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Abstract

This document defines the Framework Profile (or FW Profile for short).
The FW Profile provides the means to model the behaviour of a software
application.

The FW Profile is built on three concepts: (a) State Machines as a
means to describe state-dependent functional behaviour; (b) Procedures
as a means to describe sequential functional behaviour; and (¢) RT Con-
tainers as a means to describe non-functional behaviour.

The main characteristics of the FW Profile are: (a) Focus on the
definition of behaviour independently of software-level design and imple-
mentation issues; (b) Separate definition of functional and non-functional
behaviour; and (c) Support for the definition of the behaviour of reusable
software assets (Software Frameworks).
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1 Change History

This section lists the changes made in the current revision. Changes are classified
according to their type. The change type is identified in the second column in

the table according to the following convention:

e "E”: Editorial or stylistic change

e "L”: Clarification of existing text

e "D”: A feature present in the previous revision has been deleted

e 7C”: A feature present in the previous revision has been changed

e "N”: A new feature has been introduced

Table 1: Changes introduced in Revision 1.3.1

Section Type | Description

4.2 L Constraint C7, changed ”transition command” to
”transition trigger” for consistency with terminology
used in constraint C5

4.5, 5.5 E Spelling corrected

Table 2: Changes introduced in Revision 1.3.0

Section Type | Description

all E Change of latex header to bring the document into
line with formatting rules used in related documents

2.1 E Replaced reference to UML 2 with reference to UML

2.2 E Stylistic changes

2.4 E Clarified definition of functional and non-functional
behaviour

2.5 E Stylistic changes

2.6 N New section on formal verification

3.2 L Clarified that a control flow ”target” can also be
called ”destination”

3.2 E Minor editorial changes

3.2 L Clarified that a procedure control flow with no guard
is equivalent to a control flow with a guard which
always evaluates to true

3.3 E Corrected "logical time” to: "logical execution time”

3.4 C Descrition of how a procedure action is specified is
no longer in terms of "mechanisms” but rather in
terms of typical examples

3.5 E Minor editorial changes

3.6 E Section has been entirely re-written for greater clar-
ity

3.7 E Minor editorial and stylistic changes

3.8 E Minor editorial and stylistic changes
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Section Type

Description

4.2 L Clarified that a state machine transition with no
guard is equivalent to a transition with a guard which
always evaluates to true

4.3 E Minor editorial and stylistic changes

4.4 E Minor editorial and stylistic changes

4.5 E Minor editorial and stylistic changes

4.6 E Minor editorial changes; modification of example of
state machine adaptation

5.1 E Minor stylistic change

w

E

Clarified that, when a container is stopped, a noti-
fication is sent to the Activation Thread by incre-
menting the Notification Counter; added activity di-
agrams to describe the Start and Stop operations;
other minor clarifications

Introduced operation Notify to represent an execu-
tion of the Notification Procedure; Moved the start
and initial execution of the Notification and Activa-
tion Procedures from the Activation Thread to the
Start Operation (this brings all initialization actions
within the Start operation)

5.4 L Clarified usage constraint C-1 for RT Container
5.4 E Minor editorial changes
5. C Modified property P4 to reflect the change in the lo-

cation of the start of the Notification and Activation
Procedures from the Activation Thread to the Start
operation

Deleted properties P1 and P2 in tables |§| and |£| (the
tables only cover properties which arise from the in-
teraction of the Notification and Activation Threads)

5.5 N Added table with adaptation points of a RT con-
tainer

5.6 C Simplified discussion of mapping of RT containers to
design level

6 N New section on formal verification of FW Profile
models

App. A E Editorial changes in the title of the appendix section
and in the caption of the Promela listing

App. B N New appendix section with complete Promela model

of formal verification example
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2 Introduction

This document defines the Framework Profile (or FW Profile for short). The
FW Profile provides the means to model the behaviour of software applications.
Part of the FW Profile consists of a modelling language defined as a restriction
of the UML. The main characteristics of the FW Profile are:

1. Focus on the definition of behaviour independently of software-level design
and implementation issues.

2. Separate definition of functional and non-functional behaviour.

3. Support for the definition of the behaviour of reusable software assets
(Software Frameworks).

Each of the above features of the FW Profile is discussed in greater detail later
in this section.

2.1 Basic Concepts
The FW Profile is built on three basic concepts:

1. State Machines to describe state-dependent functional behaviour
2. Procedures to describe sequential functional behaviour

3. RT Containers to describe non-functional behaviour

The State Machine and Procedure concepts are defined as a restriction of the
State Machine and Activity concepts of the UML. They can therefore be repre-
sented graphically (as state charts and activity diagrams) using standard UML
tools. The RT Container concept is instead specific to the FW Profile.

2.2 Heritage

An early version of the FW Profile was proposed by the authors of this document
in the ASSERT Project (see reference [4]) and was later used in the CORDET
Project under a contract funded by the European Space Agency (see reference
[5]). Variants of the FW Profile have been used by P&P Software in the the
following industrial projects:

e Specification of the unit management and failure handling logic of the
Attitude and Orbit Control System of the BepiColombo Satellite.

e Definition of a software framework for the real-time part of a line of med-

ical instruments for a major Swiss pharmaceutical company.

The viability and usefulness of the concepts proposed by the FW Profile has
thus been demonstrated in practice. This document uses the experience gained
in previous projects to extend and refine the FW Profile.

2.3 Behaviour Specification

The FW Profile allows the behaviour of a software application to be specified
in a manner that is independent of the choices made at software-level for the

©2012 P&P Software GmbH. All Rights Reserved. 10
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design and implementation of that application.

The objective of the FW Profile is to provide the means to build a logical model
for the target application. The logical model must capture all functional and
non-functional aspects of the application that are relevant to its user.

The FW Profile is therefore intended to be used in the requirements definition
phase of the software development process.

In the design definition phase, the application developer decides how to map
the concepts offered by the FW Profile (State Machines, Procedures, and RT
Containers) to design-level constructs. This document provides examples of how
this mapping could be done but it is important to stress that the definition of
the application design is outside the scope of the FW Profile.

2.4 Functional and Non-Functional Behaviour

The FW Profile promotes the separation between the specification of functional
and non-functional aspects of an application. The term functional behaviour
designates behaviour which depends neither on time nor on the interaction be-
tween different flows of executions.

The distinction between functional and non-functional behaviour can be under-
stood in terms of the concept of logical execution time. The logical execution
time of a behaviour is the execution time of that behaviour on a processor with
infinite speed and in the absence of pre-emption by higher-priority activities or
blocking by lower-priority activities. Functional behaviour is behaviour with
zero logical execution time. Non-functional behaviour is behaviour with non-
zero logical execution time. Thus, for instance, the presence of wait conditions
or of inter-thread handshaking mechanisms makes a behaviour non-functional.

Of the three modelling concepts offered by the FW Profile, the first two (State
Machines and Procedures) are exclusively aimed at the definition of functional
behaviour whereas the last one (RT Containers) is primarily aimed at the defi-
nition of non-functional behaviour.

2.5 Support for Reusability

The FW Profile explicitly supports the specification of Software Frameworks.
Software Frameworks are a kind of Product Family. A Product Family of-
fers reusable software assets for applications within a certain domain. The
reusable assets offered by a software framework are adaptable software compo-
nents embedded within an architecture. Thus, a software framework predefines
the architecture for the applications within its domain and it offers pre-defined
components to help instantiating that architecture for a specific application.

The framework instantiation process is the process through which the reusable
assets offered by the framework are used to build a specific application. This
process is illustrated in figure [l The framework components are first adapted
to meet the needs of the target application and are then assembled to build the
target application.

©2012 P&P Software GmbH. All Rights Reserved. 11
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) | Adeviaon | gy
Process

I

Reusable SW Assets Reusable SW Assets Target Application
Embedded within an Architecture are specialized for the instantiated
Optimized for a Target Domain Target Application from the Framework

Fig. 1: The Software Framework Concept

The FW Profile supports the specification of software frameworks through the
concepts of Adaptation Point and Invariant Property. An Adaptation Point is
a point where the behaviour of a pre-defined component offered by the software
framework can be modified to meet the needs of a target application. An In-
variant Property is a property that is guaranteed to hold on all applications
instantiated from the framework. Thus, an invariant property expresses an as-
pect of the behaviour of the framework that remains unchanged even after the
framework components have been adapted for the target application.

The concept of adaptation point supports the specification of software frame-
works because the distinguishing characteristic of a framework component (as
opposed to a component which is intended for use in a single application) is
its adaptability, namely its ability to be modified to match the needs of several
related applications. Hence, specification of a framework requires the ability to
specify adaptability. The Adaptation Point concept of the FW Profile fulfills
this need.

In the FW Profile, adaptability is supported by allowing certain elements of
the State Machine and Procedure models to be marked as “adaptation points”.
The objective of adaptability in the specification of a software framework is to
cover the variability within the framework domain. Adaptability must therefore
be controlled to remain limited at a specific domain. For this purpose, the FW
Profile imposes restrictions on the type of elements which can be marked as
adaptation points. These restrictions are defined so as to allow the definition of
invariant properties for a framework.

The role of the invariant properties in the framework instantiation process is
illustrated in figure [2| The framework is specified to encapsulate the properties
that are invariant within its domain (i.e. the properties that must be satisfied by
all applications that can be instantiated from the framework). The instantiation
process (namely the adaptation of the framework components) guarantees that
these properties are preserved at application level and application developers
can therefore concentrate on adding their own application-specific properties
and can assume that framework-level properties remain satisfied.

©2012 P&P Software GmbH. All Rights Reserved. 12
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The adaptation mechanisms offered by the FW Profile are discussed further in
section 3.7 for Procedures and in section .6l for state machines.

Framework
Building
Block

Framework-level Properties
\:> capturing domain-invariant
behaviour and functionalities

Adaptation
Process Framework-level Properties

Application
Building
Block

(inherited from framework
ﬁ building block)
+

Application-level Properties

Fig.

capturing application-specific
behaviour and functionalities
(introduced by tailoring process)

2: Invariant Properties

2.6 Support for Formal Verification

The FW Profile allows the

requirements of an application to be expressed

through a complete and unambiguous model of a target application. This in
principle allows formal verification techniques to be used to validate the model

(i.e. to prove that the model

actually satisfies certain properties). This issue is

discussesd at greater length in section [6]

©2012 P&P Software GmbH. All Rights Reserved. 13
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3 The Procedure Model

Procedures are one of the three modelling concepts offered by the FW Profile
(see section . This section defines the procedure model of the FW Profile.
The procedure semantics defined in this section can be mapped to a subset of
the semantics of the activity concept in UML 2.

3.1 Role of Procedures

Together with the twin concept of state machines (see next section), procedures
are intended to capture the functional behaviour of an application (see section
. To some extent, state machines and procedures are interchangeable in the
sense that the same abstract behaviour can often be modelled using either one
or the other of these two concepts. Procedures are, however, especially well-
suited to modelling self-contained behaviour, namely behaviour that is started
by some external command but which then continues execution according to an
internal logic. Procedures are also better suited at modelling behaviour that
consists of a linear or quasi-linear sequence of actions.

3.2 Definition of Procedures
A procedure in the FW Profile consists of the following elements:

e One initial node

e One or more actions nodes (or actions)
e One or more control flows

e Zero or more decision nodes

e Zero or more final nodes

e Two execution counters

The initial node is characterized by one control flow which has the initial node
as its source and has either an action node or a decision node as its target.

An action node (or action) is characterized by the following elements:

e One or more incoming control flows
e One outgoing control flow

e The behaviour associated to the action

The incoming control flows are control flows that have the action as its target.
The outgoing control flow is a control flow that has the action as its source.

An action represents a single step within a procedure. It encapsulates behaviour
that is not decomposed further within the procedure. The action’s behaviour
can be defined using natural language or some formalism (e.g. an “action lan-

guage”).
A control flow is characterized by the following elements:

e One source

©2012 P&P Software GmbH. All Rights Reserved. 14
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e One target (or destination)

e Zero or one guards

The source and the target are either action nodes or decision nodes. Addition-
ally, the initial node can be the source of a control flow and the final node can
be the target of one or more control flows.

The guard is a specification which evaluates either to TRUE or FALSE and
which has no side effects. If a control flow has no guard attached to it, then this
is equivalent to the control flow having a guard which always evaluates to true.

A decision node is characterized by the following elements:

e One or more incoming control flows

e Two or more outgoing control flows

The incoming control flows are control flows which have the decision node as
its target. The outgoing control flows are control flows which have the decision
node as their source.

For control flows issuing from a decision node, the pre-defined “else” guard is
available. This guard returns TRUE if and only if all the other guards attached
to control flows issuing from the same decision node return FALSE.

The final node is characterized by one or more incoming control flows (namely
control flows that have the final node as their target). Note that all final nodes
are equivalent and therefore it would be legitimate to allow only one single
final node. The option to have more than one is introduced as a matter of
convenience.

The execution counters are unsigned integers which are exclusively characterized
by their value. The first execution counter is called the Procedure Execution
Counter and the second one is called the Node Fzxecution Counter.

The execution counters of a procedure count the number of times the procedure
has been executed (one counts the number of times the procedure has been
executed since it was started and the other counts the number of times the pro-
cedure has been executed since its current node was entered). Since procedures
will often be executed periodically, the execution counters can serve as proxies
for measuring the elapsing of time.

The following syntactical constraints apply to the definition of the procedure
elements:

e C1. The control flows out of a decision node must have a guard.

The following dynamical constraints must be satisfied when a procedure is exe-
cuted:

e D1. Among the outgoing control flows from a decision node, at least one
must have a guard which evaluates to true;

e D2. The evaluation of the guards of a control flow must be free of side-
effects;

©2012 P&P Software GmbH. All Rights Reserved. 15
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e D3. The procedure actions and guards must execute in zero logical exe-
cution time.

The last constraint implies that the behaviour encapsulated by the actions and
by the guards must be purely functional. In practice, this means that actions
and guards cannot include time- dependent behaviour or behaviour that depends
on synchronization with other flows of execution.

The control flow guards and the actions can act as adaptation points (see section
2.5). For this purpose, the FW Profile pre-defines a stereotype called ({(AP))
that can be attached to these elements. The use of the ({(AP)) stereotype only
makes sense in the context of a framework specification. This is discussed further
in section

3.3 Procedure Behaviour

Four operations may be performed on a procedure: (a) the procedure may be
started; (b) the procedure may be ezecuted; (c) the procedure may be stopped;
or (d) the procedure may be run.

Procedures are purely reactive: they wait for one of these four operations to be
performed upon them and they only execute a behaviour in response to one of
these operations.

Operations are performed in response to commands: the command Start triggers
the start operation; the command Execute triggers the execute operation; the
command Stop triggers the stop operation; and the command Run triggers the
run operation.

A procedure may be in two states: STOPPED or STARTED. Initially, by de-
fault, the procedure is in state STOPPED. When the procedure is in state
STARTED, it has a current node. The current node is either the procedure’s
initial node or one of its action nodes.

When a procedure is started, the following behaviour is executed:

1. If the procedure is in state STARTED, then no further action is performed;

2. If the procedure is in state STOPPED, then it is put in state STARTED,
its current node is set equal to its initial node and its execution counters
are reset.

When a procedure is stopped, the following behaviour is executed:

1. If the procedure is in state STOPPED, then no further action is performed;

2. If the procedure is in state STARTED, then it is put in state STOPPED
and its current node is set to an invalid value.

Thus, the Stop and Start commands toggle the state of a procedure and update
its current node. This is shown in the state diagram of Figure

When a procedure is executed, the following behaviour is executed:

©2012 P&P Software GmbH. All Rights Reserved. 16



PP-DF-COR-0001 Revision 1.3.1

STOFPED
Ltentry {Currert_Mode = Ir'rualidJ

Start
Stop

STARTED
rntry {Currert_Mode = Initial_Mode; J

Procedure_Exec_Counter = O;
Mode Exec Counter = O;

Fig. 3: Procedure Start/Stop Commands

1. If the procedure is in state STOPPED, then no further action is performed;

2. If the procedure is in state STARTED, then its execution counters are
incremented by 1 and the guard attached to the outgoing control flow of
the current node is evaluated;

3. If the guard evaluates to FALSE, then no further action is performed;

4. If the guard evaluates to TRUE and the target of the outgoing control flow
attached to the current node is an action node T, then: (a) the current
node is set equal to T, (b) the node execution counter is reset, (c) the
behaviour associated to T is executed, (d) the guard on the out-going
control flow of T is evaluated and steps 3 and 4 are (recusively) repeated;

5. If the guard evaluates to TRUE and the target of the outgoing control
flow attached to the current node is a decision node, then: (a) the guards
of the outgoing control flows attached to the decision node are evaluated;
(b) if the target of the outgoing control flow whose guard evaluates to
TRUE is another decision node, then steps (a) to (d) are performed upon
it; (c) if the target of the outgoing control flow whose guard evaluates to
TRUE is an action node T, then the current node is set equal to T, the
behaviour associated to T is executed, the guard on the out-going control
flow of T is evaluated and steps 3 and 4 are (recusively) repeated; (d) if
the target of the outgoing control flow whose guard evaluates to TRUE
is a final node, the state of the procedure is set to STOPPED and the
current node is set equal to an invalid value.

6. If the guard evaluates to TRUE and the target of the outgoing control
flow attached to the current node is a final node, then the state of the
procedure is set to STOPPED, and the current node is set equal to an
invalid value.

Thus, in summary, when a procedure is executed, it tries to traverse the control
flow issuing form the current node. If this can be done (i.e. if the guard
associated to the control flow evaluates to true), then it advances the execution
of the procedure until it finds a guard that evaluates to false or until it finds
a final node. Whenever an action node is traversed, its associated behaviour is
executed.

©2012 P&P Software GmbH. All Rights Reserved. 17
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The Execute command may carry parameters. These parameters may be passed
to any of the actions that are executed as part of the processing of the Execute
command.

Note that, at any given time, only one flow of control may be traversing a
procedure. This flow of control is advanced every time that the procedure is
executed.

The behaviour associated to the execution of a procedure is shown as an activity
diagram in Figure

[Procedureis STARTEDT
Increment Procedure Execution Counter
and Node Execution Counter

!

Evaluate Guard of Control Flow

/\- Issuing from Current Mode ’//

[Procedure is STOPPED |

[ Guard is FALSE]

[ Guardis TRUE]

[ Target of Cortrol Flow is an Action Node] [ Target of Cortrol Flow is a Final Nade |
Stop Frocedure

[ Target of C%;ntro\ Flow is a Decision Mode]

Evaluste Guards of Control Flows
1ssuing from Decision Node j\

Target of Cortrol Fl
\c\Ehi ?I:gEvao\uatoes ;g TR?JNE [Target of Control Flow which Evaluates

is an Action Mode | to TRUE is a Decision Node |

Set Curent Node Equal to
Target of Control Flow

‘ [ Target of Control Flow which Evaluates

(Reset Mode Execution Counter) to TRUE is a Final Node ]

4<Execute Behaviour of Current Node)

Fig. 4: Procedure Execution Logic

Finally, when a procedure is run, the following behaviour is executed:

1. The procedure is started;
2. The procedure is executed;
3. The procedure is stopped.

Thus, the Run operation is defined in terms of the previous three operations.
The Run operation may take parameters which are passed to the Execute op-
eration which is performed as part of the Run operation (step 2 above).

The Run operation is only useful for procedures which execute in one single
cycle. It is typically used to perform the actions associated to a state in a state
machine.

The execution of the various actions associated to the four procedure operations
(Start, Execute, Stop, and Run) is performed in sequence: an action is executed
only when the previous one has completed. Note that, since actions are con-
strained to execute in zero logical execution time, the execution of a procedure

©2012 P&P Software GmbH. All Rights Reserved. 18
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operation will also execute in zero logical execution time.

Requests to perform an operation upon a procedure are executed in sequence.
A new request can only be processed by a procedure when the previous one has
been fully processed. Procedures have no queues to buffer incoming operation
requests.

Note that the procedure operations do not return any values.

3.4 Specification of Procedure Actions

The FW Profile does not mandate any formalism for specifying the behaviour
encapsulated in a procedure action. Within a FW Profile Model, a procedure
action is typically specified in terms of the operations which can be performed
upon a state machine or upon another procedure. Thus, examples of typical
actions performed by a procedure include:

e Starting a procedure

e Executing a procedure

e Stopping a procedure

¢ Running a procedure

e Starting a state machine

e Executing a state machine (i.e. sending an Execute command to it)
e Sending a transition command to a state machine

e Stopping a state machine

3.5 Specification of Procedure Guards

The FW Profile does not mandate any formalism for specifying a guard. How-
ever, it pre-defines the following guard: “Wait n Cycles”, where n is a positive
integer. This guard is true only when the node execution counter is greater
than or equal to n. Thus, this guard implies that the flow of control is held for
n consecutive execution cycles of the procedure.

The case where the procedure has to wait for one cycle (namely where it has
to wait for the next execution) is especially common and for this case the pre-
defined guard “Next Execution” may also be used.

3.6 Graphical Representation

FW Profile procedures can be conveniently represented using standard UML
Activity Diagrams. The mapping from their graphical elements to the elements
defined in section for the procedures of the FW Profile is the obvious one.

As an example, consider the procedure in figure [5] In this figure, when an ac-
tion consists of performing an operation upon a state machine or upon another
procedure (see section , the following syntax is used: “(operationName):
(SM _or_ProcName)”. Thus, for instance, if an action consists in starting pro-
cedure Proc_A, the content of the action is expressed as follows: “Start: Proc_A”.
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Start: Statetachine 1

==APE==INiE_2

[ ReadyFlag == TRUE |

[ StateMachine 1 has terminated execution |

[Wait 2 Cycles | [Else ]

<E>{ecute: StateMachine_ 1 )

Fig. 5: Procedure Example

[2=AP==Guard 1] [Else ]

Action_2

After the example procedure of figure 5] has been started and when it is executed
for the first time, the procedure starts the StateMachine_1 state machine and
then performs the Init_2 action. Note that these two actions are performed
as part of the first execution cycle for the procedure. In fact, if ReadyFlag
happens to be true when Init_2 has terminated execution, then, also as part
of its first execution cycle, the procedure will evaluate the guards on the top
decision node and will proceed along the control flow with a true guard.

After the guard on ReadyFlag has been passed and assuming that StateMachine_1
does not immediately terminate execution, the procedure remains in a loop
where it executes the StateMachine 1 and the Action_1 every second execu-
tion cycle until the StateMachine_1 terminates. At that point, the procedure
itself terminates either immediately or after having executed Action_2. The
choice between these two options (immediate termination or termination after
execution of Action_2) depends on the value of the Guard_1 guard.

The example procedure of Figure has two adaptation points (see next section):
users may adapt this procedure by changing the definition of Initi_2 and/or
Guard_1.

3.7 Procedure Adaptation

If a procedure is used to specify the behaviour of a framework, then it is neces-
sary to identify its adaptation points (see section [2.5). The FW Profile relies on
the use of the ({AP)) stereotype to identify adaptable elements within a proce-
dure. The FW Profile allows this stereotype to be associated to the following
elements:

e Actions in Action Nodes

e Guards on Control Flows

The presence of the ((AP)) stereotype on any of the elements listed above may
mean one of two things:
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1. The content of the stereotyped element is not defined at framework level
and the definition must be done at application level, or

2. A default content for the stereotyped element is defined at framework level
but this can be overridden at application level.

The FW Profile does not provide the means to discriminate between the two
cases above.

In section [2.5] it was explained that the adaptation mechanisms supported by
the FW Profile are designed to preserve certain invariant properties defined at
framework level. What, then, are the properties which are invariant with respect
to the adaptation mechanism defined above?

In order to answer this question, it is necessary to consider what cannot be mod-
ified through the allowed adaptation mechanisms: neither can new nodes or new
control flows be added to a procedure, nor can new guards be added to existing
control flows. Thus, the features of a procedure which cannot be changed are:
(a) the topology of the procedure, (b) the conditions, expressed in terms of the
outcomes of guards, which lead to a control flow being traversed, and (c) the
sequence of actions which are executed when a control flow is traversed.

The invariant properties of a procedure are therefore those which describe be-
haviour which depends on the topology of a procedure and on the sequence of
control flows traversed and actions performed by the procedure. By contrast,
properties which depend on the content of the actions or of the guards are
typically not invariant since the content of the actions may change during the
framework instantiation process.

As an example, consider again the example procedure of the previous section.
The following property holds on the procedure: “Action_1 is executed as many
times as StateMachine_1 is executed”. This property is invariant because it
depends merely on the procedure topology and cannot be broken by the adap-
tation process: all procedures obtained by adapting the procedure of figure
satisfy this property.

Similarly, consider the following property: “if StateMachine_1 is executed, then
the ReadyFlag was true at least once in the past”. This property is invariant be-
cause it depends on the topology of the procedure and on the conditions attached
to its control flows. Note that ReadyFlag may be undefined at framework level
(or it may be defined at framework level but may be overridden at application
level) but this does not affect the validity of the property because the prop-
erty does not depend on the value of the ReadyFlag (which may change during
the framework instantiation process) but simply on its presence on a certain
transition guard in the procedure (which cannot change during the framework
instantiation process the guard is not marked as an adaptation point).

Finally, as an example of a property which is not invariant with respect to the
adaptation mechanisms allowed by the FW Profile, consider the following: “if
the procedure executes Action_1, then it will also execute Action_2 when it
terminates”. This property may hold in some cases (whenever Guard_1 happens
to be true) but it is not possible to say whether it holds in all cases because the
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definition of Guard-1 (which is an adaptation point for the procedure) may be
modified during the framework instantiation process.

3.8 Mapping to Design Level

The FW Profile is aimed at the modelling of behaviour. The concepts offered
by the FW Profile to model behaviour can be mapped in many different ways to
software-level design artifacts. In the case of the procedure concept, examples
of possible mappings to the software level include:

e A procedure is mapped to a single class with an Execute method as ex-
ecution trigger; actions and guards are mapped to dedicated methods in
the class; adaptation is through inheritance.

e A procedure is mapped to a single class associated to classes represent-
ing its actions nodes and guards (a class for each action node or guard);
adaptation is through inheritance.

e A procedure is mapped to a C-style module; actions and guards are
mapped to functions in the module; adaptation is through delegation.

Obviously, the list above is non-exhaustive but the point it tries to make is that
the use of the FW Profile to model the behaviour of an application does not
dictate its software-level design.

3.9 UML 2 Compliance

The procedure model offered by the FW Profile complies with the UML 2 ac-
tivity model in the sense that the elements of the procedure concept of the FW
Profile and their semantics can be mapped in an obvious way to a subset of the
elements of the activity concept of UML 2.

The execution counters are specific to the FW Profile. They have been intro-
duced as a substitute for the concept of time (which does not exist in the FW
Profile Procedures): if a procedure is executed periodically, then the value of its
execution counters is proportional to the time elapsed since the procedure was
started (Procedure Execution Counter) or since the current node was entered
(Node Execution Counter).

It should be emphasized that the procedure model proposed by the FW Profile
is far more restrictive than the activity model supported by UML 2. This is
because the FW Profile uses state machines to model purely functional (non-
time-related and non-concurrent) behaviour.
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4 The State Machine Model

State machines are one of the three modelling concepts offered by the FW Profile
(see section. This section defines the state machine model of the FW Profile.
This model is defined as a restriction of the state machine model of the UML 2.

4.1 Role of State Machines

Together with the twin concept of procedures, state machines are intended to
capture the functional behaviour of an application (see section . To some
extent, state machines and procedures are interchangeable in the sense that the
same abstract behaviour can often be modelled using either one or the other of
these two concepts.

State machines are, however, especially well-suited to modelling reactive be-
haviour, namely behaviour that is triggered by external commands. State ma-
chines are also better suited at modelling behaviour that is state-dependent,
namely behaviour that is dependent on the past history of a component or
application.

4.2 Definition of State Machines
A state machine in the FW Profile consists of the following elements:

e One initial pseudo-state

e One or more states

e One or more state transitions

e Zero or more choice pseudo-states
e Zero or more final pseudo-states

e Two execution counters

The initial pseudo-state is characterized by one transition which has the initial
pseudo-state as its source and has either a state or a choice pseudo-state as its
target.

A state is characterized by the following elements:

e Zero or more entry actions

e Zero or more do actions

e Zero or more exit actions

e Zero or one embedded state machine
e One or more incoming transitions

e Zero or more outgoing transitions

The state actions represent behaviour which is not decomposed further within
the state machine. Actions’ behaviour can be defined using natural language
or some formalism (e.g. an “action language”). An embedded state machine is
a state machine that is embedded within the state. Embedded state machines
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are defined in the same way and have the same semantics as other FW Profile
state machines. An incoming transition is a state transition that has the state
as its target. An outgoing transition is a state transition that has the state as
its source.

A state transition is characterized by the following elements:

o One transition source

e One transition target (or transition destination)

e Zero or one transition trigger (or transition command)
e Zero or one transition guard

e Zero or more transition actions

The transition source and the transition target are either a state or a pseudo-
state. The transition trigger is the command that triggers the execution of the
transition. A transition guard is a specification that evaluates either to TRUE
or to FALSE and has no side effects. A transition with no guard is equivalent to
a transition with a guard which always evaluates to TRUE. A transition action
represents behaviour which is not decomposed further within the state machine.
A transition action behaviour can be defined using natural language or some
formalism (e.g. an “action language”).

Transition commands may carry parameters and may return values. The pa-
rameters and return values are not defined further by the FW Profile. They
represent parameters that are passed to the actions and guards and values that
are returned by the actions.

A choice pseudo-state is characterized by the following elements:

e One or more incoming transitions

e One or more outgoing transitions

An incoming transition is a state transition that has the choice pseudo-state
as its target. An outgoing transition is a state transition that has the choice
pseudo-state as its source.

For transitions issuing from a choice pseudo-state, the pre-defined “else” guard is
available. This guard returns TRUE if and only if all the other guards attached
to transitions issuing from the same choice pseudo-state return FALSE.

The final pseudo-state is characterized by one or more incoming transitions
(namely state transitions that have the final pseudo-state as their target). Note
that all final pseudo-states are equivalent and therefore it would be legitimate
to allow only one single final pseudo-state. The option to have more than one
is introduced as a matter of convenience.

The ezxecution counters are unsigned integers which are characterized by their
value. The first execution counter is called the State Machine Execution Counter
and the second one is called the State Execution Counter.

The following syntactical constraints apply to the definition of the state machine
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elements:

e C1. The same pseudo-state cannot be both source and target for a tran-
sition;

e (2. The source and target of a transition cannot both be choice pseudo-
states;

e C3. The transition that has the initial pseudo-state as source can have
neither a guard nor a trigger;

o C4. Deleted;

e (5. Transitions that have a choice pseudo-state as source cannot have a
transition trigger;

e C6. Deleted;

e (C7. Transitions that have a state as a source must have a transition
trigger;

e (8. Transitions can only link states and/or pseudo-states that belong to
the same state machine.

The last constraint implies that transitions from an outer state machine to an
embedded state machines or vice-versa are not allowed. Note, however, that
the same transition command may trigger a transition both in an outer state
machine and in one of its embedded state machine. This is discussed in the next
section.

The following dynamical constraints must be satisfied when a state transition
is executed:

e D1. Among the outgoing transitions from a choice pseudo-state, at least
one must have a guard which evaluates to true;

e D2. The evaluation of the guards of a transition must be free of side-
effects.

e D3. The state actions (entry, do, and exit actions) and the transition
actions and guards must execute in zero logical execution time.

The last constraint implies that the behaviour encapsulated by actions and
guards is constrained to be purely functional. In practice, this means that
actions and guards cannot include time-dependent behaviour or behaviour that
depends on synchronization with other flows of executions.

One type of transition command — the Fzecute command — has a special status
in that it triggers the execution of the current state’s do-action. The Execute
command models the situation (common in embedded control systems) of a
cyclical scheduler periodically triggering an application and advancing its exe-
cution.

As a matter of terminology, when a state machine is sent the Execute command,
the state machine is said to be executed.

The execution counters of a state machine count the number of times the state
machine has been executed (one counts the number of times the state machine
has been executed since it was started and the other counts the number of times
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the state machine has been executed since its current state was entered). Since
state machines will often be executed periodically, the execution counters can
serve as proxies for measuring the elapsing of time.

The transition guards, the transition actions and the state actions can act as
adaptation points (see section. For this purpose, the FW Profile pre-defines
a stereotype called ({AP)) that can be attached to these elements. The use of the
({AP)) stereotype only makes sense in the context of a framework specification.
This is discussed further in section [£.Gl

4.3 State Machine Behaviour

Three operations may be performed on a state machine: (a) the state machine
may be started; (b) the state machine may be sent a transition command; or
(c) the state machine may be stopped.

State machines are purely reactive: they wait for one of these three operations
to be performed upon them and they only execute some behaviour in response
to one of these operations.

A state machine can be either in a defined state or in an undefined state. A
state machine is in a defined state from the time it has completed the transition
out of its initial pseudo-state to the time it has either completed the transition
into one of its final pseudo-states or has been stopped.

When a state machine is in a defined state, it has a current state. The current
state is one of the states of the state machine.

When a state machine is started, the following behaviour is executed:

1. If the state machine is in a defined state, then no further action is taken.

2. If the state machine is in an undefined state, then its execution coun-
ters are reset and the action associated to the transition out of its initial
pseudo-state is executed. If several transition actions are present, they are
executed in the order in which they are listed.

3. If the destination of the transition out of the initial pseudo-state is a choice
pseudo- state, then the guards of the outgoing transitions from the choice
pseudo-state are evaluated and the actions associated to the transition
with a guard evaluating to true is executed. If several transition actions
are present, they are executed in the order in which they are listed.

4. If the destination of the transition out of the initial pseudo-state is a state,
then the current state of the state machine is set equal to that state.

5. If the destination of the transition out of the initial pseudo-state is a choice
pseudo- state and if the selected transition out of the choice pseudo-state
has a state as a target, then the current state of the state machine is set
equal to that target state.

6. The entry action of the current state is executed. If several entry actions
are present, they are executed in the order in which they are listed.

7. If the current state has an embedded state machine, then the embedded
state machine is started.
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8. If the destination of the transition out of the initial pseudo-state is a choice
pseudo- state and if the selected transition out of the choice pseudo-state
has the final pseudo- state as a target, then the state machine remains in
an undefined state.

With reference to point 3, it is noted that at least one of the guards on the
outgoing transitions from a choice pseudo-state is guaranteed to be true because
of constraint D1 in the previous section.

When a state machine is stopped, the following behaviour is executed:

If the state machine is in an undefined state, no further action is taken.

2. If the state machine is in a defined state and its current state has an
embedded state machine, the embedded state machine is stopped.

3. The exit action of the current state is executed. If several exit actions are
present, they are executed in the order in which they are listed.

4. The state machine is set to an undefined state.

The logic of the start and stop commands for state machines is shown in Figure
[6] as two activity diagrams.

SM = State Machine

ESM = Embedded SM

CS = Current State

IPS = Initial Pseudo-State

[ SM isin D efined State ] @ CPS = Choice Pseudo-State O
Exec = Execution

[ SM|isin Undefined State |

Reset SM Exec Counter
and State Exec Counter

Execute Actions of

Transition out of IPS

[ SM isin undefined|State] [ M is in Defined State |

’ [ £S5 hasno ESM |

[ CS has ESM |

Stop ESM
Execute Exit
Action of CS
Set SM to
Undefined State

- R Execute Actions Associated to
MiTksnsitionilars iisiERs)] \/ a Transition out of CPS whose

Guard evaluatesto True

[ Transition Target is 3 State ]

Set C5to Target of

Transition out of [PS

[ Target of Selected Transition is a State |

set CSto Target of selected
Transition out of CPS

[ Target of Selected

Execute Entry
Actions of new S

gnstion isa FPS]

[ CShasno ESM ]

[ CShas an ESM ]

Start ESM
Fig. 6: Logic for the Start and Stop Commands to a State Machine

When a transition command T is sent to a state machine S, then the following
behaviour is executed:

1. If S is in an undefined state, then no further action is taken.
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2. If T is the Execute command, then the execution counters of the state
machine are incremented and the do-action associated to the current state
of S is executed. If several do-actions are present, they are executed in
the order in which they are listed.

3. If S is in a defined state and the current state of S has an embedded state
machine SE, then the transition command T is propagated to SE.

4. If there are no transitions from the current state of S that have T as their
trigger, then no further action is taken.

5. If there are one or more transitions from the current state of S that have
T as their trigger, then their guards are evaluated in sequence. The order
of the evaluation is undefined. The absence of a guard is equivalent to a
guard that returns TRUE.

6. When the first transition is found whose guard evaluates to TRUE, then
that transition is executed.

The logic that governs the processing of a transition command by a state ma-
chine is shown in Figure [7] as an activity diagram. Note that this logic merely
describes the circumstances under which a transition within a state machine is
executed but it does not define the logic according to which the transition is
executed. This is done below (see also Figure .

When a transition is executed, then the following behaviour is executed:

1. If the source state of the transition is a state and that state has an em-
bedded state machine, then the embedded state machine is stopped.

2. If the source state of the transition is a state, then the exit action asso-
ciated to the source state is executed. If several exit actions are present,
they are executed in the order in which they are listed.

3. The transition action associated to the transition is executed. If several
transition actions are present, they are executed in the order in which they
are listed.

4. If the target of the transition is a choice pseudo-state, then the guards
of the out-going transitions from the choice pseudo-state are evaluated in
sequence until one is found that evaluates to true and that transition is
executed.

5. If the target of the transition is a final pseudo-state, then the state machine
is set to an undefined state and no further action is taken.

6. If the target state of the transition is a state, then the current state of the
state machine is updated to be equal to the target state of the transition
and the state execution counter is reset.

7. If the target state of the transition is a state, then the entry action of
the target state is executed. If several entry actions are present, they are
executed in the order in which they are listed.

8. If the target state of the transition is a state and that state has an em-
bedded state machine, then the embedded state machine is started.

With reference to point 4, it is noted that at least one of the guards on the
outgoing transitions from a choice pseudo-state is guaranteed to be true because
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[Process Command T |

SM = State Machine
ESM = Embedded SM

CS = Currert State j

[ SM iz ina defined State]

[Elze ]

[Else ]

[T is "Execute" Command ]

Increment SM Exec Courter
and State Execution Counter
(E}{ecute Do-Actions of CS)

[C5 has ESM ] )k

[CS has no ESM ]

Propagate N [Else ]
Command T to ESM

[ At le=st one Outgoing Transition from CS has T as Trigger |

Evaluate Guards of Outgoing Transitions
from CS with T as Trigger

[Else ]

[ Ore Guard Evaluates th TRUE ]
Execute Transition with
Guard Evalusting to TRUE

Fig. 7: Logic for Processing Transition Commands by a State Machine

of constraint C6 in the previous section.

The logic according to which a transition is executed is shown as an activity
diagram in Figure |8} Note that this logic is called up by the logic shown in the
activity diagram of Figure

Transition commands may carry parameters. These parameters may be passed
to any of the state or transition actions that are executed as part of the pro-
cessing of the transition command.

The execution of the various actions associated to the three state machine op-
erations is performed in sequence: an action is executed only when the previous
one has completed. Note that, since state and transition actions are constrained
to execute in zero logical execution time, the execution of a state machine op-
eration will also execute in zero logical execution time.
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CS = Currert State

SM = State Machine

ESM = Embedded S5M

CPS = Choice Pseudo-State
FPS = Final Pseudo-State

[ Transition Source is a State | [Transition Source is a CPS ]

[CS has no ESM ]

Execute Exit Actions of CSH Execute Action Associsted to Transition )

[CS has an ESM |

Stop ESM

Set C5to
Transition Target

Transition Target is & State | [Transition Target i 5 CPS |

[Trangition Targetis a FPS |

Evsluste Guards of Outgoing
Transitions from CPS

Execute an Outgoing Transition from CPS>

Reset State Exec Counter

ExecLte Entry
Action of CS

Set SMto
Undefined State

[CS has no EGM |

whose Guard evaluates to True

[CS has an ESM |

Start ESM

Fig. 8: Logic for Executing Transitions in a State Machine

Transition commands arrive and are processed in sequence. A new command
can only arrive and be processed by a state machine when the previous one
has been fully processed. State machines have no queues to buffer incoming
transition commands.

The above rule in particular implies that transition commands cannot be “nested”,
namely the processing of a transition command by a state machine cannot result
in a new command being sent to the same state machine (nesting rule).

As an example where the nesting rule would be violated, consider the following
situation. A first transition command is sent to state machine A that triggers
a transition from state Al to state A2. The entry action of state A2 sends a
second transition command to state machine A.

As a second example of violation of the nesting rule, consider a transition com-
mand that is sent to state machine A that triggers a transition from state Al
to state A2. The entry action of state A2 sends a new transition command to
state machine B. State machine B, as part of its processing of this command,
sends a new transition command to state machine A.

Forwarding of transition commands from one state machine A to another state
machine B is instead allowed provided that neither of the two state machines is
embedded in the other one.

Forwarding of transition commands from an embedded state machine to its
embedding state machine or vice-versa is forbidden. This restriction helps to
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avoid the ambiguities that would arise when, for instance, the entry action of
a state in an embedded state machine triggers a transition in the embedding
state machine.

4.4 Specification of State and Transition Actions

Although the FW Profile does not mandate any formalism for specifying the
content of a state or transition action, it offers two mechanisms through which
this can be done.

Firstly, a state or transition action can be modelled by a procedure. Note,
however, that, since state and transition actions must execute in zero logical
execution time, procedures that specify state machine actions must execute in
one single execution cycle (i.e. they must consist of a sequence of steps that are
executed in one single execution of the procedure).

If a procedure is used to define a state or transition action, then the execution
of that action must result in the procedure being started and then executed and
its execution must result in the procedure terminating.

Secondly, a state or transition action can be defined in terms of operations
performed upon another state machine or upon a procedure. More specifically,
a state or transition action can be defined to do one of the following:

e Start a procedure

e Execute a procedure

e Stop a procedure

e Start a state machine

e Execute a state machine (i.e. send an execute command to it)
e Send a transition command to a state machine

e Stop a state machine

4.5 Graphical Representation

FW State Machines can be conveniently represented using standard UML State
Machine diagrams. The mapping from the graphical elements to the elements
defined above for the state machines of the FW Profile is the obvious one.

As an example, consider the procedure in figure[d} In this figure, when an action
consists of performing an operation upon another state machine or upon a proce-
dure, the following syntax is used: “(operationName): (SM _or_ProcName)”.
Thus, for instance, if an action consists in starting procedure Procedure_A, the
content of the action is expressed as follows: “Start: Procedure_A”.

When the example state machine of figure [J] is started, it enters either STATE_1
or STATE_2, depending on the outcome of the evaluation of Guard_1 and Guard_2
(and note that, by virtue of constraint D1 in section at least one of the two
guards must be true). If STATE_1 is entered, then the following sequence of ac-
tions is executed: TransAction_0; n=0; TransAction_1; and Entry_1. If instead
STATE_2 is entered, the following sequence of actions is executed TransAction_0;
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n=0; Entry_21; and Entry_22.

State STATE_3 can only be entered from STATE_2 in response to command transi-
tion Trigger_3. In STATE_3, the state machine increases the value of the counter
n every time it is executed and as long as Guard_1 remains false. If, for instance,
Guard_1 becomes true for the first time when Execute is called for the fourth
time, then, at the time the state machine enters state STATE_1, the value of n
is equal to 4.

The state machine terminates execution when it is executed at a time when it is
in STATE_1. If the state machine is stopped before it has terminated execution,
it is set to an undefined state without any action being performed.

The use of the AP stereotypes is discussed in the next section.

/ TransAction_0; n=0
Execute

[Guard 1 ]/ Transéction 1 STATE_1

entry f Entry_1 [~

Execute [ ==AP=> Guard_l1 |

[ ==AP== Guard 2 |

STATE_? ] S [STATE_S

entry / ==AP== Entry_21; Errtry_ZZJ entry f n=0
do/ n++

Fig. 9: Example of FW-Compliant State Machine

4.6 State Machine Adaptation

If a state machine is used to specify the behaviour of a framework, then it is
useful to identify its adaptation points. The FW Profile offers two adaptation
mechanisms for state machines.

The first one relies on the use of the ((AP)) stereotype (see section [2.5]) to
identify adaptable elements within a state machine. The FW Profile allows this
stereotype to be associated to the following elements:

Entry Actions
Do Actions
Exit Actions

Transition Actions

e Transition Guards

The presence of the ({(AP)) stereotype on any of the elements listed above may
mean one of two things:

1. The content of the stereotyped element is not defined at framework level
and the definition must be done at application level, or

2. A default content for the stereotyped element is defined at framework level
but this can be overridden at application level.
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The FW Profile does not provide the means to discriminate between the two
cases above.

The second adaptation mechanism allowed by the FW Profile is as follows: if a
state does not have an embedded state machine, then a state machine can be
embedded in that state during the framework instantiation process.

In section [2.5| it was explained that the adaptation mechanisms supported by
the FW Profile are designed to preserve certain invariant properties defined at
framework level. What, then, are the properties which are invariant with respect
to the two adaptation mechanisms defined above?

In order to answer this question, it is necessary to consider what cannot be
modified through the allowed adaptation mechanisms: neither can the transition
commands be changed, nor can new actions or new guards be added to existing
states or transitions, nor can new states or new pseudo-states be added to the
state machine. Thus, the features of a state machine that cannot be changed
are: (a) the topology of the state machine, (b) the conditions, expressed in terms
of the outcomes of guards, that lead to a state transition taking place, and (c)
the sequence of actions which are executed when a transition is performed.

The invariant properties of a state machine are therefore those which describe
behaviour which depends on the topology of a state machine and on the sequence
of transitions and actions performed by the state machine.

IMIT ‘]

® /LE‘.‘O f==AP==Initialize De\.ricej

Ready [ Initialization Completed |

READY SwitchOff / <<AP==Shutdown Device
>@)

ServiceRequest —L——J

Feady [ Servicing of Request Completed ]

BUSY
LEjo f==AP==Service RequestJ

Fig. 10: Hardware Device with a Busy Wait

As an example, consider the state machine of figure This represents a family
of hardware devices which can be initialized and shutdown and which, while
operational, are capable of servicing requests from their users. The initialization,
shutdown and servicing procedures vary across the family of devices and are
therefore modelled as adaptation points. The operation logic of the device is
instead common to all devices in the family and it is captured in the topology
of the state machine.

Examples of invariant properties for this state machine are: (a) a device can
only service a user request, if, at the time the request is made, it is in state
READY; (b) a device only executes its shutdown procedure if it is switched
off when it is state READY. These properties are invariant because they will
hold irrespective of how the adaptation points in the state machine are filled at
application level. These properties will also continue to hold if the application
designer adds behaviour to the INIT, READY or BUSY states by embedding
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new state machines into them.

Consider instead the following property: when a device receives the Ready com-
mand, it enters the READY state. This property may hold on some devices
(depending on how the device is commanded and on how its initialization and
request servicing procedures are implemented) but it is not guaranteed by the
state machine diagram of figure[I0]and should therefore not be relied upon when
designing a generic framework.

Figure illustrates the general concept of property invariance for state ma-
chines. The figure shows a base state machine that is extended with the addi-
tion of a new embedded state machine and, possibly, with re-definitions of some
of its actions or guards (not shown explicitly in the figure). The embedded
state machine can be used to endow the derived state machine with additional
(application-level) properties but it cannot violate the properties inherited from
the framework level.

Base State Machine Derived State Machine

{ State A
HE Adaptation
1 Process
; State B |:> ﬁ State B

State C J State C

Framework-Level Framework-Level Application-level
Functional Functional + Functional
Properties Properties Properties

Fig. 11: State Machine Adaptation Process

4.7 Mapping to Design Level

The FW Profile is aimed at the modelling of behaviour. The concepts offered
by the FW Profile to model behaviour can be mapped in many different way
to software design-level artifacts. In the case of the state machine concept, the
following mappings would be possible:

e A state machine is mapped to a single class; the transition triggers and all
the actions and guards are mapped to methods in the class; adaptation is
through inheritance.

e A state machine is mapped to a single class associated to classes repre-
senting its states (a class for each state); the transition triggers and all
the actions and guards are mapped to methods in the class; adaptation is
through inheritance.

e A state machine is mapped to a C-style module; the transitions are con-
trolled by a single function in the module (a transition is identified by an
argument to the function); actions and guards are mapped to functions in
the module; adaptation is through delegation.
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Obviously, the list above is non-exhaustive but the point it tries to make is that
the use of the FW Profile to model the behaviour of an application does not
dictate its software-level design

4.8 UML 2 Compliance

The state machine model offered by the FW Profile complies with the UML 2
state machine model in the sense that the elements of the state machine concept
of the FW Profile and their semantics can be mapped in an obvious way to a
subset of the elements of the state machine concept of UML 2 with the following
provisos:

e The semantics of choice pseudo-states in the FW Profiles subsumes that of
junction pseudo-states in UML2. Thus, in the FW Profile, choice pseudo-
states can also be used to join together incoming transition flows.

e The execution counters are specific to the FW Profile. They have been
introduced as a substitute for the concept of time (which does not exist
in the FW Profile State Machines): if a state machine is executed peri-
odically, then the value of its execution counters is proportional to the
time elapsed since the state machine was started (State Machine Exe-
cution Counter) or since the current state was entered (State Execution
Counter).

It should be emphasized that the state machine model proposed by the FW
Profile is far more restrictive than that supported by UML 2. This is because the
FW Profile uses state machines to model purely functional (non-time-related,
non-concurrent) behaviour.
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5 RT Containers

RT Containers are one of the three modelling concepts offered by the FW Profile
(see section . This section defines the RT Container concept of the FW
Profile.

Note that, unlike state machines and procedures (the other two modelling con-
cepts offered by the FW Profile), RT Containers are not derived from a UML 2
concept.

5.1 Role of RT Containers

State machines and procedures allow all functional aspects of a software appli-
cation to be modelled. RT Containers complement them by offering a means to
capture one aspect of the time-related behaviour of an application.

It is important to stress that full modelling of an application’s timing behaviour
is beyond the scope of the FW Profile. This is because the FW Profile is
aimed at modelling individual applications. Applications normally run on a
software/hardware platform which they share with other applications. Timing
behaviour is a system-level aspect (it depends, for instance, on the relative
priorities of the threads allocated to the various applications in a system) and
cannot therefore be fully captured at application level.

RT Containers provide a way to encapsulate the activation logic for a functional
behaviour. More specifically, a RT Container can be seen as a representation
of a thread that controls the execution of some functional behaviour. The RT
Container model defined by the FW Profile allows the conditions under which
the thread is released to be specified.

Conceptually, a RT Container can be seen as a software structure that encapsu-
lates some functional code and endows it with certain timing properties. Thus,
RT Containers are a means of separating the specification of the timing aspects
of an application from its functional aspects.

There is a difference between procedures and state machines on the one hand,
and RT Containers on the other hand. All three concepts are offered as means to
express the behaviour of a software application but they exist at different levels
of abstraction: state machines and procedures constitute a generic modelling
language for the functional part of an application; RT Containers allow the
timing behaviour of a software application to be modelled but they presuppose
the use of a certain design pattern for handling the activation of functional
code. The RT Container concept is thus less generic than the state machine
and procedure concepts.

The design pattern behind the concept of RT Containers is a notification-based
model of thread activation where the notification can be either time-triggered
or sporadic (event-driven notification).

©2012 P&P Software GmbH. All Rights Reserved. 36



PP-DF-COR-0001 Revision 1.3.1

5.2 Definition of RT Container
A RT Container is defined by the following elements:

e One Activation Procedure
e One Activation Thread

e One Notification Procedure

The Activation Procedure is a FW Profile Procedure which executes the func-
tional behaviour encapsulated by the RT Container.

The Activation Thread is the thread responsible for executing the Activation
Procedure (and hence for executing the functional behaviour encapsulated by
the RT Container).

The Notification Procedure is a FW Profile Procedure which encapsulates the
logic for notifying the Activation Thread.

5.3 RT Container Behaviour

Three operations may be performed on a RT Container: (a) the RT Container
may be started; (b) the RT Container may be stopped; and (c) the RT Container
may be notified.

A RT Container may be in two states: STOPPED or STARTED. Initially, by
default, the container is in state STOPPED. When a RT Container is started,
the behaviour shown in the activity diagram in the left-hand side of figure
is executed. The Start operation only has an effect if the container is in state
STOPPED when the operation causes the Activation and Notification Proce-
dures to be started and executed once and the Activation Thread to be created
and released. The Notification and Activation Procedures are started ”atom-
ically” in the sense that neither procedure can be executed or stopped before
both have been started. Reference to figure [13| shows that the first execution of
the Activation and Notification Procedures results in their initialization actions
being executed and, in the case of the Activation Procedure, in the first Set-Up
Notification action being executed.

When a RT Container is stopped, the behaviour shown in the activity diagram in
the right-hand side of figure[12]is executed. The Stop operation only has an effect
if the container is in state STARTED when the operation causes the container to
be placed in state STOPPED and the Notification Counter to be incremented.
The latter results in one last notification being sent to the Activation Thread.
This notification is necessary to ensure an orderly termination of the thread and
of the Activation and Notification Procedures.

When a RT Container is notified, the following behaviour is executed:

1. If the RT Container is in state STOPPED, then no further action is per-
formed;

2. If the RT Container is in state STARTED, then its Notification Procedure
is executed.
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Fig. 12: Start and Stop Operations for RT Containers

The behaviour of the Activation Thread is expressed by the following pseudo-
code:

AN

while true do {
wait until Notification Counter is greater than O0;
decrement Notification Counter;
execute Activation Procedure;

if (Activation Procedure has terminated) then {
put RT Container in STOPPED state;
execute Notification Procedure;
break;

}

if (RT Container is in state STOPPED) then {
execute Activation Procedure;
execute Notification Procedure;
break ;
I
}

Listing 1: Pseudo-code of Activation Thread

The thread executes a loop which starts with a check on whether there are any
pending notifications (the Notification Counter holds the number of pending
notifications). If there is a pending notification (i.e. if the Notification Counter
is greater than zero), the thread decrements the Notification Counter and then
executes the Activation Procedure (which causes the container’s functional be-
haviour to be executed). The thread terminates when the Activation Procedure
has terminated or when the RT container has been stopped. In the former case
(Activation Procedure has autonomously terminated), the RT Container is put
in the STOPPED state and the Notification Procedure is executed one last time
before the thread exits; in the latter case (RT Container has been stopped), both
procedures are executed one last time. This last execution is intended to give
the procedures a chance to perform their finalization behaviour.

©2012 P&P Software GmbH. All Rights Reserved. 38




PP-DF-COR-0001 Revision 1.3.1

Metificstion Procedure Activation Procedure

<< AP== [nitislize Procedure

<< AP== [nitislize Procedure
==tAP=>= Set Up Motification

[ Mext Execution ]

[ Mext Execution ]

[ Mext Execution | [ Activation Procedure is STOPPED | [ Mext Execution | [RT Container is STOPPED |

[Else ] [Else 1

=P == [mplement =<pP== Finalize =2 AP == [mplerment =<pP== Finalize
Motification Logic Procedure Activation Logic Procedure
[ Skip Motification ] ‘ @

[Else | [Else |
[ Execution of Functipnal

Behawviour Authorizef |

==AP == Execute
Functional Behaviour

<<AP== Set Up
Notification e [Elee]

Increment Notificstion
Counter

NOP

[ Execution of Functional
Behaviour has terminated |

Fig. 13: RT Container Procedures

The behaviour of the Activation Procedure and of the Notification Procedure is
shown in the activity diagrams in Figure[I3] The definition of the two procedures
makes use of the “adaptation point” stereotype to identify the parts of the
container behaviour which are application-specific. Applications are therefore
expected to extend the two procedures by inserting their own application-specific
behaviour (by contrast, the behaviour of the Activation Thread is invariant and
is fully defined at FW Profile level).

When the Activation Procedure is executed for the first time (i.e. after the
Activation Thread has been started), it initializes itself and sets up the first no-
tification of the Activation Thread. The form of the notification is application-
specific. Typically, the setting up of a notification may consist of one of the
following:

1. A request that the Activation Thread be notified at some time in the
future;

2. A call-back registration to request to be notified when a certain software
condition arises (e.g. a variable changes value, a message arrives, etc);

3. A request to be notified when a hardware interrupt is asserted.

Note that the notification may only need to be set up once when the Activation
Procedure is initialized or it may need to be set up at every execution cycle.
Note also that the same RT Container may set up different notification requests
in the same execution cycle or it may set up notification requests of different
kinds at different execution cycles. For this reason, the ”Set-Up Notification”
in the Activation Procedure is placed both at the beginning of the procedure
(to be executed once at initialization time) and inside the loop (to be executed
after each execution of the functional behaviour).
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When a notification arrives (i.e. when the user of the container executes the
Notification Procedure and this increments the Notification Counter), the Ac-
tivation Thread is woken up and it executes the Activation Procedure. The
procedure checks whether the RT Container has been stopped. If this is the
case, the procedure performs its finalization action and then terminates. Other-
wise, the procedure checks whether the functional behaviour should be executed
(this is done by the ”"Implement Activation Logic” action) and, if so, it executes
it. Afterwards, the procedure sets up the next notification (if one is needed)
and then checks whether the execution of the functional behaviour has been
completed. If this is so, the procedure terminates. Otherwise it waits for the
next notification.

The procedure initialization and finalization actions are adaptation points which
are defined at application level. Similarly, the action to set up the notification
for the Activation Thread and to implement the activation logic must also be
defined at application level. The latter could, for instance, be used to implement
a filter which decides which notifications to process and which ones to ignore.

The Notification Procedure acts as an intermediary between the source of the
notification event and the notification trigger to the Activation Thread. Such
an intermediary may be useful to: (a) filter notification events, or (b) buffer
notification requests so as to allow the Activation Procedure to handle bursts of
notifications. With reference to the activity diagram in Figure the filtering
and buffering of notification requests is done in the (application-specific) action
“Implement Notification Logic”.

As already noted, the Notification Procedure runs on a thread that is external
to the RT Container: the Notification Procedure is executed by an external
thread when the notification event has occurred. Thus, the logic leading to the
notification of the Activation Thread is as follows:

1. The Activation Procedure makes a request to be notified when a certain
event occurs (this could, for instance, be done by registering with an
external component to be notified when a certain condition occurs);

2. When the event occurs, the Notification Procedure is executed by the
source of the event;

3. The Notification Procedure evaluates the event and may decide to notify
the Activation Thread;

4. The Notification Procedure notifies the Activation Thread by increment-
ing the Notification Counter;

5. In response to the notification, the Activation Thread executes the Activa-
tion Procedure which may execute the functional behaviour encapsulated
by the RT Container;

6. The Activation Procedure sets up the next notification request.

This cycle is broken when either the Activation Procedure decides that the
execution of the functional behaviour has been completed or when the RT Con-
tainer is stopped. Either of these events results in the RT Container and its two
procedures terminating.
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The Notification Procedure may be executed both by the Activation Thread
and by an external thread. For this reason, in many cases, it will be necessary
to ensure that it is executed in mutual exclusion.

Note finally that, in this section, the term ”event” encompasses both asyn-
chronous occurrences (such as the arrival of hardware interrupts from an exter-
nal source) or synchronous occurrences (such as periodic signals generated by
an operating system).

5.4 RT Container Properties and Usage Constraints

The RT Container logic defined in the previous section guarantees that certain
properties (the RT Container Properties) are satisfied when the usage of the
RT Container complies with certain constraints (the RT Container Usage Con-
straints). The properties are listed in table 3| in rows P-3 to P-7. The usage
constraints are listed in the same table in rows C-1 to C-3.

Table 3: RT Container Properties and Usage Constraints

N RT Container Properties and Usage Constraint
P-3 The Activation Thread shall never deadlock.

P-4 If the RT Container is stopped after the Activation Thread has been
released, then, at some later time, the Activation Procedure shall

terminate.

P-5 If the Activation Procedure stops or terminates (it enters the
STOPPED state), then, at some later time, the RT Container shall
be stopped.

P-6 If the Activation Procedure stops or terminates (it enters the

STOPPED state), then, at some later time, the Notification Proce-
dure shall terminate.

P-7 Whenever the Activation Procedure is running (it is in state
STARTED), then the Notification Procedure shall be running, too
(it shall be in state STARTED).

P-8 If notifications cease but the RT Container and the Activation Pro-
cedure continue to run, then, at some later time, the Activation
Thread shall consume all pending notifications (the Notification
Counter will become equal to zero).

C-1 If the RT Container is started and then, at some later time, it is
stopped, then it can be re-started only after its Activation and Noti-
fication Procedures have terminated execution and after its Activa-
tion Thread has terminated (i.e. the user of a RT Container cannot
re-start it before it has completed its orderly shutdown)

C-2 The Activation Procedure is started, stopped and executed exclu-
sively by the RT Container (i.e. the user of the container has no
access to the Activation Procedure)

C-3 The Notification Procedure is started and stopped exclusively by
the RT Container itself (i.e. the user of the RT Container can
execute the Notification Procedure through the Notify operation
but it cannot start or stop it)
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The usage constraints define the conditions for the legal use of a RT Container.
If these constraints are satisfied, then the user can assume that the RT Con-
tainer will comply with its properties. Note that the container’s properties hold
under all circumstances, irrespective of the scheduling and notification/trigger-
ing policies adopted for the Activation Thread and for the thread controlling
the Notification Procedure and irrespective of the way in which the adaptation
points in the container’s procedure are filled.

Properties P-4 and P-5 guarantee that, if the RT Container is stopped or the
Activation Procedure terminates, then the entire container will terminate in the
sense that the container itself and its two procedures will all enter the STOPPED
state. Property P-8 ensures that, if thread scheduling is fair and the rate at
which notifications are generated is compatible with the rate at which they are
processed, then no backlog of unprocessed notifications will build up.

Some notifications may instead remain unprocessed if either the Activation
Thread autonomously terminates or the RT Container is stopped by the user.
Thus, in informal language, the semantics of the Stop operation on the RT
Container is not: ”Process all pending notifications and then terminate”; but
rather: ”Discard any pending notifications and then terminate”.

Note that the container’s procedures can only terminate execution “naturally”
(as opposed to being forcefully stopped). This is because the RT Container
logic never stops them and usage constraints C-2 and C-3 ensure that they are
not stopped by any external agent. This is important because it means that the
procedure will always execute their finalization behaviour before terminating.

Constraint C-1 states that a RT Container can only be re-started after it has
completed its shutdown. This is a legitimate constraint because properties P-4
and P-6 guarantee that, if the container is stopped, then its two procedures will
eventually terminate. This means that the user of a RT Container can always
rely on the container completing its shutdown in a finite amount of time.

The container properties can be formally verified. This is done in table [4
The verification is partially based on the Promela model of the RT Container
presented in appendix A.

Table 4: Verification of RT Container Properties
N Verification of Property

P-3 Absence of deadlock is verified because the Promela model of ap-
pendix A has no invalid end states.

P-4 If the following settings are made: p = “RT Container is in state
STOPPED” q = “Activation Procedure is in state STOPPED” and
z = " Activation Thread has been released”; then property P-4 can
be stated in LTL as follows: [|((p && z) —()q). This property is sat-
isfied by the Promela model of appendix A (under “weak fairness”
conditions).
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N Verification of Property

P-5 If the same settings are used as for the previous property, then this
property can be stated in LTL as follows: [[(!q—[](q—{)p)). This
property is satisfied by the Promela model of appendix A (under
“weak fairness” conditions).

P-6 If the following settings are made: p = “Notification Procedure
is in state STOPPED” and q = “Activation Procedure is in state
STOPPED”; then property P-6 can be stated in LTL as follows:
[[(a—=()p). This property is satisfied by the Promela model of ap-
pendix A.

P-7 If the same settings are used as for the previous property, then this
property can be stated in LTL as follows: [](!q—!p). This property
is satisfied by the Promela model of appendix A.

P-8 If the following settings are made: p = “RT Container is in state
STARTED”, q = “Activation Procedure is in state STARTED” u =
“No notifications are generated” and v = “Notification Counter is
equal to zero”, then this property can be stated in LTL as follows:
O] (u&& p && q) —()[] v. This property is satisfied by the Promela
model of appendix A.

5.5 RT Container Adaptation

There are no adaptation mechanisms that are specific to RT Containers. RT
Containers can be adapted by adapting their procedures in accordance with
the rules of the FW Profile (see section . The adaptation points of a RT
Container are the adaptation points of the container’s procedures. These are
listed in table Fl

Table 5: Adaptation Points of RT Containers

Adaptation Point Description

Initialize Procedure Implement the initialization action for the No-

(Notification Procedure) | tification Procedure.

Initialize Procedure Implement the initialization action for the Acti-

(Activation Procedure) vation Procedure.

Implement Notification Determine whether or not a notification request

Logic is forwarded to the Activation Thread.

Set Up Notification Set up (or update) the mechanism for the next
notification.

Implement Activation Determine whether or not reception of a noti-

Logic fication results in execution of the container’s
functional behaviour.

Execute Functional Execute the container’s functional behaviour.

Behaviour

Finalize Procedure Implement the finalization action for the Notifi-

(Notification Procedure) | cation Procedure.

Finalize Procedure Implement the initialization action for the Acti-

(Activation Procedure) vation Procedure.
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5.6 Mapping to Design Level

As in the case of state machines and procedures, there are many ways in which
the behaviour specified by a RT Containers can be mapped to the design level.
Also as in the case of the state machines and procedures, the type of mapping
is not mandated by the FW Profile.
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6 Formal Verification of FW Profile Models

The FW Profile offers the means to build a behavioural model of an application.
Such a model is developed in response to the needs of a higher-level system
within which the application is to be deployed. The question then arises of how
one can verify that the model matches the higher-level needs of its embedding
system. Traditional answers to this question rely on analysis of the model
through reviews by the system’s stakeholders. More recently, formal verification
techniques have been proposed for the same purpose.

Formal verification consists in proving that a certain formally expressed model
satisfies certain formally expressed properties. When applied to a requirements
model, formal verification techniques are a way of checking the correctness of the
requirements: the properties to be verified express the higher-level needs which
the requirements are expected to satisfy and formal verification helps establish
that the requirements actually do satisfy them (i.e. that the requirements are
correct).

As an example, consider an application which manages a stream of commands
to a hardware actuator and which is responsible for controlling its operation.
One of the desirable properties of such an application might be to ensure that
commands for the actuator never remain pending forever within the application
itself (due to, for instance, the actuator having been shut down before the
command buffer had been flushed). Establishing at requirements level that
this property holds involves analysing the application’s requirements to verify
that they guarantee that, under all operating conditions, commands are always
eventually sent to the actuator. With a formal verification approach this task
takes the form of a proof carried out on a formal model of the application’s
requirements.

Formal verification techniques can be applied whenever requirements are ex-
pressed in a formalism with an unambiguous semantics. They can therefore be
applied to FW Profile models. The objective of this section is to show how this
can be done in practice using a model checking approach which is arguably the
most common formal verification technique.

With a model checking approach, compliance of a model to a certain property is
verified by systematically exploring all possible states of the model and verifying
that, in all cases, the target property is met. Practical use of model checking
techniques requires tool support. Here, the Spin Model Checker of reference [3]
is considered. This is one of the most widely used model checking tools; it has
a strong heritage in industrial projects; and it is publicly and freely available
from [6].

This section thus discusses the applicability of model checking techniques using
the Spin Model Checker to FW Profile models. The discussion assumes the
reader to be familiar with model checking in general and with the Spin Model
Checker in particular.
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6.1 Model-Checking for FW Profile Models

Figure [T4] shows the basic approach to model-checking with the FW Profile.
The inputs tothe verification process (yellow boxes in the figure) are the FW
Profile model itself and the properties which one wishes to verify. The model is
translated into an equivalent Promela model and the properties are formalized
by being translated into, for instance, LTL formulas or assertions within the
Promela code. The Spin Model Checker can then be used to verify whether the
properties are satisfied. The outcome of the check is either a confirmation that
the properties hold or else an execution trail showing how a certain property is
violated.

The appeal of the approach in figure[I4]is that it would allow the Promela model
to be automatically generated from the FW Profile model. Building a tool to
translate a model from the FW Profile to the Promela world would be straigh-
forward and would automate the verification process. In reality, this approach
would suffer from two major flaws. Firstly, in practical cases, verification is
not possible on a full model of the target application because the verification
would either take too long or exhaust the memory of the computer platform
on which it is carried out. Verification must be done on a reduced version of
the model which only retains the features which are relevant to the properties
which are being verified. Secondly, verification of the properties of a certain ap-
plication normally requires that the environment within which the application

is embedded be specified.
Property
t

o be verified | | LTL Formulas, Promela

ﬂ Assertions, Efc
5’
Formally
expressed
property
Spin Mode!
-~ Checker

FW Profile Promela |::> K
Model :> Model @
property Or trail showing

how property is violated

Fig. 14: Basic Approach for Model Cheking of FW Profile Models

Either confirmation of

Thus, a more realistic approach to formal verification is as in figure [15| where the
generation of the Promela model requires a ”simplification” step which removes
all non-relevant features of the FW Profile model and requires, as a second
input, the specification of the environment within which the application resides.
Automatic generation of the Promela code is still possible but its benefits are
much smaller because: (a) the most time-consuming part of the verification
process is likely to be the identification of the features to be discarded from
the full model; (b) the reduced model must be comparatively simple (or else
verification takes too much time or memory) and hence the added value from
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automating its generation is limited; and (c) the Promela model must cover the
application’s environment and this cannot be derived automatically from the
model of the application requirements.

For all the above reasons, it seems more useful to define general ”Promela pat-
terns” of how FW Profile models can be transformed into Promela models rather
than to provide a tool which would, at most, only automatize a small part of the
transformation. Understanding of these patterns may help a designer to rapidly
create Promela models which are adapted to a certain property to be verified.
These Promela Patterns are introduced in the next section while section [6.3]
presents a concrete example of their use.

Property
Features of reduced model and to he verified u LTL Formulas. Promela

of envionment model depend on
properties to be be verified ,ﬁssemons

A

FW Profile | / Environment
Model |/ Model Formally I
i expressed
property
/ Spin Mode!
v . Checker
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FW Profile Promela L3
Model Model @
property Or trail showing

how property is violated

Fig. 15: Realistic Approach to Model Cheking of FW Profile Models

6.2 Promela Patterns

The FW Profile uses state machines and procedures to capture the functional
(i.e. purely sequential, non-time related) behaviour of an application and uses
RT containers to capture their non-functional behaviour. The basic rules for
mapping a FW Profile model to Promela code therefore are:

e State machines and procedure are mapped to non-blocking code; and

e RT containers are mapped to Promela processes.

The next three sub-sections discuss in greater detail the mapping to Promela of
each of the three constructs of the FW Profile.

6.2.1 State Machines

This section explains how a FW Profile state machine can be represented in
a Promela program. The example Promela listings in this section have been
built for the state machine of figure This state machine represents a buffer
controller and is part of the example discussed in section |6.3

The basic pattern for modelling state machines in Promela is to map them to
macros with one single argument representing the start/stop commands and the
transition commands for the state machine. For the example state machine, this
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Pop[N==1]/N=10 Put /M =1
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[ M == BufferSize ]
Fig. 16: State Machine for a Buffer Control Logic

is illustrated in listing[2] The listing begins with the declaration of a set of mtype
types which define the set of commands for the state machine and the set of
states for the state machine. The set of commands includes both the Start/Stop
commands and the transition commands (Put and Pop in the example). The
set of states includes an INACTIVE state to represent the situation where the
state machine is stopped.

mtype = {INACTIVE}; /* State common to all SMs and Procedures =/
mtype = {Start, Stop}; /* Commands common to all SMs x/
mtype = {EMPTY, NOT_EMPTY, OVERFLOW}; /% States of Buffer SM x/
mtype = {Put, Pop}; /+* Commands of Buffer SM x/
mtype bufferState = INACTIVE; /* State of Buffer SM x/
byte nltems = 0; /* Number of items in buffer =/
/* A call to this macro models the sending of a command to the x/
/* Buffer State Machine. The buffer size is assumed equal to 3. x/
inline BufferSM(cmd) {
if

(bufferState=INACTIVE) && (cmd&=Start) —>
bufferState = EMPTY;

nltems = 0;
(bufferState=EMPTY) && (cmd=—Put) —>
nltems = 1;

bufferState = NOTEMPTY;
(bufferState=NOTEMPTY) && (cmd==Put) && (nltems<3) —>
nltems—++;
(bufferState=NOTEMPTY) && (cmd==Put) && (nltems==3) —>
bufferState = OVERFLOW;
&&
&&

(bufferState=NOTEMPTY) && (cmd=—Pop) (nItems>1) —>

nltems ——;
(bufferState=NOTEMPTY) && (cmd==Pop) (nItems==1) —>
nltems = 0;

bufferState = EMPTY;
(bufferState!=INACTIVE) && (cmd==Stop) —>
bufferState = INACTIVE;
it else —> skip;

fi;
}

BufferSM (Put) ; /* Send command Put to Buffer SM x/

Listing 2: Representation of a State Machine Promela
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At line 5, variable bufferState is defined to represent the current state of the
state machine. Such a variable is normally initialized to INACTIVE. It may be
initialized to a different value if the verification scenario starts with the state
machine in an active state.

Obviously, the set of commands in the mtype declarations does not need to
encompass all commands which the target state machine may accept. Some of
these commands may not be relevant to the verification objectives and may be
dropped. For the same reason, the declaration of the states may only cover a
subset of the state machine’s states.

The variable nItems defined at line 6 of the listing matches variable N in the
state machine. Variable BufferSize in the example state machine is not directly
modelled in the Promela program which simply assumes that the buffer has a
size of 3. This choice does not imply any loss of generality since, in a verification
context, there is no difference between a situation where the buffer size is equal
to 3 and a situation where it has a value greater than 3. This transformation
from a variable of arbitrary value to a constant with a well-defined value is an
example of the ”complexity reduction” step shown in figure [L5].

The macro is defined at lines 11 to 32. A call to this macro represents the sending
of a command to the state machine. The macro consists of an if clause which
covers all combinations [current state, transition command, guard] which may
trigger a transition in the state machine. The combinations of state/command
pairs which cannot trigger any transition (or which are simply not relevant to
the verification objective) are caught by the else part of the if clause. The
behaviour associated to each state/command pair should in principle be the
one defined in section as the behaviour of a state machine in response to an
external command. In practice, aspects of this behaviour which are not relevant
to the verification objective should be dropped. Thus, for instance, the example
in listing 2] does not model the execution counters which are associated to each
state machine. This is legitimate in the case of the example state machine
because none of its guards depends on the passage of time or on the execution
cycle of the state machine.

Line 34 shows how the macro is called. In this line, transition command Put is
sent to the state machine.

One variant to the code in listing [2| occurs when the implementation adds a mu-
tual exclusion mechanism in order to let the Buffer state machine be accessed
by multiple threads. If the mutual exclusion mechanism is important for veri-
fication purposes, it must be modelled in the Promela code. One way of doing
this is to associate a boolean variable to the state machine and then to use it as
a mutex. The variable is indivisibly tested-and-set at the beginning of the state
machine macro (to model the seizing of the mutex) and is reset at the end of
the macro (to model the release of the mutex). Listing [3| shows how this would
be done in the case of the Buffer state machine.

The examples of the mutex and of the execution counters (both of which may be
included or omitted in a Promela model depending on the verification objective)
and the fact that the set of states or of transition commands may be tailored
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to the verification objectives illustrate how the need may arise to maintain
different Promela representations of the same state machines which are aimed
at different verification objectives. One way to handle this variability is to put
the definition of the state machine macro in a separate file which is then included
in the Promela program (using the #include directive). This lets a user create
different versions of the state machine macro which are stored in separate files
and have the same calling interface. It then become possible to rapidly switch
between alternative representations of the same state machine with minimal
impact on the overall Promela program.

mtype = {INACTIVE}; /% State common to all SMs and Procedures =/
mtype = {Start, Stop}; /* Commands common to all SMs x/
mtype = {EMPTY, NOTEMPTY, OVERFLOW}; /% States of Buffer SM x/
mtype = {Put, Pop}; /* Commands of Buffer SM x/
5| mtype bufferState = INACTIVE; /% State of Buffer SM x/
bool bufferMutex = false; /* Mutex for Buffer SM x/
byte nltems = 0; /% Number of items in buffer x/
e «/
/* A call to this macro models the sending of a command to the ®/
/* Buffer State Machine. The buffer size is assumed to be equal %/
/% to three. */

inline BufferSM(cmd) {
atomic{(bufferMutex=—false) —>
bufferMutex = true;} /% Seize the mutex */

bufferMutex = false; /* Release the mutex =/

}

Listing 3: Representation of a Mutex-Protected State Machine in Promela

6.2.2 Procedures

This section explains how a FW Profile procedure can be represented in a
Promela program. The example Promela listing in this section has been built
for the procedure of figure This procedure controls a hardware actuator and
is part of the example discussed in section [6.3

The basic pattern for representing procedures in Promela is to split their map-
ping to Promela into two parts. The first part consists of dedicated code which
models the start/stop logic for the procedure. The second part consists of a
parameterless macro which models the execution of the procedure. This is il-
lustrated in listing [4] for the example procedure.

The listing begins with the declaration of an mtype type which defines the possi-
ble states of the procedure. All procedures have a STOPPED and a STARTED
state which correspond to the procedure being stopped or having just been
started. Additionally, procedures have one state for each node at the end of a
control flow with a guard. This state represents the condition of a procedure
which is being executed and which has found the guard to be false. The example
procedure has two control flows with a guard attached to them but both these
control flows end in the same node (the decision node after the ”Start Actuator
SM” action node) and hence only one additional state needs to be defined for
this procedure. In listing [ this state is called WAITING.
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Fig. 17: Procedure to Control a Hardware Actuator

The procedure macro consists of an if clause (see lines 7 to 31 in the listing)
which covers all states of the procedure and associates to each the behaviour
of the procedure when it receives an Execute command in that state. This is
in principle the behaviour defined in section but, as in the case of the state
machine macros, behaviour which is not relevant to the verification can (and
should) be dropped. Thus, for instance, the example in the listing does not
model the procedure execution counters.

The starting and stopping of the procedure is modelled by setting the procedure
state to, respectively, STARTED and STOPPED (see lines 38 and 44 in the
listing). The execution of the procedure is modelled by a call to the procedure
macro (see lines 40 and 42 in the listing).

As in the case of state machines, there is one obvious variant to the code in listing
which occurs when the implementation adds a mutual exclusion mechanism
in order to let the procedure be accessed by multiple threads. If the mutual
exclusion mechanism is important for verification purposes, it must be modelled
in the Promela code. One way of doing this is to associate a boolean variable
to the procedure and then to use it as a mutex. The variable is indivisibly
tested-and-set at the beginning of the procedure macro (to model the seizing
of the mutex) and is reset at the end of the macro (to model the release of the
mutex). The mechanism is the same as for the state machine of listing

Also as in the case of state machines, the need to tailor a Promela model to a
certain verification objective and to keep it as simple as is compatible with that
objective will inevitably result in several models being developed for a given
procedure with each model encapsulating different aspects of the procedure’s
behaviour. One way of handling this variability is to proceed as recommended
for the state machines and to give the various versions of the procedure the
same calling interface and place them into #include files which may then be
included in the main Promela program.
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mtype = {STOPPED, STARTED, WAITING}; /% Act. Cont. Proc. States =/
mtype actContState = STOPPED; /* State of Actuator Cont. Proc. x/

/* y
/* A call to this macro models the execution of the Actuator */
/*x Controller Procedure. x/
inline ActuatorControllerPR () {
if

(actContState==STOPPED) —>

skip;

(actContState==STARTED) —>

ActuatorSM (Start ) ; /* Start Actuator SM x/

actContState = WAITING;
(actContState==WAITING) —>

if
(bufferState=EMPTY) —> skip;
(bufferState=NOTEMPTY) —>
ActuatorSM (Send) ; /* Send Send to Actuator SM x/
(bufferState=OVERFLOW) —>
overflowHandled = true;
ActuatorSM (SwitchOff) ; /* Send SwitchOff to Act. SM x/
actContState = STOPPED; /% Terminate procedure x/
fi;
if
(shutdownReqPending=—true) && (bufferState=EMPTY) —>
ActuatorSM (SwitchOff) ; /* Send SwitchOff to Act. SM =/
actContState = STOPPED; /* Terminate procedure x/
else —> skip;
fi;
fi;
}
/% */
/% Promela Process executing Actuator Controller Procedure. */

active proctype SomeProcess() {

/% Start Actuator Controller Procedure x/
actContState = STARTED;

ActuatorControllerPR () ; /+* Execute Actuator Cont. Procedure x/
ActuatorControllerPR () ; /+ Execute Actuator Cont. Procedure =/
actContState = STOPPED; /* Stop Actuator Cont. Procedure =/

Listing 4: Representation of a Procedure in Promela
6.2.3 RT Containers

This section explains how a RT container can be represented in a Promela
program. Mapping of RT containers to Promela can be done at two levels. A
detailed mapping requires modelling of the two procedures in the container (the
Activation Procedure and the Notification Procedure, see section . In this
case, the Promela model in appendix [A] can be used.

Such a detailed modelling is, however, unlikely to be necessary. The RT con-
tainer procedures are designed to guarantee that containers are well-behaved (to
guarantee, for instance, that they initialize correctly or that they do not miss any
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notification requests). Applications will normally take this well-behavedness for
granted (because it has been proven at the level of the container) and will instead
focus on the interaction between the containers and the functional behaviour
which they control. A more coarse-grained modelling of the RT containers then
becomes more appropriate where a RT container is seen as a source of transition
commands to state machines and of execution requests to procedures. In this
case, the RT container is simply represented by a Promela process whose body
sends the commands and execution requests.

As a simple example, listing [5| shows a RT container which represents a thread
which starts the Buffer State Machine of listing [2| and then repeatedly sends it
Put commands until it eventually stops it.

active proctype ActuatorHardware() {
BufferSM (Start) ;
do
true —> BufferSM (Put) ;
true —> break;
od;
BufferSM (Stop) ;

}

Listing 5: Representation of a RT Container in Promela

6.3 Example Application of Promela Patterns

This section illustrates the concepts discussed above to present a complete ex-
ample of how a FW Profile model can be mapped to a Promela program and
how its properties can be verified using the Spin Model Checker. The example
problem considered in this section is that of a software controller for a hardware
actuator with the following characteristics:

1. By default, the hardware actuator is unpowered in the OFF state.

2. The hardware actuator is switched on by sending it command SwitchOn.
In response to this command, the hardware actuator performs some inter-
nal initialization actions and then enters its normal operational state.

3. The hardware actuator signals completion of its initialization and entry
into its normal operational state by sending a Done signal to its software
controller.

4. When it is in its normal operational state, the actuator accepts actuator
commands from its controller.

5. The processing of an actuator command takes some time; when the hard-
ware actuator has terminated processing an actuator command, it gener-
ates a Done signal to its software controller.

6. The hardware actuator can only process actuator commands one at a time
(i.e. there is no internal buffering of commands in the hardware actuator).

7. An orderly switch off of the hardware actuator is performed by sending it
command SwitchOff at a time when it is not busy processing an actuator
command.

Figures [18] and [19] capture the FW Model of a controller for the hardware ac-
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tuator. Such a model might be used as a specification for a software module
in an embedded control application. The model consists of two state machines
(the Buffer State Machine and the Actuator State Machine in figure and
one procedure (the Actuator Controller Procedure in figure .

Since the hardware actuator has no buffering capability for the commands it re-
ceives, the Buffer State Machine is introduced to buffer software-level requests
for actuator commands. The application sends Put commands to this state
machine when it wishes to enqueue an actuator command. The buffer has
two nominal states (EMPTY and NOT_EMPTY) and one error state (OVER-
FLOW) which is entered when the rate at which the application makes actuator
command requests is greater than the rate at which the hardware actuator can
process them.

The Actuator State Machine controls the hardware actuator. When the state
machine is started, it sends a SwitchOn command to the hardware actuator
and it starts the Buffer State Machine. It then waits in state INIT until the
hardware actuator confirms that it has completed its initialization by issuing a
Done command (in practice, this command would originate from an interrupt
processing routine which is triggered by the Done signal generated by the hard-
ware actuator). After initialization, the Actuator State Machine enters state
READY where it waits for a Send command which triggers the collection of a
command from the Buffer and its forwarding to the hardware actuator. While
the hardware actuator is busy processing a command request, the Actuator
State Machine remains in state BUSY and returns to state READY when the
hardware actuator sends it a Done command to signal its readiness to process
the next command. When the state machine is in state READY, it may be
switched off. This causes a SwitchOff command to be sent to the hardware
actuator and the Buffer State Machine to be stopped.

The Actuator Controller Procedure of figure [I9] controls the operation of the
two state machines and, through them, of the hardware actuator. Initially,
both state machines are inactive. When the application wishes to start us-
ing the hardware actuator, it starts the Actuator Controller Procedure. This
causes the Actuator State Machine to be started and (indirectly) the Buffer
State Machine to be started. Subsequently, the application periodically exe-
cutes the procedure. At each execution, the procedure checks whether there
are any pending commands in the buffer and, if so, it triggers the Actuator
State Machine to process them. The procedure can terminate either nominally
(if there has been a shutdown request for the actuator) or abnormally (if the
command buffer has overflown).

Table [0] lists four desirable properties which a well-designed actuator controller
should satisfy. The list is of course not exhaustive but it gives an idea of the
kind of properties for which a formal verification approach might be useful.
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Table 6: Properties of Actuator Controller

N Property Definitio

P-1 Pending commands in the buffer are always eventually sent to the
hardware actuator.

P-2 If the Actuator State Machine is inactive, then the Buffer State
Machine is inactive too.

P-3 If a shutdown request is made, then, eventually, the entire actuator
function is shut down.

P-4 Buffer overflows are always eventually handled.

The Promela program which was used to verify the properties in the table is
listed in full in appendix [Bl The bulk of the program consists of three macros
which represent the two state machines and the procedure of the actuator func-
tion. Their structure is in line with the patterns presented in sections and
0.2.2

The application within which the actuator function is embedded is represented
by process ApplicationSoftware. This process defines how the application
uses the actuator function. The model in the Promela program assumes that
the application initially starts the Actuator Controller Procedure and then sends
a sequence of command requests to the Buffer State Machine interleaved with
a sequence of execution requests to the Actuator Controller Procedure until,
eventually, a shutdown request is made to stop operation of the hardware actu-
ator.

The hardware actuator is modelled as a second process HardwareActuator
which implements the behaviour defined in the bulleted list at the beginning of
this section. In terms of the terminology of figure[15] the ApplicationSoftware
and the HardwareActuator processes represent the ”environment” around the
behaviour which must be verified.

The properties listed informally in table [6] are formalized at the end of the
Promela program in appendix |B| as LTL formulas which are then used by the
Spin Model Checker as positive forms of never claims. As stated in the pro-
gram, only the last property P-4 is satisfied. Properties P-1 to P-3 are not
satisfied. This fact is somewhat counter-intuitive and deserves some discussion
to highlight the importance of a formal verification approach.

Property P-1 (”Pending commands in the buffer are always eventually sent to
the hardware actuator”) is formalized as follows:

#define p (actReqDone=false) /x No Put request to Buffer is donex/
#define g (nltems==0) /+* No pending items in Bufer */

/% If no new commands are placed in the buffer, then, eventually ,x/
/x all pending commands are sent to the actuator. */

Itl P1 {(<>[]p) = (<>[Ja)}

One would expect this property to be violated exclusively when, at the time
the actuator function is shut down, there are some pending commands left in

©2012 P&P Software GmbH. All Rights Reserved. 55




[

PP-DF-COR-0001 Revision 1.3.1

the buffer. The property would thereore seem to be guaranteed by the fact
that the Actuator Controller Procedure only services a shutdown request if the
buffer is empty (i.e. if all pending actuator commands have been processed). In
reality, the Spin Model Checker shows that a violation may arise in the following
scenario:

e The hardware actuator is switched on and is initializing.

e The Actuator State Machine is in state INIT and the Buffer State Machine
is in state EMPTY.

e A shutdown request is made by the application.

e Since the buffer is empty, the Shutdown request is serviced at the next
execution of the Actuator Controller Procedure which sends a SwitchOff
command to the Actuator State Machine and then terminates.

e Since the Actuator State Machine is still in state INIT, the SwitchOff
command has no effect and both it and the Buffer State Machine remain
active.

e Some time later, a command is deposited in the buffer and remains per-
manently pending - this violates property P-1.

Violation of the property could probably be avoided either by constraining the
application not to shut down the actuator function while initialization is under
way; or by modifying the Actuator State Machine to respond to SwitcOff
commands when it is in the INIT state.

Property P-2 (”If the Actuator State Machine is inactive, then the Buffer State
Machine is inactive too”) is formalized as follows:

#define r (actState=—=INACTIVE) /% Actuator SM is inactive */
#define s (bufferState=INACTIVE) /% Buffer SM is inactive */
/x If Actuator SM is inactive, then Buffer SM is inactive too x/

S 161 P2 {[](r—>s)}

One would expect this property to be satisfied because the Buffer State Machine
is started as part of the starting of the Actuator State Machine and it is stopped
as part of its stopping. In fact, the Spin Model Check shows a violation under
the following conditions:

e When the Actuator State Machine is started, the transition action out of
its Initial Pseudo State is executed (at this time, the state machine is still
in an inactive state).

e The transition action starts the Buffer State Machine which therefore

leaves its inactive state before the Actuator State Machine reaches its
INIT state. This creates a violation of property P-2.

Property P-3 ("If a shutdown request is made, then, eventually, the entire ac-
tuator function is shut down”) is formalized as follows:

1|#define r (actState=INACTIVE) /% Actuator SM is inactive */
2|#define s (bufferState=INACTIVE) /% Buffer SM is inactive */
s|#define t (shutdownReqPending=—true) /% Shutdown request made */
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#define u (actHwState==OFF) /* HW Actuator is switched offx/

/% If a shutdown request is made, then, eventually , Actuator SM x/
/* and Buffer SM terminate and Actuator HW is switched off */
1t1 P3 {[](t = <>[](r & s && u))}

One would expect this property to be verified because a shutdown request causes
the Actuator Controller Procedure to terminate by switching off the Actuator
State Machine which in turns triggers commands to switch off the hardware
and to stop the Buffer State Machine. In fact, this property is violated for the
same reason that property P-1 is violated: if the application makes a shutdown
request before the initialization of the hardware actuator has been completed,
the hardware actuator will never be switched off.

Finally, property P-4 ("Buffer overflows are always eventually handled”) is for-
malized as follows:

#define v (overflowHandled=true) /% Overflow error handled x/
#define w (actContExec=true) /% Act. Cont. PR is executed */
#define x (actState=—READY) /% Actuator SM is in READY x/
#define y (actState=BUSY) /* Actuator SM is in BUSY %/
#define z (bufferState=—=OVERFLOW) /* Buffer SM is in OVERFLOW =x/
i|#define a (actContState=—WAITING) /% Act. Cont. PR is active %/
/* If | during normal operation (i.e. after the Actuator has */
/* completed its initialization and while the Controller x/
/% Procedure is active), the Buffer overflows and then the */
/% Actuator Controller Procedure executes, then the overflow x/
/* error is handled. ®/

s|1tl P4 {[]((z && a && (x || y) & <>w) —> <>v)}

This property is satisfied but it should be stressed that it is only satisfied be-
cause, in the light of the violations of properties P-1 and P-3, it has been
restricted to apply only after the actuator initialization has been completed. If
this restriction had been omitted, then the property would have been violated
for exactly the same reasons which led to violation of properies P-1 and P-3.

In summary, this example shows that FW Profile models can be easily and
systematically mapped to Promela programs where formal verification of their
properties can be performed using the Spin Model Checker.
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A Verification Model for RT Container

This appendix presents the Promela model used to verify the properties of the
RT Container defined by the FW Profile (see section .
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RT Container Model (single start/stop cycle)

The following aspects of a RT Container are modelled:
1. The Activation Thread

2. The Activation Procedure

3. The Notification Procedure

Of the actions in the Notification Procedure, only the ”Implement Notification
Logic” action is modelled.

Of the actions in the Activation Procedure, only the ”Execute Functional Behaviour
Action” is modelled.

In addition to modelling the RT Container itself , the following aspects

of its environment are modelled:

1. A process representing a source of a Start command followed by a Stop command
2. A process representing a source of Notification Requests

/

mtype = {STARTED, STOPPED};

mtype RTContState = STOPPED;

mtype activProcState = STOPPED;

mtype notifProcState = STOPPED;

byte notifCounter = 0;

bool notifyActivThread = false;

bool activationThreadReleased = false;

¥ OK K X KK K K K K K K K K K K K X X X ¥

/#* A call to this macro corresponds to one execution of the loop in the

% Notification Procedure.

* The Notification Procedure is started and stopped by setting notifProcState
% to, respectively , STARTED and STOPPED.

*/
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inline NotifProc() {

}
/ *

*
*
%

*/

if

fi;

(notifProcState==STOPPED) —> skip;
else —>

if

fi;

)

(activProcState==STOPPED) —>

notifProcState = STOPPED; /+* Terminate procedure =/
else —> /% Activation procedure is still running */
if
true —> /% Activation Thread should be notified x/
notifyActivThread = true;
true —> /+* Notification of Activ. Thread should be skipped x/
notifyActivThread = false;
fi;
if
notifyActivThread —> notifCounter++;
else —> skip;
fi;

A call to this macro corresponds to one execution of the loop in the
Activation Procedure.

The Activation Procedure is started and stopped by setting activProcState to,

respectively , STARTED and STOPPED.

inline ActivProc() {

if

(activProcState=STOPPED) —> skip;
else —>

if

(RTContState=STOPPED) —> /% RT Container has been stopped x/
activProcState = STOPPED; /% Terminate procedure x/
(RTContState!=STOPPED) —> /% RT Container is still running =/
if
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true —> /% Functional behaviour has terminated x/
activProcState = STOPPED; /% Terminate procedure x*/
true —> skip; /+* Functional behaviour has not yet terminated x/

fi;
fi;
fi;
}

/* Process representing source of start/stop requests for RT Container =/
active proctype Environment() {

/% Start the RT Container (this also releases the Activation Thread

* and starts the Notification and Activation Procedures) x/

atomic{notifProcState = STARTED;

activProcState = STARTED;}

RTContState = STARTED;

/* Stop the RT Container (this also notifies the Activation Thread =/

RTContState = STOPPED;

notifCounter++;

}

/* Process representing the thread executing the notification procedure.
% This model assumes that only up to 2 pending notifications can be
x buffered.
*/
active proctype NotificationThread () {
endl:
do
(notifCounter <3) —> NotifProc();
true —> skip;
od;
}

/% Process representing the Activation Thread x/
active proctype ActivationThread () {

/% Wait until RT Container is started and released */
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end2:
(RTContState=STARTED) ;
activationThreadReleased = true;
do
atomic { (notifCounter >0) —> notifCounter ——; }
ActivProc(); /* Execute Activation Procedure =/
if /% Check if Activation Procedure has terminated x/
(activProcState=STOPPED) —> RTContState = STOPPED;
NotifProc () ;
break ;
(activProcState=STARTED) —> skip;
fi;
if /#* Check if RT Container is stopped =*/
(RTContState==STOPPED) —> ActivProc();
NotifProc () ;
break ;
(RTContState==STARTED) —> skip;
fi;
od;
}
/% Define variables used to formulate never claims x/
#define p (RTContState==STOPPED) /% RT Container is stopped x/
2|#define q (activProcState==STOPPED) /% Activation Procedure is stopped x/
s|#define r (notifProcState==STOPPED) /+* Notification Procedure is stopped x/
i|#define s (activProcState=STARTED) /% Activation Procedure is started x/
s5|#define t (notifProcState=—STARTED) /* Notification Procedure is started =/
s|#define u (notifyActivThread==false) /% No notification requested by Notif. Procedure x/
#define v (notifCounter==0) /* All notification requests consumed by Activ. Thread =/
#define z (activationThreadReleased=—true) /% Activation thread has been released x/
/% The following formulas are used as (positive forms of) never claims x/
/+ If the RT Container is stopped after the activation thread has been released , then

% eventually the Activation Procedure terminates. x/
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161 P4 {[] ( (p&& z) —> <> q )}

/% If the Activation Procedure is started and then it is terminated,
% then eventually the RT Container is stopped. x/
1t1 P5 {[] (ta = [] (¢ =><> p))}

/* 1f the Activation Procedure terminates, then eventually the Notification Procedure terminates. =/
1t1 P6 {[] (a ><> r )}

/% If the Activation Procedure is running, then the Notification Procedure is running too. %/
1t1 P7 {[] (s >t )}

/* If notifications cease and RT Container and Activation Procedure remain active,
* then eventually all notifications are consumed by Activation Thread. x/
1tl P8 {<>[] (ud&& 'p & q) —> <>[] v }

Listing 6: Verification Model for RT Container
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B Promela Program for Actuator Control Ex-
ample

This appendix presents the complete Promela program for the formal verifica-
tion of the actuator control example discussed in section [6.3] The Promela code
includes (at the very end) the definition of the LTL formulas which represent
the properties to be satisfied by the actuator controller.
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/* P&P Software GmbH — Copyright 2013 — All Rights Reserved */
/+ */
/* Example of Formal Verification of a FW Profile Model */
/x «/
/* Model of the actuator example described in section 6.5 of the */
/% FW Profile Definition Document. */
mtype = {INACTIVE}; /* State common to all SMs x/
mtype = {Start, Stop}; /% Commands common to all SMs %/
mtype = {EMPTY, NOTEMPTY, OVERFLOW}; /* States of Buffer SM x/

mtype = {INIT, READY, BUSY}; /* States of Actuator SM x/
mtype = {Send, Done, SwitchOff}; /* Commands of Actuator SM x/
mtype = {Put, Pop}; /* Commands of Buffer SM */
mtype = {STOPPED, STARTED, WAITING}; /% Actuator Cont. Proc. States x/

5| mtype = {OFF, HW_NIT, HWBUSY, HW_AVAIL}; /x States of Actuator HW =/

mtype bufferState = INACTIVE; /+ State of Buffer SM */
mtype actState = INACTIVE; /% State of Actuator SM %/
mtype actContState = STOPPED; /% State of Actuator Controller PR %/
mtype actHwState = OFF; /+* State of Hardware Actuator */
byte nltems = 0; /* Number of items in buffer */
bool shutdownReqPending = false;
bool overflowHandled = false;
bool actReqDone = false;
bool actContExec = false;
/* */
/% A call to this macro models the sending of a command to the Buffer x/
/* State Machine. The buffer size is assumed to be equal to 3. */
inline BufferSM(cmd) {

if

(bufferState=—=INACTIVE) && (cmd=—=Start) —>
bufferState = EMPTY;

nltems = 0;

(bufferState=EMPTY) && (cmd=—=Put) —>
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fi;
}

nltems = 1;

bufferState = NOT_EMPTY;
(bufferState=NOTEMPTY) && (cmd=—=Put)
nltems—++;

(bufferState=NOTEMPTY) && (cmd=—Put)
bufferState = OVERFLOW;
(bufferState=NOTEMPTY) && (cmd=Pop)
nltems ——;

(bufferState=NOTEMPTY) && (cmd=—Pop)
nltems = 0;

bufferState = EMPTY;
(bufferState!=INACTIVE) && (cmd=—=Stop)
bufferState = INACTIVE;

else —> skip;

&& (nltems<3) —>
&& (nltems==3) —>
&& (nltems>1) —>

&& (nltems==1) —>

|
Vv

/%

/% A call to this macro models the sending of a command to the
/* Actuator State Machine.
inline ActuatorSM(cmd) {

if

(actState=INACTIVE) && (cmd=Start) —>

BufferSM (Start) ;
actState = INIT;
actHwState = HW_INIT;
(actState==INIT) && (cmd=—=Done) —>
actState = READY;
(actState=READY) && (cmd==Send) —>
actState = BUSY;
BufferSM (Pop) ;
actHwState = HW.BUSY;
(actState=BUSY) && (cmd==Done) —>
actState = READY;

/% Send command Start to Buffer SM

/% Switch—On command to Actuator HW

/% Send command Pop to Buffer SM
/% Send command to Actuator HW

(actState=—READY) && (cmd=—SwitchOff) —>

BufferSM (Stop) ;

/* Send command Stop to Buffer SM

«/
«/

«/
«/
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actHwState = OFF;

/% Switch—Off command to Actuator HW x/

actState = INACTIVE;
else —> skip;

fi;
}
7 o/
/* A call to this macro models the execution of the Actuator */
/* Controller Procedure. */
inline ActuatorControllerPR () {
if
(actContState=—=STOPPED) —>
skip;
(actContState=STARTED) —>
ActuatorSM (Start) ; /* Start Actuator SM x/
actContState = WAITING;
(actContState=—=WAITING) —>
if
(bufferState=EMPTY) —> skip;
(bufferState=NOTEMPTY) —>
ActuatorSM (Send) ; /+ Send Send to Actuator SM x/
(bufferState=—OVERFLOW) —>
overflowHandled = true;
ActuatorSM (SwitchOff) ; /% Send SwitchOff to Actuator SM x/
actContState = STOPPED; /* Terminate procedure x/
fi;
if
(shutdownReqPending=—true) && (bufferState=—EMPTY) —>
ActuatorSM (SwitchOff); /x Send SwitchOff to Actuator SM x/
actContState = STOPPED; /* Terminate procedure =/
else —> skip;
fi;
fij;
}
/* */
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/% Process representing the Hardware Actuator. */
/* The actuator hardware responds to Switch—On and Send requests by =/
/% sending a Done command to the Actuator SM. */
active proctype HardwareActuator () {

endl:

do

od;

(actHwState = HW_INIT) —>

actHwState = HW_AVAIL;
ActuatorSM (Done) ;

(actHwState =— HWBUSY) —>

actHwState = HW_AVAIL;
ActuatorSM (Done) ;

/% Process
/* Actuator Controller
/* puts commands in the

f

representing the application software which starts the */
Procedure, then periodically executes it and x/
Actuator Buffer until it eventually stops thex/

/* Actuator Controller Procedure. */
active proctype ApplicationSoftware () {

actContState = STARTED;
end?2:

do

od;

true —>

actReqDone = true;
BufferSM (Put) ;
actReqDone = false;
true —>

actContExec = true;
ActuatorControllerPR () ;
actContExec = false;

(!'shutdownReqPending) —>
shutdownReqPending = true;

/% Start Actuator Controller Proceduresx/
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/% */

/% Define variables used to formulate never claims: */
#define p (actReqDone=—false) /% No Put request to Buffer is done */
#define q (nltems==0) /#* There are no pending items in Buffer =/
#define r (actState=INACTIVE) /* Actuator SM is inactive */
#define s (bufferState=—INACTIVE) /+ Buffer SM is inactive */
#define t (shutdownReqPending=—=true) /% A shutdown request has been madex/
#define u (actHwState=—OFF) /% The Hardware Actuator is switched off x/
#define v (overflowHandled=true) /% Overflow error has been handled =/
#define w (actContExec=true) /% The Act. Cont. PR is executed ®/
s|#define x (actState=READY) /% Actuator SM is READY */
#define y (actState==BUSY) /% Actuator SM is BUSY ®/
#define z (bufferState=—OVERFLOW) /* Buffer SM is in OVERFLOW */
#define a (actContState=—WAITING) /% Act. Cont. PR is active */

/% The following formulas are used as (positive forms of) never claims x/

/% If no new commands are placed in the buffer, then, eventually, */
/* all pending commands are sent to the actuator. */
11l P1 {(<>[lp) = (<>[la)}

/* If the Actuator SM is inactive, then the Buffer SM is inactive too =/
1t1 P2 {[](r—>s)}

/% If a shutdown request is made, then, eventually , the Actuator SM */
/* and the Buffer SM terminate and the Actuator HW is switched off */
1t1 P3 {[](t = <>[|(r && s && u))}

/#* If , during normal operation (i.e. after the Actuator has completed =/

/% its initialization and while the Controller Procedure is active), x/
/* the Buffer overflows and then the Actuator Controller Procedure */
/% executes, then the overflow error is handled. * /

1tl P4 {[]((z && a && (x || y) & <>w) —> <>v)}

Listing 7: Verification Model for Actuator Control Example
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