properties guaranteed by a RT Container (see list
in table of section 5.4 of [1]) are conditional upon the
container’s user not having access to the start/stop in-
terface of the Notification Procedure.

Implementation The FwRtCore.h module does not offer any wrapper
functions for starting or stopping the Notification Proce-
dure (but note that the user has access to the procedure
descriptor through the RTD).

Verification See requirement implementation.

FW-5.6.3/R Access to Notification Procedure Execution

Requirement A RT Container shall not allow its users to execute its
Notification Procedure other than through the Notify
operation.

Justification The properties guaranteed by a RT Container (see list
in table of section 5.4 of [1]) are conditional upon the
container’s user not having access to the execute inter-
face of the Notification Procedure other than through
the Notify operation.

Implementation The FwRtCore.h module does not offer any wrapper
function for executing the Notification Procedure other
than FwRtNotify (but note that the user has access to
the procedure descriptor through the RTD).

c©2012 P&P Software GmbH. All Rights Reserved. 69

PP-SP-COR-0001 Revision 1.2.2

Verification See requirement implementation.

c©2012 P&P Software GmbH. All Rights Reserved. 70

PP-SP-COR-0001 Revision 1.2.2

5.7 Error Handling Requirements

FW-5.7.1/T Error Code

Requirement The RTD shall store the code of the last error encoun-
tered during the RTD configuration process or during
the processing of notification requests.

Justification The C1 Implementation targets embedded mission-
critical applications where there normally is a need to
periodically monitor the integrity of an application. The
embedded character of the application, however, also
means that memory resources are often limited and it
may consequently not be possible to maintain a log of
all errors. This requirement represents a compromise
between these two needs in the sense that it allows an
application to check whether an error has occured with
only minimal storage requirements.

Implementation The C1 Implementation defines both an error code (in
field errCode of the RTD) and a set of error states
(see type FwRtState t) which, taken together, iden-
tify the last error condition encountered by a RT Con-
tainer.

Verification The Test Cases FwPrTestCaseSetAttr1 and
FwPrTestCaseSetAction1 verify the reporting of
error conditions arising during the configuration pro-
cess of a RT container. The only other error conditions
reported by a RT container are those arising when a
POSIX system call is executed. These error conditions
are not verified.

FW-5.7.2/T Access to Error Code

Requirement The RTD shall provide read-only access to the error
code.

Justification See the justification of the previous requirement.

Implementation The value of the error code can be read with function
FwRtGetErrCode. The value of the error state can be
read with function FwRtGetContState.

Verification See verification of the previous requirement.

c©2012 P&P Software GmbH. All Rights Reserved. 71

PP-SP-COR-0001 Revision 1.2.2

6 Non-Functional Requirements

This section defines the non-functional requirements of the C1 Implementation.
Non-functional requirements impose overall constraints on the use, design, or
implementation of the C1 Implementation.

6.1 Coding Requirements

FW-6.1.1/R Implementation Language

Requirement The C1 Implementation shall be implemented in the C
language.

Justification The C Language is the standard language for embedded
applications.

Implementation All the modules offered by the C1 Implementation are
implemented in C.

Verification See implementation.

FW-6.1.2/T Compiler Warning

Requirement The C1 Implementation shall not generate any warnings
when compiled with the GCC compiler with all warnings
enabled.

Justification Warning may indicate weaknesses in the code or poten-
tial error.

Implementation See verification.

Verification The C1 Implementation Acceptance Test Procedure (see
reference [2]) compiles all source files of the implemen-
tation using gcc with the option -Wall.

c©2012 P&P Software GmbH. All Rights Reserved. 72

PP-SP-COR-0001 Revision 1.2.2

6.2 Use Requirements

FW-6.2.1/R SMD Internal Structure

Requirement It shall be possible to create, configure and command a
state machine without reference to or knowledge of the
internal structure of its SMD.

Justification The intended use of the C1 Implementation is to provide
modules which can be deployed within another applica-
tion. The hiding of the information related to a state
machine simplifies the interface between the modules of
the C1 Implementation and the user application.

The target applications of the C1 Implementation are
embedded applications. Embedded applications often
have special requirements which may require changes to
the internal structure of the SMD (perhaps to include
more information about a state machine). This require-
ment would allow this to be done without affecting the
interface through which the state machine is manipu-
lated.

Implementation See requirement verification.

Verification The functions and macros to create a state machine
(in modules FwSmDCreate.h and FwSmSCreate.h), the
functions to configure a state machine (in module
FwSmConfig.h), and the functions to send a transition
command to a state machine (in module FwSmCore.h)
take as their argument a pointer to the SMD (i.e. an in-
stance of type FwSmDesc t). There is therefore no need
for the user to know the internal structure of the SMD
to use these functions.

FW-6.2.2/R PRD Internal Structure

Requirement It shall be possible to create, configure and command
a procedure without reference to or knowledge of the
internal structure of its PRD.

c©2012 P&P Software GmbH. All Rights Reserved. 73

PP-SP-COR-0001 Revision 1.2.2

Justification The intended use of the C1 Implementation is to provide
modules which can be deployed within another applica-
tion. The hiding of the information related to a proce-
dure simplifies the interface between the modules of the
C1 Implementation and the user application.

The target applications of the C1 Implementation are
embedded applications. Embedded applications often
have special requirements which may require changes to
the internal structure of the PRD (perhaps to include
more information about a procedure). This requirement
would allow this to be done without affecting the inter-
face through which the procedure is manipulated.

Implementation See requirement verification.

Verification The functions and macros to create a procedure (in mod-
ules FwPrDCreate.h and FwPrSCreate.h), the functions
to configure a procedure (in module FwPrConfig.h),
and the functions to execute a procedure (in module
FwPrCore.h) take as their argument a pointer to the
PRD (i.e. an instance of type FwPrDesc t). There is
therefore no need for the user to know the internal struc-
ture of the PRD to use these functions.

FW-6.2.3/R RTD Internal Structure

Requirement It shall be possible to create, configure and command a
RT container without reference to or knowledge of the
internal structure of its RTD.

Justification The intended use of the C1 Implementation is to pro-
vide modules which can be deployed within another ap-
plication. The hiding of the information related to a RT
container simplifies the interface between the modules of
the C1 Implementation and the user application.

The target applications of the C1 Implementation are
embedded applications. Embedded applications often
have special requirements which may require changes to
the internal structure of the RTD (perhaps to include
more information about a RT container). This require-
ment would allow this to be done without affecting the
interface through which the RT container is manipu-
lated.

Implementation See requirement verification.

Verification The functions which manipulate a RT container take as
their argument a pointer to the RTD (i.e. an instance
of type FwPrDesc t). There is therefore no need for the
user to know the internal structure of the RTD to use
these functions.

c©2012 P&P Software GmbH. All Rights Reserved. 74

PP-SP-COR-0001 Revision 1.2.2

6.3 Resource Requirements

FW-6.3.1/T Code Memory Footprint

Requirement The code memory footprint of the C1 Implementation
shall be independent of the size and number of state
machines, procedures, and RT containers deployed by
an application.

Note Ideally, it would be desirable to impose a requirement on
the memory occupation of the C1 Implementation. This
is not possible because memory occupation depends on
the tool chain used to compile an application and on
the target processor. This and the next requirement
aim to restrict memory occupation in a manner which
is independent of the compilation tool chain and of the
execution hardware.

Justification Embedded applications are often memory-
constrained.

Implementation See requirement verification.

Verification The C1 Implementation provides a set of functions
which create, configure and manipulate a generic state
machine or procedure. RT containers are created by
direct instantiation of a type defined by the C1 Imple-
mentation. There is no code generation facility (neither
explicit, nor implicit through the use of macros) which
generates ad hoc code for each state machine, proce-
dure, or RT container instance or for categories of state
machines, procedures, or RT containers. Thus, the code
base of the C1 Implementation is fixed and independent
of the number and type of state machines, procedures
and RT containers instantiated by an application.

FW-6.3.2/T SMD Footprint

Requirement The theoretical memory requirement for an SMD in-
stance shall be a linear function of the values of the fol-
lowing attributes of the SMD: number of states, number
of choice pseudo-states, number of transitions, number
of actions, number of guards.

Note The expression ”theoretical memory requirement” refers
to the memory requirement of an ideal compiler which
packs all the items in the SMD so as to minimize its
memory occupation (in reality, some compilers have
alignment constraints which increase memory occupa-
tion).

c©2012 P&P Software GmbH. All Rights Reserved. 75

PP-SP-COR-0001 Revision 1.2.2

Justification Embedded applications are often memory-constrained.
A linear dependency of the data memory requirements
on the size of a state machine minimizes the memory
requirements (it is not possible to have a less-than-linear
dependency because different state machine instances
are independent of each other).

Implementation The memory occupation of an SMD instance is
determined by the internal structure of an SMD
which is defined by type struct FwSmDesc in
FwSmPrivate.h.

Verification The User Manual (see reference [2]) provides a formula
to compute the theoretical memory footprint of a single
SMD instance (see section ”Memory Footprint”). This
formula is linear in the number of states, number of
choice pseudo-states, number of transitions, number of
actions, number of guards. Note that the requirement
asks for the memory footprint of an SMD to be propor-
tional to the number of actions and guards in a state
machine. This implies that, in a state machine where
the same action is used at different points of the state
machine (e.g. the same action acts as entry action of
several states), one single function is used to implement
all instances of the action.

FW-6.3.3/T PRD Footprint

Requirement The theoretical memory requirement for a PRD instance
shall be a linear function of the values of the following
attributes of the PRD: number of action nodes, number
of decision nodes, number of control flows, number of
actions, number of guards.

Note The expression ”theoretical memory requirement” refers
to the memory requirement of an ideal compiler which
packs all the items in the PRD so as to minimize its
memory occupation (in reality, some compilers have
alignment constraints which increase memory occupa-
tion).

Justification Embedded applications are often memory-constrained.
A linear dependency of the data memory requirements
on the size of a procedure minimizes the memory re-
quirements (it is not possible to have a less-than-linear
dependency because different procedure instances are
independent of each other).

Implementation The memory occupation of a PRD instance is
determined by the internal structure of a PRD
which is defined by type struct FwPrDesc in
FwPrPrivate.h.

c©2012 P&P Software GmbH. All Rights Reserved. 76

PP-SP-COR-0001 Revision 1.2.2

Verification The User Manual (see reference [2]) provides a formula
to compute the theoretical memory footprint of a single
PRD instance (see section ”Memory Footprint”). This
formula is linear in the number of action nodes, num-
ber of decision nodes, number of control flows, number
of actions, number of guards. Note that the require-
ment asks for the memory footprint of a PRD to be
proportional to the number of actions and guards in a
procedure. This implies that, in a procedure where the
same action is used at different points of the procedure
(e.g. the same action is used in several action nodes),
one single function is used to implement all instances of
the action.

FW-6.3.4/T RTD Footprint

Requirement The memory requirement for the part of an RTD in-
stance directly defined by the C1 Implementation shall
be independent of the characteristics of the container
represented by the RTD.

Note The restriction to the ”part of an RTD instance directly
defined by the C1 Implementation” is necessary because
an RTD also includes POSIX objects (see requirement
FW-6.6.2) whose memory requirements are outside the
control of the C1 Implementation and cannot therefore
be covered by this requirement.

Justification Embedded applications are often memory-constrained.
This requirement helps keep a boundary on memory re-
quirements for RT containers (it ensures that a ”large”
container only uses as much memory as a ”small”
one).

Implementation The memory occupation of an RTD instance is
determined by the internal structure of an RTD
which is defined by type struct FwRtDesc in
FwRtConstants.h.

Verification The User Manual (see reference [2]) provides a formula
to compute the theoretical memory footprint of a single
RTD instance (see section ”Memory Footprint”). This
formula is independent of the characterstics of the RT
container.

FW-6.3.5/T State Machine Execution Time

Requirement The worst-case execution time of a transition command
for a state machine shall be independent of the size of
the state machine.

c©2012 P&P Software GmbH. All Rights Reserved. 77

PP-SP-COR-0001 Revision 1.2.2

Note Ideally, it would be desirable to impose a requirement on
the maximum execution time of a state machine. This
is not possible because execution time depends on too
many exogenous factors. This requirement aims to re-
strict execution time in a manner which is independent
of the compilation/linking tool chain and execution en-
vironment.

Justification Mission critical applications often need to determine
statically the worst-case execution time of an applica-
tion. Independence of the execution time from the size
of a state machine facilitates this task.

Implementation Transitions in state machines are processed by function
FwSmMakeTrans in module FwSmCore.h.

Verification Transitions for state machine are processed by function
FwSmMakeTrans in module FwSmCore.h. This function
executes some sequential code and then loops to evalu-
ate the triggers and guards associated to all out-going
transitions from the current state. The SMD is in-
ternally organized in such a way that it is possible to
directly identify all out-going transitions from a given
state without searching the entire set of transitions in
the state machine. Thus, the maximum size of the loop
in FwSmMakeTrans is equal to the number of out-going
transitions from the current state. Hence, the worst-case
execution time occurs when processing a transition from
the state in a state machine which has the largest num-
ber of out-going transitions. The requirement is there-
fore satisfied if one assumes that the maximum number
of out-going transitions from a state is bounded and in-
dependent of the size of a state machine.

FW-6.3.6/T Procedure Execution Time

Requirement The worst-case time required by an execution request to
traverse a single node in a procedure shall be indepen-
dent of the size of the procedure.

c©2012 P&P Software GmbH. All Rights Reserved. 78

PP-SP-COR-0001 Revision 1.2.2

Note When a procedure is executed, zero or more nodes in
the procedure are traversed in sequence. The number
of nodes thus traversed depends on the values of the
procedure guards at the time the procedure is executed.
In the absence of information about the value of the
procedure guards, it is therefore not possible to bound
the total execution time for a procedure.

Ideally, it would be desirable to impose a requirement
on the maximum execution time of a procedure. This
is not possible because execution time depends on too
many exogenous factors. This requirement aims to re-
strict execution time in a manner which is independent
of the compilation/linking tool chain and execution en-
vironment.

Justification Mission critical applications often need to determine
statically the worst-case execution time of an applica-
tion. Independence of the execution time from the size
of a procedure facilitates this task.

Implementation Execution requests in a procedure are processed by func-
tion FwPrExecute in module FwPrCore.h.

Verification Execution requests for procedures are processed by func-
tion FwPrExecute in module FwPrCore.h. When an ac-
tion node is traversed, only sequential code is executed
and hence the worst-case execution time is bounded
and independent of the procedure size. When a deci-
sion node is traversed, some sequential code is executed
first and then a loop is executed to evaluate the guards
associated to all out-going control flows from the cur-
rent node. The PRD is internally organized in such a
way that it is possible to directly identify all out-going
control flows from a given node without searching the
entire set of control flows in the procedure. Thus, the
maximum size of the loop in FwPrExecute is equal to
the number of out-going control flows from the current
node. Hence, the worst-case execution time occurs when
processing a transition from the decision node in a pro-
cedure which has the largest number of out-going control
flows. The requirement is therefore satisfied if one as-
sumes that the maximum number of out-going control
flows from a node is bounded and independent of the
size of a procedure.

c©2012 P&P Software GmbH. All Rights Reserved. 79

PP-SP-COR-0001 Revision 1.2.2

6.4 Concurrency Requirements

FW-6.4.1/R Use in Concurrent Environment

Requirement It shall be possible for several threads to use the state
machine and procedure modules of the C1 Implemen-
tation to manipulate multiple SMDs or PRDs without
risks for their integrity.

Note The situation covered by this requirement is one where
several threads are calling the state machine or proce-
dure functions defined by the C1 Implementation to con-
figure or use different SMDs/PRDs (each thread is ma-
nipulating a different SMD or PRD). Clearly, if several
threads tried to manipulate the same SMD or PRD, con-
flicts might arise. These conflicts can only be resolved
by the user of the C1 Implementation by building pro-
tections into his code.

Justification Embedded applications are often multi-threaded.

Implementation See verification.

Verification The functions which create, configure and manipulate
state machines and procedures do not use any global
data structure (they operate on the SMD and PRD
instances which are passed to them as an argument).
There is therefore no danger for the integrity of an SMD
or PRD from multi-threaded access to the C1 Implemen-
tation functions. Note that when a state machine or a
procedure are extended, their base descriptor is shared
between the base state machine or procedure and all its
children. The base descriptor however is only accessed
in read-mode and hence concurrency poses no danger to
its integrity.

FW-6.4.2/T Concurrent Use of RT Containers

Requirement The operations to start, stop and notify a RT Container
shall be implemented to be thread-safe.

Justification RT Container encapsulate an internal thread (the Acti-
vation Thread). The user operations to start, stop, and
notify a container are in potential conflicts with this in-
ternal thread.

Implementation The start, stop and notify operations are implemented
in functions FwRtStart, FwRtStop and FwRtNotify in
the FwRtCore.h module. These operation use the mutex
associated to each container to ensure access in mutual
exclusion.

c©2012 P&P Software GmbH. All Rights Reserved. 80

PP-SP-COR-0001 Revision 1.2.2

Verification The test cases FwRtTestCaseStressRun1 to
FwRtTestCaseStressRun6 demonstrate operation of a
RT container in a multi-threaded environment.

c©2012 P&P Software GmbH. All Rights Reserved. 81

PP-SP-COR-0001 Revision 1.2.2

6.5 Verification Requirements

FW-6.5.1/T Test Coverage

Requirement The C1 Implementation shall be provided with a Test
Suite offering 100% statement, branch and condition
coverage (with the exception of code covering the failure
of system calls).

Note The term ”system calls” covers calls to the malloc func-
tion in the state machine and procedure modules and to
POSIX functions in the RT container module.

Justification The level of coverage provided by the requirement is that
typically used in mission-critical applications. The ex-
clusion of the error branches entered when a system call
fails is justified by the difficutly of simulating a system
call failure without instrumenting the code.

Implementation The Test Suite is implemented in a set of Test Cases
defined in FwSmTestCases.h (for the state machine
module), in FwPrTestCases.h (for the procedure mod-
ule), and in FwRtTestCases.h (for the RT container
module). The main program for the Test Suite is in
FwTestSuite.h.

Verification The Acceptance Test Procedure of the C1 Implementa-
tion (see [2]) uses the gcov tool to measure the state-
ment and branch coverage of the Test Suite. Note that
the C1 Implementation does not use any boolean ex-
pressions in the decision points of the code (e.g. in
the if clauses). Decision are always taken on the basis
of the outcome of the evaluation of a single primitive
Boolean condition. Hence, branch coverage implies con-
dition coverage.

FW-6.5.2/T Stress Testing of RT Containers

Requirement The Test Suite for the C1 Implementation shall include
stress tests for the RT Containers.

Note The term ”stress test” designates tests where a very
large number of tests are performed on a certain en-
tity using sequences of pseudo-random conditions and
pseudo-random inputs.

Justification Operation of a RT Container involves interaction of at
least two threads (the Activation Threa and the user
thread which sends the notification requests to the con-
tainer). Stress test help explore all possible interaction
conditions for the two threads and increase confidence
in their correct implementation.

c©2012 P&P Software GmbH. All Rights Reserved. 82

PP-SP-COR-0001 Revision 1.2.2

Implementation The Test Suite implements six stress test cases in
FwRtTestCases.h. Each stress test case consists of a
loop of 10000 operations on a RT container.

Verification See implementation.

c©2012 P&P Software GmbH. All Rights Reserved. 83

PP-SP-COR-0001 Revision 1.2.2

6.6 Dependency Requirements

FW-6.6.1/R External Libraries

Requirement The state machine and procedure part of the C1 Imple-
mentation shall not require any external library other
than C’s stdlib.

Justification Minimization of dependencies on external libraries helps
minimize the memory footprint of the application using
the C1 Implementation and facilitates its qualification.
The stdlib is likely to be used in any C application and
hence is accepted.

Implementation See verification.

Verification Inspection of the C1 Implementation files shows that no
other library than stdlib is used. The compilation and
linking process for the Test Suite shows that no other
libraries need be linked.

FW-6.6.2/R Use of POSIX-Compliant Library

Requirement The C1 Implementation shall rely on a POSIX-
compliant library to implement any real-time services it
needs for the implementation of RT Containers.

Justification RT containers need real-time services to implement and
interact with the Activation Thread. The POSIX stan-
dard is the most widely used in the C and embedded
community.

Implementation The FwRtCore.h and FwRtConfig.h modules include
the pthread library which is a POSIX-compliant im-
plementation of threading facilities.

Verification See requirement implementation.

c©2012 P&P Software GmbH. All Rights Reserved. 84

PP-SP-COR-0001 Revision 1.2.2

A Implementation of FW Profile Concepts

The State Machine, Procedure, and RT Container concepts in the FW Profile
are defined in terms of their elements and in terms of the operations which
can be performed upon them. This appendix shows how each element and each
operation defined by the FW Profile is mapped to a data structure or a function
in the C1 Implementation. The information provided in this appendix therefore
demonstrates that the C1 Implementation properly covers the State Machine
and Procedure Concepts of the FW Profile.

A.1 State Machine Concept

A FW Profile State Machine is defined in terms of its elements (see section
4.2 of [1]) and in terms of its behaviour (see section 4.3 of [1]). The state
machine behaviour is in turn defined in terms of the three operations which can
be performed upon a state machine.

The State Machine Descriptor or SMD is the data structure which represents
a state machine in the C1 Implementation. It is defined in the FwSmPrivate.h

header file of the C1 Implementation. Table 1 shows how each state machine
element is represented within the SMD.

Table 2 shows how each state machine operation is mapped to a function in the
FwSmCore.h header file.

Table 1: Mapping of SM Elements to Data Structures in the SMD

Element Implementation in the SMD

Initial
Pseudo-State

The Initial Pseudo-State (IPS) is not directly repre-
sented in the C1 Implementation data structures. A sin-
gle ”stopped pseudo-state” is used to represent both the
Initial and the Final Pseudo-States in the state machine
transitions. The transition out of the IPS is the first
transition in the Transition Array of an SMD.

Proper State Proper states are mapped to variables of type
SmPState t. The states of a state machine are held in
the State Array in the SMD.

State Transition State transitions are mapped to variables of type
SmTrans t. The transitions in a state machine are held
in the Transition Array in the SMD.

Choice
Pseudo-State

Choice pseudo-states are mapped to variables of type
SmCState t. The choice pseudo-states of a state ma-
chine are held in the Choice Pseudo-State Array in the
SMD.

c©2012 P&P Software GmbH. All Rights Reserved. 85

PP-SP-COR-0001 Revision 1.2.2

Element Implementation in the SMD

Final
Pseudo-State

The Final Pseudo-States (FPS) are not directly repre-
sented in the C1 Implementation data structures. A
single ”stopped pseudo-state” is used to represent both
the Initial and the Final Pseudo-States in the state ma-
chine transitions.

Execution
Counters

The Execution Counters are mapped to fields
smExecCnt (State Machine Execution Counter) and
stateExecCnt (State Execution Counter) in the
SMD.

Table 2: Mapping of SM Operations to Functions in FwSmCore.h

Operation Implementation in FwSmCore.h

Start Function FwSmStart

Stop Function FwSmStop

Transition
Command

Function FwSmMakeTrans and (for the Execute com-
mand only) function FwSmExecute

c©2012 P&P Software GmbH. All Rights Reserved. 86

PP-SP-COR-0001 Revision 1.2.2

A.2 Procedure Concept

A FW Profile Procedure is defined in [1] in terms of its elements and of its
behaviour. The procedure behaviour is in turn defined in terms of the four
operations which can be performed upon a procedure. Table 3 shows how each
procedure element is mapped to a data structure in the FwPrPrivate.h header
file of the C1 Implementation and table 4 shows how each operation is mapped
to a function in the FwPrCore.h header file.

Table 3: Mapping of Procedure Elements to Data Structures in the PRD

Element Implementation in the PRD

Initial Node The Initial Node is not directly represented in the C1
Implementation data structures. A single ”stopped
node” is used to represent both the initial and final node
in the procedure control flows. The control flows out of
the initial node is the first control flow in the Control
Flow Array of a PRD.

Action Node Action nodes are mapped to variables of type
PrANode t. The action nodes of a procedure are held
in an Action Node Array in the PRD.

Control Flow Control Flows are mapped to variables of type PrFlow t.
The control flows in a procedure are held in a Control
Flow Array in the PRD.

Decision Node Decision Nodes are mapped to variables of type
PrDNode t. The decision nodes of a procedure are held
in a Decision Node Array in the PRD.

Final Node The Final Nodes are not directly represented in the
C1 Implementation data structures. A single ”stopped
node” is used to represent both the initial and the final
node in the procedure control flows.

Execution Coun-
ters

The Execution Counters are mapped to fields
prExecCnt (Procedure Execution Counter) and
nodeExecCnt (Node Execution Counter) in the
PRD.

Table 4: Mapping of Procedure Operations to Functions in FwPrCore.h

Operation Implementation in the Procedure Module

Start Function FwPrStart

Stop Function FwPrStop

Execute Function FwPrExecute

Run Function FwPrRun

c©2012 P&P Software GmbH. All Rights Reserved. 87

PP-SP-COR-0001 Revision 1.2.2

A.3 RT Container Concept

A FW Profile RT Container is defined in [1] in terms of its elements and of
its behaviour. The container behaviour is in turn defined in terms of the three
operations which can be performed upon a container and of the behaviour of its
elements (the Activation Thread, the Activation Procedure and the Notification
Procedure). Table 5 shows how each container element is mapped to a function
in the FwRtCore.h header file of the C1 Implementation and table 6 shows how
each operation is mapped to a function in the FwRtCore.h header file.

Table 5: Mapping of RT Container Elements to Functions

Element Implementing Function

Activation
Thread

The Activation Thread is implemented by a POSIX
thread which is stored in field pThread of the RTD.
The thread behaviour is implemented in function
ExecActivThread.

Activation Proce-
dure

The behaviour of the Activation Procedure is imple-
mented partly in function FwRtStart (this function im-
plement the initialization action of the procedure) and
partly in function ExecActivProcedure (this function
implements the loop part of the procedure).

Notification Pro-
cedure

The behaviour of the Notification Procedure is imple-
mented partly in function FwRtStart (this function im-
plement the initialization action of the procedure) and
partly in function ExecNotifProcedure (this function
implements the loop part of the procedure).

Table 6: Mapping of RT Container Operations to Functions in FwRtCore.h

Operation Implementation in RT Container Module

Start Function FwRtStart

Stop Function FwRtStop

Notify Function FwPrNotify

c©2012 P&P Software GmbH. All Rights Reserved. 88

PP-SP-COR-0001 Revision 1.2.2

B Error Checks

Table 7 lists the configuration errors which are detected by the configuration
functions of the state machine module and, for each error, it identifies the test
case where the error situation is simulated and its detection is verified.

Similarly, table 8 lists the configuration errors which are detected by the config-
uration functions of the procedure module and, for each error, it identifies the
test case where the error situation is simulated and its detection is verified.

Table 9 lists the error situations which are detected during processing of tran-
sition commands for state machine or execution commands for procedures and,
for each error, it identifies the test case where the error situation is simulated
and its detection is verified.

Errors are reported by setting the error code field of the SMD or PRD. The first
column in the tables lists the error code corresponding to each error situation.

Table 7: Verification of Configuration Errors Detected in FwSmConfig.h

Error Code Description of Error Test Case

smNullPState There is an undefined
state in a state machine

FwSmTestCaseCheck1

smNullCState There is an undefined
choice pseudo-state in a
state machine

FwSmTestCaseCheck2

smNullTrans There is an undefined
transition in a state ma-
chine

FwSmTestCaseCheck3,
FwSmTestCaseCheck4,
FwSmTestCaseCheck5,
FwSmTestCaseCheck6,
FwSmTestCaseCheck9

smIllStateId A state is added to
a state machine with
an illegal (out-of-range)
identifier

FwSmTestCaseConfigErr1,
FwSmTestCaseConfigErr2,
FwSmTestCaseDerEmbed1

smIllChoiceId A choice pseudo-state is
added to a state ma-
chine with an illegal
(out-of-range) identifier

FwSmTestCaseConfigErr1,
FwSmTestCaseConfigErr2

smStateIdInUse A state is added twice to
the same state machine

FwSmTestCaseConfigErr1,
FwSmTestCaseConfigErr2

smChoiceIdInUse A choice pseudo-state is
added twice to the same
state machine

FwSmTestCaseConfigErr1,
FwSmTestCaseConfigErr2

c©2012 P&P Software GmbH. All Rights Reserved. 89

PP-SP-COR-0001 Revision 1.2.2

Error Code Description of Error Test Case

smUndefinedTransSrcA transition is added to
a state machine with a
source (either a state or
a choice pseudo-state)
which has not yet been
defined

FwSmTestCaseCheck11

smIllegalPDest A transition is added
to a state machine with
an illegal (out-of-range)
state destination

FwSmTestCaseCheck10

smIllegalCDest A transition is added
to a state machine with
an illegal (out-of-range)
choice pseudo-state des-
tination

FwSmTestCaseCheck12

smIllNOfOutTrans A choice pseudo-state is
added to a state ma-
chine with less than 1
out-going transitions

FwSmTestCaseCheck11

smIllTransSrc A transition is added to
a SM with a source (ei-
ther a state or a choice
pseudo-state) which is
either not defined or is a
proper state which was
defined with zero out-
going transitions

FwSmTestCaseCheck7,
FwSmTestCaseCheck14

smTooManyTrans A transition from a cer-
tain source (either a
state or a choice pseudo-
state) is added to a state
machine but there isn’t
space for it in the tran-
sition array of the state
machine descriptor

FwSmTestCaseConfigErr1,
FwSmTestCaseConfigErr2,
FwSmTestCaseCheck8

smTooManyOutTrans A state or choice
pseudo-state is added to
a state machine which
has more out-going
transitions than fit into
the transition array
of the state machine
descriptor

FwSmTestCaseCheck16

c©2012 P&P Software GmbH. All Rights Reserved. 90

PP-SP-COR-0001 Revision 1.2.2

Error Code Description of Error Test Case

smTooManyActions The number of actions
added to the state ma-
chine exceeds the num-
ber of actions declared
when the state machine
descriptor was created

FwSmTestCaseCheck17,
FwSmTestCaseCheck18

smTooManyGuards The number of guards
added to the state ma-
chine exceeds the num-
ber of guards declared
when the state machine
descriptor was created

FwSmTestCaseCheck18

smTooFewActions The number of actions
added to the state ma-
chine is smaller than the
number of actions de-
clared when the state
machine descriptor was
created

FwSmTestCaseCheck19

smNegOutTrans A state is added with a
negative number of out-
going transitions

TestCaseConfigErr1

smUndefAction The overridden action in
a derived state machine
does not exist

FwSmTestCaseDerConfigErr1

smUndefGuard The overridden guard in
a derived state machine
does not exist

FwSmTestCaseDerConfigErr1

smEsmDefined The state in a derived
state machine to which
an embedded state ma-
chine is added already
holds an embedded state
machine

FwSmTestCaseDerEmbed1

smNotDerivedSM The state machine
where an action or a
guard is overridden or
a state machine is em-
bedded is not a derived
state machine.

FwSmTestCaseDerConfigErr1,
FwSmTestCaseDerEmbed1

c©2012 P&P Software GmbH. All Rights Reserved. 91

PP-SP-COR-0001 Revision 1.2.2

Error Code Description of Error Test Case

smUnreachablePStateThe state machine has
an unreachable state (a
state which is not the
destination of any tran-
sition).

FwSmTestCaseCheck21

smUnreachableCStateThe state machine has
an unreachable choice
pseudo-state (a state
which is not the destina-
tion of any transition).

FwSmTestCaseCheck22

Table 8: Verification of Configuration Errors Detected in FwPrConfig.h

Error Code Description of Error Test Case

prWrongNOfActions The number of actions
in the base procedure is
not the same as in the
derived procedure

FwPrTestCaseDerCheck4

prWrongNOfGuards The number of guards
in the base procedure is
not the same as in the
derived procedure

FwPrTestCaseDerCheck4

prIllActNodeId An action node is added
to a procedure with
an illegal (out-of-range)
identifier

FwPrTestCaseCheck3

prActNodeIdInUse An action node is added
twice to the same proce-
dure

FwPrTestCaseCheck3

prIllDecNodeId A decision node is added
to a procedure with
an illegal (out-of-range)
identifier

FwPrTestCaseCheck3

prDecNodeIdInUse A decision node is added
twice to the same proce-
dure

FwPrTestCaseCheck3

prTooManyActions The number of actions
added to the procedure
exceeds the number of
actions declared when
the procedure descriptor
was created

FwPrTestCaseCheck5

c©2012 P&P Software GmbH. All Rights Reserved. 92

PP-SP-COR-0001 Revision 1.2.2

Error Code Description of Error Test Case

prTooManyGuards The number of guards
added to the procedure
exceeds the number of
guards declared when
the procedure descriptor
was created

FwPrTestCaseCheck5

prNullAction An action node is de-
fined with a null action

FwPrTestCaseCheck1

prTooManyOutFlows A node is added to
a procedure which has
more out-going transi-
tions than fit into the
control flow array of the
procedure descriptor

FwPrTestCaseCheck3

prIllNOfOutFlows A choice pseudo-state is
added to a procedure
with less than 2 out-
going control flows

FwPrTestCaseCheck3

prTooManyFlows A control flow from a
certain source is added
to a procedure but there
isn’t space for it in the
control flow array of the
procedure descriptor

FwPrTestCaseCheck5

prIllFlowSrc A control flow is added
to a SM with a source
which has an illegal
value

FwPrTestCaseCheck5

prConfigErr A configuration error
has been detected dur-
ing the procedure con-
figuration process

FwPrTestCaseCheck6,
FwPrTestCaseDerCheck3,
FwPrTestCaseDerCheck5

prNullActNode There is an undefined
action node in a proce-
dure

FwPrTestCaseCheck1,
FwPrTestCaseCheck6

prNullDecNode There is an undefined
decision node in a pro-
cedure

FwPrTestCaseCheck7

prNullFlow There is an undefined
control flow in a proce-
dure

TestCaseCheck8

c©2012 P&P Software GmbH. All Rights Reserved. 93

PP-SP-COR-0001 Revision 1.2.2

Error Code Description of Error Test Case

prUndefinedFlowSrc A control flow is added
to a procedure with a
source (either a state or
a source choice pseudo-
state) which has not yet
been defined

FwPrTestCaseCheck5

prIllegalADest A control flow is added
to a procedure with an
illegal (out-of-range) ac-
tion node destination

FwPrTestCaseCheck9

prIllegalDDest A control flow is added
to a procedure with an
illegal (out-of-range) de-
cision node destination

FwPrTestCaseCheck10

prTooFewActions The number of actions
added to the procedure
is smaller than the num-
ber of actions declared
when the procedure de-
scriptor was created

FwPrTestCaseCheck11

prTooFewGuards The number of guards
added to the procedure
is smaller than the num-
ber of guards declared
when the procedure de-
scriptor was created

FwPrTestCaseCheck12

prUndefAction The overridden action
in a derived procedure
does not exist

FwPrTestCaseDerCheck2

prUndefGuard The overridden guard
in a derived procedure
does not exist

FwPrTestCaseDerCheck2

prNotDerivedPr The procedure where an
action or a guard is over-
ridden or a procedure is
embedded is not a de-
rived procedure

FwPrTestCaseDerCheck2

smUnreachableANode The procedure has an
unreachable action node
(a node which is not the
destination of any con-
trol flow).

FwPrTestCaseCheck13

c©2012 P&P Software GmbH. All Rights Reserved. 94

PP-SP-COR-0001 Revision 1.2.2

Error Code Description of Error Test Case

smUnreachableDNode The procedure has an
unreachable decision
node (a node which is
not the destination of
any control flow).

FwPrTestCaseCheck14

Table 9: Verification of Dynamic State Machine and Procedure Errors

Error Code Description of Error Test Case

smTransErr A state machine transition
encounters a choice pseudo-
state which has no out-
going transitions with a
true guard; or a transi-
tion encounters a transi-
tion which has a choice
pseudo-state as both source
and destination of the same
transition

FwSmTestCaseTransErr1,
FwSmTestCaseTransErr2

prFlowErr A procedure encounters a
decision node which has no
out-going control flows with
a true guard

FwPrTestCaseCheck4

c©2012 P&P Software GmbH. All Rights Reserved. 95

PP-SP-COR-0001 Revision 1.2.2

C Verification of Start/Stop Behaviour

This section demonstrates the test coverage of the logic of the Start and Stop
commands for state machines, procedures, and RT containers.

C.1 State Machines

Figure 1 defines the behaviour of a state machine in response to a Start command
or to a Stop command. Table 10 lists the test cases which verify the ”Start
Command” behaviour. Each row in the table corresponds to a branch in the
Start activity diagram. Similarly, table 11 lists the test cases which verify
the Stop behaviour. Each row in the table corresponds to a branch in the
”Stop Command” activity diagram. Note that, in both cases, the tables are not
comprehensive in the sense that they do not list all test cases which verify a
certain branch. They list at least one test case so as to demonstrate coverage of
the corresponding behaviour of the Start or Stop command. The tables therefore
verify requirements FW-3.4.2 and FW-3.4.3.

Table 10: Verification of Start Behaviour for a State Machine

Branch Test Case

State Machine is in a Defined State FwSmTestCaseStart1

State Machine is in an Undefined State FwSmTestCaseStart1,
FwSmTestCaseStart2,
FwSmTestCaseStart3

Transition Target is a State FwSmTestCaseStart1

Transition Target is a Choice Pseudo State FwSmTestCaseStart2

Target of Selected Transition is a State FwSmTestCaseStart2

Target of Selected Transition is a FPS FwSmTestCaseStart2

Target State has an Embedded State Machine FwSmTestCaseStart3

Target State has no Embedded State Machine FwSmTestCaseStart1

Table 11: Verification of Stop Behaviour for a State Machine

Branch Test Case

State Machine is in an Undefined State FwSmTestCaseStop1

State Machine is in a Defined State FwSmTestCaseStop1,
FwSmTestCaseStop2,
FwSmTestCaseStop3

Current State has an Embedded State Machine FwSmTestCaseStop2,
FwSmTestCaseStop3

Current State has no Embedded State Machine FwSmTestCaseStop1

c©2012 P&P Software GmbH. All Rights Reserved. 96

PP-SP-COR-0001 Revision 1.2.2

C.2 Procedures

Figure 4 defines the behaviour of a procedure in response to a Start command
or to a Stop command. Table 12 lists the test cases which verify the ”Start
Command” behaviour and the ”Stop Command” behaviour. Each row in the
table corresponds to a branch in the Start-Stop activity diagram. Note that the
tables are not comprehensive in the sense that they do not list all test cases which
verify a certain branch. They list at least one test case so as to demonstrate
coverage of the corresponding behaviour of the Start or Stop command.

Table 12: Verification of Start and Stop Behaviour of a Procedure

Branch Test Case

Procedure is started from the STOPPED state FwPrTestCaseStart1

Procedure is started from the STARTED state FwPrTestCaseStart1

Procedure is stopped from the STOPPED state FwPrTestCaseStop1

Procedure is stopped from the STARTED state FwPrTestCaseStop1

C.3 RT Containers

Figure 6 defines the behaviour of a RT Container in response to a Start com-
mand or to a Stop command. Table 13 lists the test cases which verify the ”Start
Command” behaviour and the ”Stop Command” behaviour. Each row in the
table corresponds to a branch in the Start-Stop activity diagram. Note that
the tables are not comprehensive in the sense that they do not list all test cases
which verify a certain branch. They just list one test case so as to demonstrate
coverage of the corresponding behaviour of the Start or Stop command.

Table 13: Verification of Start and Stop Behaviour of a RT Container

Branch Test Case

RT Container started from STOPPED state FwRtTestCaseRunDefault1,
FwRtTestCaseRun1

RT Container started from STARTED state FwRtTestCaseRunDefault1

RT Container stopped from STOPPED state FwRtTestCaseRunDefault1

RT Container stopped from STARTED state FwRtTestCaseRunDefault1,
FwRtTestCaseRun2,
FwRtTestCaseRun3

c©2012 P&P Software GmbH. All Rights Reserved. 97

PP-SP-COR-0001 Revision 1.2.2

D Verification of Execution Behaviour

This section demonstrates the test coverage of the transition commanding logic
of state machines and of the execution logic of procedures.

D.1 State Machine Transition Commanding

Figures 2 and 3 define the behaviour of a state machine in response to a Tran-
sition Command. Table 14 lists the test cases which verify the behaviour in
Figure 2. Each row in the table corresponds to a branch in the activity diagram
of the figure. Similarly, table 15 lists the test cases which verify the behaviour
in Figure 3. Each row in the table corresponds to a branch in the activity
diagram. The tables are not comprehensive in the sense that they do not list
all test cases which verify a certain branch. They list at least one test case
so as to demonstrate coverage of the corresponding behaviour of the transition
command activity diagram.

Table 14: Verification of Transition Command Behaviour of Figure 2

Branch Test Case

State Machine is not in a Defined State FwSmTestCaseExecute1

State Machine is in a Defined State FwSmTestCaseExecute1,
FwSmTestCaseExecute2,
FwSmTestCaseExecute3,
FwSmTestCaseExecute3,
FwSmTestCaseSelfTrans1,
FwSmTestCaseTrans1,
FwSmTestCaseTrans2,
FwSmTestCaseTrans3,
FwSmTestCaseTrans4

Transition Command is the ”Execute” Com-
mand

FwSmTestCaseExecute1,
FwSmTestCaseExecute2,
FwSmTestCaseExecute3

Transition Command is not the ”Execute”
Command

FwSmTestCaseSelfTrans1,
FwSmTestCaseTrans1,
FwSmTestCaseTrans2,
FwSmTestCaseTrans3

Current State has an Embedded State Ma-
chine

FwSmTestCaseExecute2,
FwSmTestCaseTrans3

Current State has no Embedded State Ma-
chine

FwSmTestCaseExecute1,
FwSmTestCaseExecute3,
FwSmTestCaseSelfTrans1,
FwSmTestCaseTrans2

c©2012 P&P Software GmbH. All Rights Reserved. 98

PP-SP-COR-0001 Revision 1.2.2

Branch Test Case

At least one outgoing transition from cur-
rent state has transition command as trigger

FwSmTestCaseExecute3,
FwSmTestCaseSelfTrans1,
FwSmTestCaseTrans2

No outgoing transition from current state
has transition command as trigger

FwSmTestCaseExecute1,
FwSmTestCaseExecute2,
FwSmTestCaseTrans1,
FwSmTestCaseTrans3

Guard evaluates to true FwSmTestCaseExecute3,
FwSmTestCaseSelfTrans1,
FwSmTestCaseTrans1,
FwSmTestCaseTrans2

No guard evaluates to true FwSmTestCaseTrans1

Table 15: Verification of Transition Command Behaviour of Figure 3

Branch Test Case

Transition source is a state FwSmTestCaseExecute3,
FwSmTestCaseSelfTrans1,
FwSmTestCaseTrans1,
FwSmTestCaseTrans3

Transition source is a choice pseudo-state FwSmTestCaseTrans2,
FwSmTestCaseTrans5

Transition source state has an Embedded
State Machine

FwSmTestCaseTrans3,
FwSmTestCaseExecute4

Transition source state has no Embedded
State Machine

FwSmTestCaseExecute3,
FwSmTestCaseSelfTrans1,
FwSmTestCaseTrans1,
FwSmTestCaseTrans2

Transition target is a state FwSmTestCaseExecute3,
FwSmTestCaseSelfTrans1,
FwSmTestCaseTrans1,
FwSmTestCaseTrans3

Transition target is a choice pseudo-state FwSmTestCaseTrans2

Transition target is a final pseudo-state FwSmTestCaseTrans5

Destination state has an Embedded State
Machine

FwSmTestCaseExecute4,
FwSmTestCaseTrans4,
FwSmTestCaseTrans6

c©2012 P&P Software GmbH. All Rights Reserved. 99

PP-SP-COR-0001 Revision 1.2.2

Branch Test Case

Destination state has no Embedded State
Machine

FwSmTestCaseExecute3,
FwSmTestCaseSelfTrans1,
FwSmTestCaseTrans1,
FwSmTestCaseTrans2

c©2012 P&P Software GmbH. All Rights Reserved. 100

PP-SP-COR-0001 Revision 1.2.2

D.2 Procedure Execution

Figure 5 defines the behaviour of a procedure in response to an execution re-
quest. Table 16 lists the test cases which verify the behaviour in the figure. Each
row in the table corresponds to a branch in the activity diagram of the figure.
The table is not comprehensive in the sense that it does not list all test cases
which verify a certain branch. It lists at least one test case for each branch
so as to demonstrate coverage of the corresponding behaviour of the activity
diagram.

Table 16: Verification of Execution Behaviour of Figure 5

Branch Test Case

Procedure is Stopped FwPrTestCaseExecute1

Procedure is Started FwSmTestCaseExecute2,
FwPrTestCaseExecute5,
FwPrTestCaseExecute6,
FwPrTestCaseExecute7

Guard is False FwSmTestCaseExecute2

Guard is True FwSmTestCaseExecute2,
FwSmTestCaseExecute3,
FwSmTestCaseExecute4,
FwPrTestCaseExecute5,
FwPrTestCaseExecute6,
FwPrTestCaseExecute7

Target of Control Flow is a Final Node FwPrTestCaseExecute5,
FwPrTestCaseExecute6

Target of Control Flow is an Action Node FwSmTestCaseExecute2,
FwSmTestCaseExecute4,
FwPrTestCaseExecute5,
FwPrTestCaseExecute6

Target of Control Flow is a Decision Node FwSmTestCaseExecute3,
FwSmTestCaseExecute4,
FwPrTestCaseExecute7

Target of Control Flow which evaluates to
True is a Decision Node

FwSmTestCaseExecute4

Target of Control Flow which evaluates to
True is an Action Node

FwSmTestCaseExecute3,
FwPrTestCaseExecute7

Target of Control Flow which evaluates to
True is a Final Node

FwSmTestCaseExecute4,
FwPrTestCaseExecute7

c©2012 P&P Software GmbH. All Rights Reserved. 101

PP-SP-COR-0001 Revision 1.2.2

E Verification of Notification Behaviour

This section demonstrates the test coverage of the Activation and Notification
Procedures and of the Activation Thread of RT Containers. Figure 7 defines the
behaviour of the two procedures and listing 1 defines the behaviour of the Acti-
vation Thread. Tables 17 and 18 list the test cases which verify the behaviour
of the two procedures. Table 19 lists the test cases which verify the behaviour
of the Activation Thread. Each row in the tables corresponds to a branch in the
activity diagrams of the figure or in the pseudo-code of the Activation Thread.
The table is not comprehensive in the sense that it does not list all test cases
which verify a certain branch. It lists at least one test case for each branch
so as to demonstrate coverage of the corresponding behaviour of the activity
diagrams or of the Activation Thread. Note that neither the Activation nor the
Notification Procedure ever receives a Stop command: the procedures always
terminate naturally by reaching their final node.

Table 17: Verification of Notification Procedure of Figure 7

Branch Test Case

Procedure is Started FwRtTestCaseRunDefault1,
FwRtTestCaseRunNonNullAttr1

Skip Notification FwRtTestCaseRun1

Do Not skip Notification FwRtTestCaseRunDefault1,
FwRtTestCaseRunNonNullAttr1,
FwRtTestCaseRun1

Activation Procedure is Stopped FwRtTestCaseRunDefault1,
FwRtTestCaseRunNonNullAttr1,
FwRtTestCaseRun1

Activation Procedure is not Stopped FwRtTestCaseRunDefault1,
FwRtTestCaseRunNonNullAttr1,
FwRtTestCaseRun1

Table 18: Verification of Activation Procedure of Figure 7

Branch Test Case

Procedure is Started FwRtTestCaseRunDefault1,
FwRtTestCaseRunNonNullAttr1,
FwRtTestCaseRun1

Skip Functional Behaviour FwRtTestCaseRun1

Do Not skip Functional Behaviour FwRtTestCaseRunDefault1,
FwRtTestCaseRunNonNullAttr1,
FwRtTestCaseRun1

RT Container is Stopped FwRtTestCaseRun1

c©2012 P&P Software GmbH. All Rights Reserved. 102

PP-SP-COR-0001 Revision 1.2.2

Branch Test Case

RT Container is not Stopped FwRtTestCaseRunDefault1,
FwRtTestCaseRunNonNullAttr1,
FwRtTestCaseRun1

Functional Behaviour is Terminated FwRtTestCaseRunDefault1,
FwRtTestCaseRunNonNullAttr1,
FwRtTestCaseRun1

Functional Behaviour is not Termi-
nated

FwRtTestCaseRun1

Table 19: Verification of Activation Thread of Listing 1

Branch Test Case

Loop is exited because Activation
Thread has terminated

FwRtTestCaseRunDefault1

Loop is executed more than once FwRtTestCaseRun2

Loop is exited because RT Container
has stopped

FwRtTestCaseRun3

c©2012 P&P Software GmbH. All Rights Reserved. 103

PP-SP-COR-0001 Revision 1.2.2

References

[1] Alessandro Pasetti, Vaclav Cechticky: The FW Profile. PP-DF-COR-0001,
Revision 1.3.0, P&P Software GmbH, Switzerland, 2013

[2] Alessandro Pasetti, Vaclav Cechticky: The Framework Profile - C1 Imple-
mentation User Manual. PP-UM-COR-0001, Revision 1.2.0, P&P Software
GmbH, Switzerland, 2013

c©2012 P&P Software GmbH. All Rights Reserved. 104

	Change History
	Introduction
	Intended Use of C1 Implementation
	Requirement Definition
	Requirement Justification
	Requirement Implementation
	Requirement Verification

	State Machine - Functional Requirements
	State Machine Descriptor (SMD) Requirements
	Creation Requirements
	Configuration Requirements
	Start and Stop Requirements
	Transition Command Requirements
	Error Handling Requirements
	Derived State Machine Creation Requirements
	Derived State Machine Configuration Requirements

	Procedure - Functional Requirements
	Procedure Descriptor (PRD) Requirements
	Creation Requirements
	Configuration Requirements
	Start and Stop Requirements
	Execution Requirements
	Error Handling Requirements
	Derived Procedure Creation Requirements
	Derived Procedure Configuration Requirements

	RT Containers - Functional Requirements
	RT Container Descriptor (RTD) Requirements
	Creation Requirements
	Configuration Requirements
	Start and Stop Requirements
	Notification Requirements
	Access Requirements
	Error Handling Requirements

	Non-Functional Requirements
	Coding Requirements
	Use Requirements
	Resource Requirements
	Concurrency Requirements
	Verification Requirements
	Dependency Requirements

	Implementation of FW Profile Concepts
	State Machine Concept
	Procedure Concept
	RT Container Concept

	Error Checks
	Verification of Start/Stop Behaviour
	State Machines
	Procedures
	RT Containers

	Verification of Execution Behaviour
	State Machine Transition Commanding
	Procedure Execution

	Verification of Notification Behaviour

